Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetism and spin transport properties of two-dimensional magnetic semiconductor kagome lattice Nb3Cl8 monolayer

Fan Xiao-Zheng Li Yi-Lian Wu Yi Chen Jun-Cai Xu Guo-Liang An Yi-Peng

Citation:

Magnetism and spin transport properties of two-dimensional magnetic semiconductor kagome lattice Nb3Cl8 monolayer

Fan Xiao-Zheng, Li Yi-Lian, Wu Yi, Chen Jun-Cai, Xu Guo-Liang, An Yi-Peng
PDF
HTML
Get Citation
  • Two-dimensional semiconductor materials with intrinsic magnetism have great application prospects in realizing spintronic devices with low power consumption, small size and high efficiency. Some two-dimensional materials with special lattice structures, such as kagome lattice crystals, are favored by researchers because of their novel properties in magnetism and electronic properties. Recently, a new two-dimensional magnetic semiconductor material Nb3Cl8 monolayer with kagome lattice structure was successfully prepared, which provides a new platform for exploring two-dimensional magnetic semiconductor devices with kagome structure. In this work, we study the electronic structure and magnetic anisotropy of Nb3Cl8 monolayer. We also further construct its p-n junction diode and study its spin transport properties by using density functional theory combined with non-equilibrium Green’s function method. The results show that the phonon spectrum of the Nb3Cl8 monolayer has no negative frequency, confirming its dynamic stability. The band gap of the spin-down state (1.157 eV) is significantly larger than that of the spin-up state (0.639 eV). The magnetic moment of the Nb3Cl8 monolayer is 0.997 μB, and its easy magnetization axis is in the plane and along the x-axis direction based on its energy of magnetic anisotropy. The Nb atoms make the main contribution to the magnetic anisotropy. When the strain is applied, the band gap of the spin-down states will decrease, while the band gap of the spin-up state monotonically decreases from the negative (compress) to positive (tensile) strain. As the strain variable goes from –6% to 6%, the contribution of Nb atoms to the total magnetic moment gradually increases. Moreover, strain causes the easy magnetization axis of the Nb3Cl8 monolayer to flip vertically from in-plane to out-plane. The designed p-n junction diode nanodevice based on Nb3Cl8 monolayer exhibits an obvious rectification effect. In addition, the current in the spin-up state is larger than that in the spin-down state, exhibiting a spin-polarized transport behavior. Moreover, a negative differential resistance (NDR) phenomenon is also observed, which could be used in the NDR devices. These results demonstrate that the Nb3Cl8 monolayer material has great potential applications in the next-generation high-performance spintronic devices, and further experimental verification and exploration of this material and related two-dimensional materials are needed.
      Corresponding author: An Yi-Peng, ypan@htu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12274117), the Program for Innovative Research Team (in Science and Technology) in University of Henan Province, China (Grant No. 24IRTSTHN025), the Science Foundation for the Excellent Youth Scholars of Henan Province, China (Grant No. 202300410226), the Young Top-notch Talents Project of Henan Province, China (2021 year), the Key Scientific Project of Universities of Henan Province, China (Grant No. 22A140020), and the Henan Center for Outstanding Overseas Scientists, China (Grant No. GZS2023007).
    [1]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    An M, Dong S 2020 APL Mater. 8 110704Google Scholar

    [4]

    Ataca C, Sahin H, Ciraci S 2012 J. Phys. Chem. C 116 8983Google Scholar

    [5]

    Du Y C, Yang L M, Liu H, Ye P D 2014 APL Mater. 2 092510Google Scholar

    [6]

    Li G P, Yao K L, Gao G Y 2018 Nanotechnology 29 015204Google Scholar

    [7]

    Li X X, Fan Z Q, Liu P Z, Chen M L, Liu X, Jia C K, Sun D M, Jiang X W, Han Z, Bouchiat V, Guo J J, Chen J H, Zhang Z D 2017 Nat. Commun. 8 970Google Scholar

    [8]

    Yuan J, Chen Y, Xie Y, Zhang X, Rao D, Guo Y, Yan X, Feng Y P, Cai Y 2020 Proc. Natl. Acad. Sci. U.S.A. 117 6362Google Scholar

    [9]

    An Y P, Gong S J, Hou Y S, Li J, Wu R Q, Jiao Z Y, Wang T X, Jiao J T 2020 J. Phys. Condens. Matter 32 055503Google Scholar

    [10]

    An Y P, Hou Y S, Wang H, Li J, Wu R Q, Wang T X, Da H X, Jiao J T 2019 Phys. Rev. A 11 064031Google Scholar

    [11]

    An Y P, Jiao J T, Hou Y S, Wang H, Wu D P, Wang T X, Fu Z M, Xu G L, Wu R Q 2018 Phys. Chem. Chem. Phys. 20 21552Google Scholar

