-
Two-dimensional magnetic materials are emerging materials developed in recent years and have attracted much attention for their unique magnetic properties and structural features in single-layer or few layers of atomic thickness. Among them, ferromagnetic materials have a wide range of applications such as in information memory and processing. Therefore the current research mainly focuses on enriching the two-dimensional ferromagnetic database and developing modification strategies for magnetic modulation. In this work, two-dimensional vanadium-doped Cr2S3 nanosheets successfully grow on mica substrates by atmospheric pressure chemical vapour deposition. The thickness and size of the nanosheet can be effectively regulated by changing the temperature and mass of vanadium source VCl3 powder, with the temperature of 765 ℃ and the mass of 0.010 g as the most appropriate conditions for the growth of nanosheets. The nanosheets are also characterised by optical microscopy, atomic force microscopy, Raman spectroscopy, scanning electron microscopy, X-ray energy spectroscopy, and X-ray photoelectron spectroscopy, and the nanosheet is regular in shape, with flat surface and controllable thickness, and the high-quality vanadium-doped Cr2S3 nanosheet is prepared. Meanwhile, the magnetic characterisations of the doped samples show that the Curie transition temperatures of the vanadium doped samples change to 105 K, and the maximum magnetic moment point of 75 K in the M-T curve disappears after V doping, and from subferromagnetic material to ferromagnetic material, and the coercivity in the M-H curve also increases significantly, which proves that the vanadium doping can effectively regulate the magnetic properties of Cr2S3 nanosheets. These results are expected to advance the vanadium-doped Cr2S3 materials toward practical applications and become one of the ideal candidate materials for the next-generation spintronic applications.
-
Keywords:
- two-dimensional magnetic materials /
- chemical vapour deposition /
- vanadium-doped Cr2S3 /
- ferromagnetism
[1] Burch K S, Mandrus D, Park J G 2018 Nature 563 47Google Scholar
[2] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Pablo Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar
[3] Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernández-Rossier J, Jarillo-Herrero P 2018 Science 360 1218Google Scholar
[4] Jiang S W, Li L Z, Wang Z F, Shan J, Mak K F 2019 Nat. Electron. 2 159Google Scholar
[5] Lin X Y, Yang W, Wang K L, Zhao W S 2019 Nat. Electron. 2 274Google Scholar
[6] Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554Google Scholar
[7] Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar
[8] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar
[9] Chen W J, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W, Gao C L 2019 Science 366 983Google Scholar
[10] Jiang H N, Zhang P, Wang X G, Gong Y J 2021 Nano Res. 14 1789Google Scholar
[11] Wang H, Wen Y, Zhao X X, Cheng R Q, Yin L, Zhai B X, Jiang J, Li Z W, Liu C S, Wu F C, He J 2023 Adv. Funct. Mater. 35 2211388Google Scholar
[12] Lu S H, Zhou Q H, Guo Y L, Zhang Y H, Wu Y L, Wang J L 2020 Adv. Mater. 32 2002658Google Scholar
[13] Guo Y L, Wang B, Zhang X W, Yuan S J, Ma L, Wang J L 2020 InfoMat 2 639Google Scholar
[14] Zha H M, Li W, Zhang G J, Liu W J, Deng L W, Jiang Q, Ye M, Wu H, Chang H X, Qiao S 2023 Chin. Phys. Lett. 40 087501Google Scholar
[15] Zhang Y L, Zhang Y Y, Ni J Y, Yang J H, Xiang H J, Gong X G 2021 Chin. Phys. Lett. 38 027501Google Scholar
[16] Eremeev S V, Otrokov M M, Chulkov E V 2018 Nano Lett. 18 6521Google Scholar
[17] Hu T, Zhao G D, Gao H, Wu Y B, Hong J S, Stroppa A, Ren W 2020 Phys. Rev. B 101 125401Google Scholar
[18] Yang S X, Chen Y J, Jiang C B 2021 InfoMat 3 397Google Scholar
[19] Abramchuk M, Jaszewski S, Metz K R, Osterhoudt G B, Wang Y P, Burch K S, Tafti F 2018 Adv. Mater. 30 1801325.Google Scholar
[20] Duan H L, Guo P, Wang C, et al. 2019 Nat. Commum. 10 1584Google Scholar
[21] Zhou S S, Wang R Y, Han J B, Wang D L, Li H Q, Gan L, Zhai T Y 2019 Adv. Funct. Mater. 29 1805880Google Scholar
[22] Chu J W, Zhang Y, Wen Y, Qiao R X, Wu C C, He P, Yin L, Cheng R Q, Wang F, Wang Z X, Xiong J, Li Y R, He J 2019 Nano Lett. 19 2154Google Scholar
[23] Cui F F, Zhao X X, Xu J J, Tang B, Shang Q Y, Shi J P, Huan Y H, Liao J H, Chen Q, Hou Y L, Zhang Q, Pennycook S J, Zhang Y F 2020 Adv. Mater. 32 1905896Google Scholar
[24] Zhou X Y, Liu C, Song L T, et al. 2022 Sci. China-Phys. Mech. Astron. 65 276811Google Scholar
[25] 杨瑞龙, 张钰樱 2023 材料工程 51 162Google Scholar
Yang R L, Zhang Y Y 2023 J. Mater. Engineer. 51 162Google Scholar
[26] Guo Y Q, Deng H T, Sun X, et al. 2017 Adv. Mater. 29 1700715Google Scholar
-
图 2 不同钒源温度与质量条件下生长的纳米片光学形貌图 (a)—(c) 735, 750, 765 ℃钒源温度条件下生长的纳米片光学照片; (d)—(f) 0.005, 0.010, 0.015 g钒源质量条件下生长的纳米片光学照片
Figure 2. Optical morphology of nanosheets grown under different vanadium source temperature and mass conditions: Optical image of nanosheets grown under the vanadium source temperature conditions of (a) 735, (b) 750, and (c) 765 ℃; optical image of nanosheets grown under the vanadium source mass conditions of (d) 0.005, (e) 0.010, and (f) 0.015 g.
