-
Optical systems based on Bound States in the Continuum (BIC) generally possess higher Quality Factors (Q) and narrower operational linewidths compared with traditional photonic crystals or metasurfaces. The higher Q values offer extensive possibilities for high-performance optoelectronic devices. However, the narrower linewidths often pose challenges in practical applications, as fabrication errors during production inevitably lead to discrepancies between real optical devices and their ideal designs, which resulting in mismatches between actual and ideal operating wavelengths. To address this issue, we explore the dynamic tuning effect of liquid crystal (LC) on quasi-Bound States in the Continuum (q-BIC), aiming to compensate for wavelength shifts caused by fabrication errors. A photonic crystal slab with cross-shaped holes serves as the platform for generating q-BIC. Compared to the modulation induced by the tilt angles of incident light on q-BIC, LC has a lesser impact on the system's Q factor when shifting the same operational wavelength. For instance, shift the central wavelength λ0 of q-BIC by 5.32 nm using a tilted incident angle results in a reduction of the Q factor by up to 75.84% (from 3809.05 to 920.28). Whereas shifting the central wavelength λ0by 5.63 nm through the tilt angle θ of LC leads to an increase of Q factor of 14.27% (from 3809.05 to 4352.65). This demonstrates the significant potential of LC dynamic tuning in high-Q and ultra-narrowband q-BIC devices. Finally, the mechanism of LC within the q-BIC system is discussed. The smaller impact of LC on the Q factor is attributed to its minimal disruption of the q-BIC system's symmetry. Although LC also affects system symmetry within the cross-shaped holes, after adjusting the asymmetry parameters of the system, the Q factor and the LC tuning process can be well matched. The results of our research provides valuable references for extensive research related to q-BIC.
-
Keywords:
- q-BIC /
- Photonic Crystal /
- LC /
- Dynamic Tuning
-
[1] Von Neumann J, Wigner E P 1929 Phys. Z. 30 467
[2] Hsu C W, Zhen B, Stone A D, Joannopoulos J D, Soljačić M 2016 Nat. Rev. Mater. 1 16048
[3] Kang M, Liu T, Chan C T, Xiao M 2023 Nat. Rev. Phys. 5 659
[4] Diao J, Han B, Yin J, Li X, Hong Z 2019 IEEE PHOTONICS J 1 99
[5] Huo Y Y, Zhang Y Q, Liu X Y, Ning T Y, Ren Y Y 2025 OPT COMMUN 574 131255
[6] Franceschini P, Tognazzi A, Chernyak A M, Musorin A I, Cino A C, Fedyanin A A, Angelis C D 2024 Nanophotonics 13 1
[7] He W C, Wang Y S 2024 Opt. Express 32 39415
[8] Ovcharenko A I, Blanchard C, Hugonin J P, Sauvan C 2020 Phys. Rev. B 101 155303
[9] Krasikov S D, Bogdanov A A, Iorsh I V 2018 Phys. Rev. B 97 224309
[10] Liang Y, Koshelev K, Zhang F C, Lin H, Lin S R, Wu J Y, Jia B H, Kivshar Y 2020 Nano Lett. 20 6351
[11] Gorkunov M V, Antonov A A, Kivshar Y S 2020 Phys. Rev. Lett. 125 093903
[12] Romano S, Zito G, Yépez SN L, Cabrini S, Penzo E, Coppola G, Rendina I, Mocellaark V 2019 Opt. Express 27 18776
[13] Romano S, Zito G, Torino S, Calafiore G, Penzo E, Coppola G, Cabrini S, Rendina I, Mocella V 2018 Photon. Res. 6 726
[14] Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kanté B 2017 Nature 541 196
[15] Ha S T, Domínguez R P, Kuznetsov A I 2022 Adv. Opt. Mater. 10 2200753
[16] Carletti L, Koshelev K, Angelis C D, Kivshar Y 2018 Phys. Rev. Lett. 121 033903
[17] Kang L, Wu Y, Ma X, Lan S, Werner D H 2021 Adv. Opt. Mater. 10 2101497.
[18] Kühne J, Wang J, Weber T, Kühner L, Maier S A, Tittl A 2021 Nanophotonics 10 4305
[19] Li S Q, Xu X, Veetil R M, Valuckas V, Domínguez R P, Kuznetsov A I 2019 science 364 1087
[20] Zheng Z, Komar A, Kamali K Z, Noble J, Whichello L, Miroshnichenko A E, Rahmani M, Neshev D N, Xu L 2021 J. Appl. Phys. 130 053105
[21] Cui T, Bai B F, Sun H B 2019 Adv. Funct. Mater. 29 1806692
[22] Badloe T, Lee J, Seong J, Rho J 2021 Adv. Photonics Res. 2 2000205
[23] Xu S T, Fan J, Xue Z, Sun T, Li G, Li J, Lu D, Cong L 2024 Photonics Res. 12 2207
[24] Yu B, Yang F, Zeng M, Meng X, Qian Z, Tai Y, Li T 2025 Adv. Funct. Mater. 35 2413098
[25] Jain A, Moitra P, Koschny T, Valentine J, Soukoulis C M 2015 Adv. Opt. Mater. 3 1431
[26] Dharmavarapu R, Izumi K, Katayama I, Ng S, Vongsvivut J, Tobin M, Kuchmizhak A, Nishijima Y, Bhattacharya S, Juodkazis S 2019 Nanophotonics 8 1263
[27] Azzam S I, Chaudhuri K, Lagutchev A, Jacob Z, Kim Y L, Shalaev V M, Boltasseva A, Kildishev A V 2021 Laser Photonics Rev. 15 2000411
[28] Zhang X, Zhao Z, Liu P, Ako RT, Sriram S, Zhao X, Liu H, Bu H 2024 Opt. Lett. 49 7016
[29] Komar A, Domínguez R P, Miroshnichenko A, Yu Y F, Kivshar Y S, Kuznetsov A I, Neshev D 2018 ACS Photonics 5 1742
Metrics
- Abstract views: 43
- PDF Downloads: 0
- Cited By: 0