    [12]

    An Y P, Jiao J T, Hou Y S, Wang H, Wu R Q, Liu C, Chen X N, Wang T X, Wang K 2019 J. Phys. Condens. Matter 31 065301Google Scholar

    [13]

    Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K 2016 Nat. Chem. 8 563Google Scholar

    [14]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513Google Scholar

    [15]

    Arcudia J, Kempt R, Cifuentes-Quintal M E, Heine T, Merino G 2020 Phys. Rev. Lett. 125 196401Google Scholar

    [16]

    Jin Z H, Mullen J T, Kim K W 2016 Appl. Phys. Lett. 109 053108Google Scholar

    [17]

    Lu J, Fan Z Q, Gong J, Chen J Z, ManduLa H, Zhang Y Y, Yang S Y, Jiang X W 2018 Phys. Chem. Chem. Phys. 20 5699Google Scholar

    [18]

    Sibari A, Kerrami Z, Kara A, Benaissa M 2020 J. Appl. Phys. 127 225703Google Scholar

    [19]

    An Y P, Wang K, Gong S J, Hou Y S, Ma C L, Zhu M F, Zhao C X, Wang T X, Ma S H, Wang H Y, Wu R Q, Liu W M 2021 npj Comput. Mater. 7 45Google Scholar

    [20]

    Feng Y L, Wang Z L, Zuo X, Gao G Y 2022 Appl. Phys. Lett. 120 092405Google Scholar

    [21]

    Gao Y F, Liao J B, Wang H Y, Wu Y, Li Y L, Wang K, Ma C L, Gong S J, Wang T X, Dong X, Jiao Z Y, An Y P 2022 Phys. Rev. A 18 034033Google Scholar

    [22]

    Yan H J, Guan Q Y, Chen H F, Cui X Y, Shu Z, Liang D, Wang B W, Cai Y Q 2022 J. Mater. Chem. A 10 23744Google Scholar

    [23]

    Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar

    [24]

    Fan Z Q, Jiang X W, Chen J Z, Luo J W 2018 ACS Appl. Mater. Interfaces 10 19271Google Scholar

    [25]

    Fan Z Q, Jiang X W, Luo J W, Jiao L Y, Huang R, Li S S, Wang L W 2017 Phys. Rev. B 96 165402Google Scholar

    [26]

    Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar

    [27]

    王贺岩, 高怡帆, 廖家宝, 陈俊彩, 李怡莲, 吴怡, 徐国亮, 安义鹏 2022 71 097502Google Scholar

    Wang H Y, Gao Y F, Liao J B, Chen J C, Li Y L, Wu Y, Xu G L, An Y P 2022 Acta Phys. Sin. 71 097502Google Scholar

    [28]

    Chen J C, Guo Y L, Ma C L, Gong S J, Zhao C X, Wang T X, Dong X, Jiao Z Y, Ma S H, Xu G L, An Y P 2023 Phys. Rev. A 19 054013Google Scholar

    [29]

    Chen S B, Huang C X, Sun H S, Ding J F, Jena P, Kan E 2019 J. Phys. Chem. C 123 17987Google Scholar

    [30]

    Dayen J F, Ray S J, Karis O, Vera-Marun I J, Kamalakar M V 2020 Appl. Phys. Rev. 7 011303Google Scholar

    [31]

    Žutić I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323Google Scholar

    [32]

    Lin H L, Yan F G, Hu C, Zheng Y H, Sheng Y, Zhu W K, Wang Z, Zheng H Z, Wang K Y 2022 Nanoscale 14 2352Google Scholar

    [33]

    Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z, Zhang X M, Xu J H, Wang Y J, Zheng Y H, Yan F G, Zhang J, Zhao L X, Patané A, Zhang J, Chang H X, Wang K Y 2022 Chin. Phys. Lett. 39 128501Google Scholar

    [34]

    Zhu W K, Lin H L, Yan F G, Hu C, Wang Z, Zhao L X, Deng Y C, Kudrynskyi Z R, Zhou T, Kovalyuk Z D, Zheng Y H, Patanè A, Žutić I, Li S S, Zheng H Z, Wang K Y 2021 Adv. Mater. 33 2104658Google Scholar

    [35]

    Zhu W K, Zhu Y M, Zhou T, Zhang X P, Lin H L, Cui Q R, Yan F G, Wang Z, Deng Y C, Yang H X, Zhao L X, Žutić I, Belashchenko K D, Wang K Y 2023 Nat. Commun. 14 5371Google Scholar

    [36]

    Wang Z A, Xue W S, Yan F G, Zhu W K, Liu Y, Zhang X H, Wei Z M, Chang K, Yuan Z, Wang K Y 2023 Nano Lett. 23 710Google Scholar