-
[1] Burch K S, Mandrus D, Park J G 2018 Nature 563 47Google Scholar
[2] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Pablo Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar
[3] Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernández-Rossier J, Jarillo-Herrero P 2018 Science 360 1218Google Scholar
[4] Jiang S W, Li L Z, Wang Z F, Shan J, Mak K F 2019 Nat. Electron. 2 159Google Scholar
[5] Lin X Y, Yang W, Wang K L, Zhao W S 2019 Nat. Electron. 2 274Google Scholar
[6] Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554Google Scholar
[7] Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar
[8] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar
[9] Chen W J, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W, Gao C L 2019 Science 366 983Google Scholar
[10] Jiang H N, Zhang P, Wang X G, Gong Y J 2021 Nano Res. 14 1789Google Scholar
[11] Wang H, Wen Y, Zhao X X, Cheng R Q, Yin L, Zhai B X, Jiang J, Li Z W, Liu C S, Wu F C, He J 2023 Adv. Funct. Mater. 35 2211388Google Scholar
[12] Lu S H, Zhou Q H, Guo Y L, Zhang Y H, Wu Y L, Wang J L 2020 Adv. Mater. 32 2002658Google Scholar
[13] Guo Y L, Wang B, Zhang X W, Yuan S J, Ma L, Wang J L 2020 InfoMat 2 639Google Scholar
[14] Zha H M, Li W, Zhang G J, Liu W J, Deng L W, Jiang Q, Ye M, Wu H, Chang H X, Qiao S 2023 Chin. Phys. Lett. 40 087501Google Scholar
[15] Zhang Y L, Zhang Y Y, Ni J Y, Yang J H, Xiang H J, Gong X G 2021 Chin. Phys. Lett. 38 027501Google Scholar
[16] Eremeev S V, Otrokov M M, Chulkov E V 2018 Nano Lett. 18 6521Google Scholar
[17] Hu T, Zhao G D, Gao H, Wu Y B, Hong J S, Stroppa A, Ren W 2020 Phys. Rev. B 101 125401Google Scholar
[18] Yang S X, Chen Y J, Jiang C B 2021 InfoMat 3 397Google Scholar
[19] Abramchuk M, Jaszewski S, Metz K R, Osterhoudt G B, Wang Y P, Burch K S, Tafti F 2018 Adv. Mater. 30 1801325.Google Scholar
[20] Duan H L, Guo P, Wang C, et al. 2019 Nat. Commum. 10 1584Google Scholar
[21] Zhou S S, Wang R Y, Han J B, Wang D L, Li H Q, Gan L, Zhai T Y 2019 Adv. Funct. Mater. 29 1805880Google Scholar
[22] Chu J W, Zhang Y, Wen Y, Qiao R X, Wu C C, He P, Yin L, Cheng R Q, Wang F, Wang Z X, Xiong J, Li Y R, He J 2019 Nano Lett. 19 2154Google Scholar
[23] Cui F F, Zhao X X, Xu J J, Tang B, Shang Q Y, Shi J P, Huan Y H, Liao J H, Chen Q, Hou Y L, Zhang Q, Pennycook S J, Zhang Y F 2020 Adv. Mater. 32 1905896Google Scholar
[24] Zhou X Y, Liu C, Song L T, et al. 2022 Sci. China-Phys. Mech. Astron. 65 276811Google Scholar
[25] 杨瑞龙, 张钰樱 2023 材料工程 51 162Google Scholar
Yang R L, Zhang Y Y 2023 J. Mater. Engineer. 51 162Google Scholar
[26] Guo Y Q, Deng H T, Sun X, et al. 2017 Adv. Mater. 29 1700715Google Scholar
Catalog
Metrics
- Abstract views: 2624
- PDF Downloads: 191
- Cited By: 0