    [37]

    Ugeda M M, Brihuega I, Guinea F, Gómez-Rodríguez J M 2010 Phys. Rev. Lett. 104 096804Google Scholar

    [38]

    Mishra R, Zhou W, Pennycook S J, Pantelides S T, Idrobo J C 2013 Phys. Rev. B 88 144409Google Scholar

    [39]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [40]

    Zhang Z W, Shang J Z, Jiang C Y, Rasmita A, Gao W B, Yu T 2019 Nano Lett. 19 3138Google Scholar

    [41]

    Cai X H, Song T C, Wilson N P, Clark G, He M H, Zhang X O, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Cobden D H, Xu X D 2019 Nano Lett. 19 3993Google Scholar

    [42]

    Rosenberg E, DeStefano J M, Guo Y, Oh J S, Hashimoto M, Lu D, Birgeneau R J, Lee Y, Ke L, Yi M, Chu J-H 2022 Phys. Rev. B 106 115139Google Scholar

    [43]

    Zelenskiy A, Monchesky T L, Plumer M L, Southern B W 2022 Phys. Rev. B 106 144433Google Scholar

    [44]

    Yi X W, Ma X Y, Zhang Z, Liao Z W, You J Y, Su G 2022 Phys. Rev. B 106 L220505Google Scholar

    [45]

    Ghimire N J, Dally R L, Poudel L, Jones D C, Michel D, Magar N T, Bleuel M, McGuire M A, Jiang J S, Mitchell J F, Lynn J W, Mazin I I 2020 Sci. Adv. 6 eabe2680Google Scholar

    [46]

    Kang M G, Ye L D, Fang S A, You J S, Levitan A, Han M Y, Facio J I, Jozwiak C, Bostwick A, Rotenberg E, Chan M K, McDonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, van den Brink J, Richter M, Prasad Ghimire M, Checkelsky J G, Comin R 2020 Nat. Mater. 19 163Google Scholar

    [47]

    Li M, Wang Q, Wang G, Yuan Z, Song W, Lou R, Liu Z, Huang Y, Liu Z, Lei H, Yin Z, Wang S 2021 Nat. Commun. 12 3129Google Scholar

    [48]

    Ye L D, Kang M G, Liu J W, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R, Checkelsky J G 2018 Nature 555 638Google Scholar

    [49]

    Yin J X, Zhang S S, Li H, Jiang K, Chang G Q, Zhang B J, Lian B, Xiang C, Belopolski I, Zheng H, Cochran T A, Xu S Y, Bian G, Liu K, Chang T R, Lin H, Lu Z Y, Wang Z Q, Jia S, Wang W H, Hasan M Z 2018 Nature 562 91Google Scholar

    [50]

    Xu X T, Yin J X, Ma W, Tien H J, Qiang X B, Reddy P V S, Zhou H, Shen J, Lu H Z, Chang T R, Qu Z, Jia S 2022 Nat. Commun. 13 1197Google Scholar

    [51]

    Sun Z Y, Zhou H, Wang C X, Kumar S, Geng D Y, Yue S S, Han X, Haraguchi Y, Shimada K, Cheng P, Chen L, Shi Y G, Wu K H, Meng S, Feng B J 2022 Nano Lett. 22 4596Google Scholar

    [52]

    Jiang J, Liang Q, Meng R, Yang Q, Tan C, Sun X, Chen X 2017 Nanoscale 9 2992Google Scholar

    [53]

    Smidstrup S, Stradi D, Wellendorff J, Khomyakov P A, Vej-Hansen U G, Lee M E, Ghosh T, Jónsson E, Jónsson H, Stokbro K 2017 Phys. Rev. B 96 195309Google Scholar

    [54]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [55]

    Marmolejo-Tejada J M, Dolui K, Lazic P, Chang P H, Smidstrup S, Stradi D, Stokbro K, Nikolić B K 2017 Nano Lett. 179 5626Google Scholar

    [56]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2020 J. Phys. Condens. Matter 32 015901Google Scholar

    [57]

    van Setten M J, Giantomassi M, Bousquet E, Verstraete M J, Hamann D R, Gonze X, Rignanese G M 2017 Comput. Phys. Commun. 226 39Google Scholar

    [58]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [59]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [60]

    Mortazavi B, Zhuang X, Rabczuk T 2022 Appl. Phys. A 128 934Google Scholar

    [61]

    Meng R S, Pereira L D, Locquet J P, Afanas'ev V, Pourtois G, Houssa M 2022 npj Comput. Mater. 8 230Google Scholar

    [62]

    Lado J L, Fernández-Rossier J 2017 2D Mater. 4 035002Google Scholar

    [63]

    Daalderop G H O, Kelly P J, Schuurmans M F H 1990 Phys. Rev. B 41 11919Google Scholar

    [64]

    姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平 2022 71 206303Google Scholar

    Jiang N, Li A L, Qu S X, Gou S, Ouyang F P 2022 Acta Phys. Sin. 71 206303Google Scholar

    [65]

    Lv H Y, Lu W J, Shao D F, Liu Y, Sun Y P 2015 Phys. Rev. B 92 214419Google Scholar

    [66]

    Webster L, Yan J A 2018 Phys. Rev. B 98 144411Google Scholar

    [67]

    Stradi D, Martinez U, Blom A, Brandbyge M, Stokbro K 2016 Phys. Rev. B 93 155302Google Scholar

    [68]

    Gunst T, Markussen T, Stokbro K, Brandbyge M 2016 Phys. Rev. B 93 035414Google Scholar

    [69]

    Lee I H, Martin R M 1997 Phys. Rev. B 56 7197Google Scholar

    [70]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

  • 图 1  (a) Nb3Cl8单层晶体结构的俯视图(上)和侧视图(下), x轴代表锯齿型方向; (b) 声子谱以及投影声子态密度; 自旋向上(c)和向下(d)状态的元素投影电子能带以及投影态密度; Γ点附近自旋向上(e)和向下(f)状态的导带与价带的三维视图以及在第一布里渊区的二维投影; 色卡显示了图(e)、图(f)中从低(红色)到高(紫色)的能量本征值; 费米能级(EF)设置在能量零点位置

    Figure 1.  (a) Top view (top) and side view (bottom) of Nb3Cl8 monolayer crystal structure, x axis refers to the zigzag irection; (b) phonon spectrum and phonon projected density of states; element-projected electronic band and density of states for the spin-up (c) and spin-down (d) states; 3D views for the spin-up (e) and spin-down (f) states of the conduction and valence bands around the Γ point, and 2D views in the first Brillouin zone projection. Color map shows the values for (e), (f) from low (red) to high (purple). the Fermi level (EF) is set at the energy zero position.

    图 2  (a) x-y平面内EMA随极角θϕ的变化; (b) y-z平面内EMA随极角θϕ的变化, 插图显示极坐标; (c) θ = 90°, ϕ = 90°(y轴方向)的EMA轨道投影; (d) θ = 90°, ϕ = 0°(x轴方向)的EMA轨道投影; y轴(θ = 90°, ϕ = 90°)和z轴(θ = 0°, ϕ = 90°)方向的能量设置为x-yy-z平面的零参考

    Figure 2.  (a) EMA variation with polar angles θ and ϕ in the x-y plane; (b) EMA variation with polar angles θ and ϕ in the y-z plane, inset shows polar coordinates; orbital projections of EMA corresponding to polar angles of (c) θ = 90°, ϕ = 90° (y axis direction) and (d) θ = 90°, ϕ = 0° (x axis direction). Energy of y axis (θ = 90°, ϕ = 90°) and z axis (θ = 0°, ϕ = 90°) directions are set as zero reference of the x-y and y-z plane.

    图 3  (a) Nb3Cl8单层自旋向上态与自旋向下态带隙随应力应变的变化; (b) Nb3Cl8单层能量变化量($ \Delta E $)和Nb原子对总磁矩的贡献($ {{{M_{{\mathrm{Nb}}}}} / {{M_{{\mathrm{Total}}}}}} $)随应力应变的变化

    Figure 3.  (a) Variation of the band gap with strain in the spin-up and spin-down states of Nb3Cl8 monolayer; (b) variation of the energy change ($ \Delta E $) and the contribution of Nb atoms to the total magnetic moment ($ {{{M_{{\mathrm{Nb}}}}} / {{M_{{\mathrm{Total}}}}}} $) with strain in the Nb3Cl8 monolayer.

    图 4  (a) Z型Nb3Cl8单层p-n结二极管示意图; (b) Z型Nb3Cl8单层p-n结二极管I-V曲线; (c) Z型Nb3Cl8单层p-n结二极管的微分电导(dI/dV)曲线; (d) Z型Nb3Cl8单层p-n结二极管整流比(RR)和极化比(PR)

    Figure 4.  (a) Schematic diagram of Z-type Nb3Cl8 monolayer p-n junction diode; (b) I-V curve of Z-type Nb3Cl8 monolayer p-n junction diode; (c) differential conductance (dI/dV) curve of Z-type Nb3Cl8 monolayer p-n junction diode; (d) rectification ratio (RR) and polarization ratio (PR) of Z-type Nb3Cl8 monolayer p-n junction diode.

    Baidu
  • [1]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    An M, Dong S 2020 APL Mater. 8 110704Google Scholar

    [4]

    Ataca C, Sahin H, Ciraci S 2012 J. Phys. Chem. C 116 8983Google Scholar

    [5]

    Du Y C, Yang L M, Liu H, Ye P D 2014 APL Mater. 2 092510Google Scholar

    [6]

    Li G P, Yao K L, Gao G Y 2018 Nanotechnology 29 015204Google Scholar

    [7]

    Li X X, Fan Z Q, Liu P Z, Chen M L, Liu X, Jia C K, Sun D M, Jiang X W, Han Z, Bouchiat V, Guo J J, Chen J H, Zhang Z D 2017 Nat. Commun. 8 970Google Scholar

    [8]

    Yuan J, Chen Y, Xie Y, Zhang X, Rao D, Guo Y, Yan X, Feng Y P, Cai Y 2020 Proc. Natl. Acad. Sci. U.S.A. 117 6362Google Scholar

    [9]

    An Y P, Gong S J, Hou Y S, Li J, Wu R Q, Jiao Z Y, Wang T X, Jiao J T 2020 J. Phys. Condens. Matter 32 055503Google Scholar

    [10]

    An Y P, Hou Y S, Wang H, Li J, Wu R Q, Wang T X, Da H X, Jiao J T 2019 Phys. Rev. A 11 064031Google Scholar

    [11]

    An Y P, Jiao J T, Hou Y S, Wang H, Wu D P, Wang T X, Fu Z M, Xu G L, Wu R Q 2018 Phys. Chem. Chem. Phys. 20 21552Google Scholar

    [12]

    An Y P, Jiao J T, Hou Y S, Wang H, Wu R Q, Liu C, Chen X N, Wang T X, Wang K 2019 J. Phys. Condens. Matter 31 065301Google Scholar

    [13]

    Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K 2016 Nat. Chem. 8 563Google Scholar

    [14]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513Google Scholar

    [15]

    Arcudia J, Kempt R, Cifuentes-Quintal M E, Heine T, Merino G 2020 Phys. Rev. Lett. 125 196401Google Scholar

    [16]

    Jin Z H, Mullen J T, Kim K W 2016 Appl. Phys. Lett. 109 053108Google Scholar

    [17]

    Lu J, Fan Z Q, Gong J, Chen J Z, ManduLa H, Zhang Y Y, Yang S Y, Jiang X W 2018 Phys. Chem. Chem. Phys. 20 5699Google Scholar

    [18]

    Sibari A, Kerrami Z, Kara A, Benaissa M 2020 J. Appl. Phys. 127 225703Google Scholar

    [19]

    An Y P, Wang K, Gong S J, Hou Y S, Ma C L, Zhu M F, Zhao C X, Wang T X, Ma S H, Wang H Y, Wu R Q, Liu W M 2021 npj Comput. Mater. 7 45Google Scholar

    [20]

    Feng Y L, Wang Z L, Zuo X, Gao G Y 2022 Appl. Phys. Lett. 120 092405Google Scholar

    [21]

    Gao Y F, Liao J B, Wang H Y, Wu Y, Li Y L, Wang K, Ma C L, Gong S J, Wang T X, Dong X, Jiao Z Y, An Y P 2022 Phys. Rev. A 18 034033Google Scholar

    [22]

    Yan H J, Guan Q Y, Chen H F, Cui X Y, Shu Z, Liang D, Wang B W, Cai Y Q 2022 J. Mater. Chem. A 10 23744Google Scholar

    [23]

    Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar

    [24]

    Fan Z Q, Jiang X W, Chen J Z, Luo J W 2018 ACS Appl. Mater. Interfaces 10 19271Google Scholar

    [25]

    Fan Z Q, Jiang X W, Luo J W, Jiao L Y, Huang R, Li S S, Wang L W 2017 Phys. Rev. B 96 165402Google Scholar

    [26]

    Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar

    [27]

    王贺岩, 高怡帆, 廖家宝, 陈俊彩, 李怡莲, 吴怡, 徐国亮, 安义鹏 2022 71 097502Google Scholar

    Wang H Y, Gao Y F, Liao J B, Chen J C, Li Y L, Wu Y, Xu G L, An Y P 2022 Acta Phys. Sin. 71 097502Google Scholar

    [28]

    Chen J C, Guo Y L, Ma C L, Gong S J, Zhao C X, Wang T X, Dong X, Jiao Z Y, Ma S H, Xu G L, An Y P 2023 Phys. Rev. A 19 054013Google Scholar

    [29]

    Chen S B, Huang C X, Sun H S, Ding J F, Jena P, Kan E 2019 J. Phys. Chem. C 123 17987Google Scholar

    [30]

    Dayen J F, Ray S J, Karis O, Vera-Marun I J, Kamalakar M V 2020 Appl. Phys. Rev. 7 011303Google Scholar

    [31]

    Žutić I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323Google Scholar

    [32]

    Lin H L, Yan F G, Hu C, Zheng Y H, Sheng Y, Zhu W K, Wang Z, Zheng H Z, Wang K Y 2022 Nanoscale 14 2352Google Scholar

    [33]

    Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z, Zhang X M, Xu J H, Wang Y J, Zheng Y H, Yan F G, Zhang J, Zhao L X, Patané A, Zhang J, Chang H X, Wang K Y 2022 Chin. Phys. Lett. 39 128501Google Scholar

    [34]

    Zhu W K, Lin H L, Yan F G, Hu C, Wang Z, Zhao L X, Deng Y C, Kudrynskyi Z R, Zhou T, Kovalyuk Z D, Zheng Y H, Patanè A, Žutić I, Li S S, Zheng H Z, Wang K Y 2021 Adv. Mater. 33 2104658Google Scholar

    [35]

    Zhu W K, Zhu Y M, Zhou T, Zhang X P, Lin H L, Cui Q R, Yan F G, Wang Z, Deng Y C, Yang H X, Zhao L X, Žutić I, Belashchenko K D, Wang K Y 2023 Nat. Commun. 14 5371Google Scholar

    [36]

    Wang Z A, Xue W S, Yan F G, Zhu W K, Liu Y, Zhang X H, Wei Z M, Chang K, Yuan Z, Wang K Y 2023 Nano Lett. 23 710Google Scholar

    [37]

    Ugeda M M, Brihuega I, Guinea F, Gómez-Rodríguez J M 2010 Phys. Rev. Lett. 104 096804Google Scholar

    [38]

    Mishra R, Zhou W, Pennycook S J, Pantelides S T, Idrobo J C 2013 Phys. Rev. B 88 144409Google Scholar

    [39]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [40]

    Zhang Z W, Shang J Z, Jiang C Y, Rasmita A, Gao W B, Yu T 2019 Nano Lett. 19 3138Google Scholar

    [41]

    Cai X H, Song T C, Wilson N P, Clark G, He M H, Zhang X O, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Cobden D H, Xu X D 2019 Nano Lett. 19 3993Google Scholar

    [42]

    Rosenberg E, DeStefano J M, Guo Y, Oh J S, Hashimoto M, Lu D, Birgeneau R J, Lee Y, Ke L, Yi M, Chu J-H 2022 Phys. Rev. B 106 115139Google Scholar

    [43]

    Zelenskiy A, Monchesky T L, Plumer M L, Southern B W 2022 Phys. Rev. B 106 144433Google Scholar

    [44]

    Yi X W, Ma X Y, Zhang Z, Liao Z W, You J Y, Su G 2022 Phys. Rev. B 106 L220505Google Scholar

    [45]

    Ghimire N J, Dally R L, Poudel L, Jones D C, Michel D, Magar N T, Bleuel M, McGuire M A, Jiang J S, Mitchell J F, Lynn J W, Mazin I I 2020 Sci. Adv. 6 eabe2680Google Scholar

    [46]

    Kang M G, Ye L D, Fang S A, You J S, Levitan A, Han M Y, Facio J I, Jozwiak C, Bostwick A, Rotenberg E, Chan M K, McDonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, van den Brink J, Richter M, Prasad Ghimire M, Checkelsky J G, Comin R 2020 Nat. Mater. 19 163Google Scholar

    [47]

    Li M, Wang Q, Wang G, Yuan Z, Song W, Lou R, Liu Z, Huang Y, Liu Z, Lei H, Yin Z, Wang S 2021 Nat. Commun. 12 3129Google Scholar

    [48]

    Ye L D, Kang M G, Liu J W, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R, Checkelsky J G 2018 Nature 555 638Google Scholar

    [49]

    Yin J X, Zhang S S, Li H, Jiang K, Chang G Q, Zhang B J, Lian B, Xiang C, Belopolski I, Zheng H, Cochran T A, Xu S Y, Bian G, Liu K, Chang T R, Lin H, Lu Z Y, Wang Z Q, Jia S, Wang W H, Hasan M Z 2018 Nature 562 91Google Scholar

    [50]

    Xu X T, Yin J X, Ma W, Tien H J, Qiang X B, Reddy P V S, Zhou H, Shen J, Lu H Z, Chang T R, Qu Z, Jia S 2022 Nat. Commun. 13 1197Google Scholar

    [51]

    Sun Z Y, Zhou H, Wang C X, Kumar S, Geng D Y, Yue S S, Han X, Haraguchi Y, Shimada K, Cheng P, Chen L, Shi Y G, Wu K H, Meng S, Feng B J 2022 Nano Lett. 22 4596Google Scholar

    [52]

    Jiang J, Liang Q, Meng R, Yang Q, Tan C, Sun X, Chen X 2017 Nanoscale 9 2992Google Scholar

    [53]

    Smidstrup S, Stradi D, Wellendorff J, Khomyakov P A, Vej-Hansen U G, Lee M E, Ghosh T, Jónsson E, Jónsson H, Stokbro K 2017 Phys. Rev. B 96 195309Google Scholar

    [54]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [55]

    Marmolejo-Tejada J M, Dolui K, Lazic P, Chang P H, Smidstrup S, Stradi D, Stokbro K, Nikolić B K 2017 Nano Lett. 179 5626Google Scholar

    [56]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2020 J. Phys. Condens. Matter 32 015901Google Scholar

    [57]

    van Setten M J, Giantomassi M, Bousquet E, Verstraete M J, Hamann D R, Gonze X, Rignanese G M 2017 Comput. Phys. Commun. 226 39Google Scholar

    [58]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [59]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [60]

    Mortazavi B, Zhuang X, Rabczuk T 2022 Appl. Phys. A 128 934Google Scholar

    [61]

    Meng R S, Pereira L D, Locquet J P, Afanas'ev V, Pourtois G, Houssa M 2022 npj Comput. Mater. 8 230Google Scholar

    [62]

    Lado J L, Fernández-Rossier J 2017 2D Mater. 4 035002Google Scholar

    [63]

    Daalderop G H O, Kelly P J, Schuurmans M F H 1990 Phys. Rev. B 41 11919Google Scholar

    [64]

    姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平 2022 71 206303Google Scholar

    Jiang N, Li A L, Qu S X, Gou S, Ouyang F P 2022 Acta Phys. Sin. 71 206303Google Scholar

    [65]

    Lv H Y, Lu W J, Shao D F, Liu Y, Sun Y P 2015 Phys. Rev. B 92 214419Google Scholar

    [66]

    Webster L, Yan J A 2018 Phys. Rev. B 98 144411Google Scholar

    [67]

    Stradi D, Martinez U, Blom A, Brandbyge M, Stokbro K 2016 Phys. Rev. B 93 155302Google Scholar

    [68]

    Gunst T, Markussen T, Stokbro K, Brandbyge M 2016 Phys. Rev. B 93 035414Google Scholar

    [69]

    Lee I H, Martin R M 1997 Phys. Rev. B 56 7197Google Scholar

    [70]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

  • [1] Ke Shao-Qiu, Ye Xian-Feng, Zhang Hao-Jun, Nie Xiao-Lei, Chen Tian-Tian, Liu Cheng-Shan, Zhu Wan-Ting, Wei Ping, Zhao Wen-Yu. xFe/Bi0.5Sb1.5Te3 thermoelectromagnetic films with coexistence of positive and negative magnetoresistance. Acta Physica Sinica, 2024, 73(22): 227301. doi: 10.7498/aps.73.20240701
    [2] Ren Yan-Ying, Li Ya-Ning, Liu Hong-Sheng, Xu Nan, Guo Kun, Xu Zhao-Hui, Chen Xin, Gao Jun-Feng. Regulation of magnetic moment and magnetic anisotropy of magnetite by doping transition metal elements. Acta Physica Sinica, 2024, 73(6): 066104. doi: 10.7498/aps.73.20231744
    [3] Jiang Zhou, Jiang Xue, Zhao Ji-Jun. Electronic properties of two-dimensional kagome lattice based on transition metal phthalocyanine heterojunctions. Acta Physica Sinica, 2023, 72(24): 247502. doi: 10.7498/aps.72.20230921
    [4] Qing Yu-Lin, Peng Xiao-Li, Hu Ai-Yuan. Phase transition of spin-1 frustrated model on square-lattice bilayer. Acta Physica Sinica, 2022, 71(4): 047501. doi: 10.7498/aps.71.20211685
    [5] Meng Jing, Feng Xin-Wei, Shao Qing-Rong, Zhao Jia-Peng, Xie Ya-Li, He Wei, Zhan Qing-Feng. Magnetic anisotropy and reversal in epitaxial FeGa/IrMn bilayers with different orientations of exchange bias. Acta Physica Sinica, 2022, 71(12): 127501. doi: 10.7498/aps.71.20220166
    [6] Wang He-Yan, Gao Yi-Fan, Liao Jia-Bao, Chen Jun-Cai, Li Yi-Lian, Wu Yi, Xu Guo-Liang, An Yi-Peng. Spin transport characteristics and photoelectric properties of magnetic semiconductor NiBr2 monolayer. Acta Physica Sinica, 2022, 71(9): 097502. doi: 10.7498/aps.71.20212384
    [7] Jiang Xiao-Hong, Qin Si-Chen, Xing Zi-Yue, Zou Xing-Yu, Deng Yi-Fan, Wang Wei, Wang Lin. Study on physical properties and magnetism controlling of two-dimensional magnetic materials. Acta Physica Sinica, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [8] Yang Xue, Yang Qing-Hui, Zhang Huai-Wu, Wen Qi-Ye, Bai Fei-Ming, Zhong Zhi-Yong, Zhang Ding, Huang Jian-Tao. Preparation and orientation mechanism analysis of (BiTm)3(GaFe)5O12 magneto-optical single crystal film with out-of-plane orientation. Acta Physica Sinica, 2021, 70(10): 107801. doi: 10.7498/aps.70.20202209
    [9] Huang Yu-Hao, Zhang Gui-Tao, Wang Ru-Qian, Chen Qian, Wang Jin-Lan. Electronic structure and stability of two-dimensional bimetallic ferromagnetic semiconductor CrMoI6. Acta Physica Sinica, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [10] Wen Lin, Hu Ai-Yuan. Effect of biquadratic exchange and anisotropy on the critical temperature of antiferromagnet. Acta Physica Sinica, 2020, 69(10): 107501. doi: 10.7498/aps.69.20200077
    [11] Liu Xiang, Mi Wen-Bo. Structure, magnetic and transport properties of Fe3O4 near verwey transition. Acta Physica Sinica, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [12] Lu Qi-Hai, Tang Xiao-Li, Song Yu-Zhe, Zuo Xian-Wei, Han Gen-Liang, Yan Peng-Xun, Liu Wei-Min. Thermal analysis on crystal phase synthesis of iron nitride film and its magnetic properties. Acta Physica Sinica, 2019, 68(11): 118101. doi: 10.7498/aps.68.20182195
    [13] Cao Yong-Ze, Zhao Yue. Alternating magnetic force microscopy: simultaneous observation of static and dynamic magnetic field in three-dimensional space. Acta Physica Sinica, 2019, 68(16): 168502. doi: 10.7498/aps.68.20190510
    [14] Xiao Jia-Xing, Lu Jun, Zhu Li-Jun, Zhao Jian-Hua. Perpendicular magnetic properties of ultrathin L10-Mn1.67Ga films grown by molecular-beam epitaxy. Acta Physica Sinica, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [15] Nie Shuai-Hua, Zhu Li-Jun, Pan Dong, Lu Jun, Zhao Jian-Hua. Structural characterization and magnetic properties of perpendicularly magnetized MnAl films grown by molecular-beam epitaxy. Acta Physica Sinica, 2013, 62(17): 178103. doi: 10.7498/aps.62.178103
    [16] Hu Yan-Chun, Wang Yan-Wen, Zhang Ke-Lei, Wang Hai-Ying, Ma Heng, Lu Qing-Feng. Hole doping effects on structure and magnetic properties of Sr2FeMoO6. Acta Physica Sinica, 2012, 61(22): 226101. doi: 10.7498/aps.61.226101
    [17] Chen Jia-Luo, Di Guo-Qing. Influence of magnetic anisotropy thermoelectric effect on spin-dependent devices. Acta Physica Sinica, 2012, 61(20): 207201. doi: 10.7498/aps.61.207201
    [18] Ao Qi, Zhang Wa-Li, Zhang Yi, Wu Jian-Sheng. Nanostructure and hard magnetic properties of exchange coupled Nd-Fe-B/FeCo multilayer films. Acta Physica Sinica, 2007, 56(2): 1135-1140. doi: 10.7498/aps.56.1135
    [19] Guo Yu-Xian, Wang Jie, Xu Peng-Shou, Li Hong-Hong, Cai Jian-Wang. Element-specific in-plane magnetic anisotropy in Co0.9Fe0.1 films. Acta Physica Sinica, 2007, 56(2): 1121-1126. doi: 10.7498/aps.56.1121
    [20] Li Rui-Peng, Wang Jie, Li Hong-Hong, Guo Yu-Xian, Wang Feng, Hu Zhi-Wei. In-plane anisotropy of iron single-crystal thin film using x-ray magnetic circular dichroism. Acta Physica Sinica, 2005, 54(8): 3851-3855. doi: 10.7498/aps.54.3851
  • supplement 2023年72卷247503补充材料.pdf supplement
Metrics
  • Abstract views:  4274
  • PDF Downloads:  328
  • Cited By: 0
Publishing process
  • Received Date:  18 July 2023
  • Accepted Date:  08 September 2023
  • Available Online:  01 December 2023
  • Published Online:  20 December 2023

/

返回文章
返回
Baidu
map