搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非掺杂锐钛矿相TiO2铁磁性的第一性原理研究

潘凤春 徐佳楠 杨花 林雪玲 陈焕铭

引用本文:
Citation:

非掺杂锐钛矿相TiO2铁磁性的第一性原理研究

潘凤春, 徐佳楠, 杨花, 林雪玲, 陈焕铭

Ferromagnetism of undoped anatase TiO2 based on the first-principles calculations

Pan Feng-Chun, Xu Jia-Nan, Yang Hua, Lin Xue-Ling, Chen Huan-Ming
PDF
导出引用
  • 运用第一性原理的方法研究了锐钛矿相TiO2中O空位(VO)和Ti空位(VTi)的电子结构和磁学性质.计算结果表明,单独的VO并不会诱发局域磁矩,VTi可以产生大小为4 B(1 B=9.27410-21 emu,CGS)的局域磁矩,主要分布在其周围的O原子上.这两种缺陷产生局域磁矩的原因在文中做了详细的介绍.此外,由两个VTi诱发的局域磁矩之间的磁耦合相互作用为铁磁耦合,其交换耦合系数J0为88.7 meV,意味着VTi间的铁磁耦合可以持续到室温.虽然VO并不会产生局域磁矩,但是引入VO可以进一步提升两个VTi之间的耦合强度,这可以对非掺杂锐钛矿结构的TiO2体系中铁磁性的来源作出解释:VTi产生了局域磁矩,而VO增强了VTi间长程的铁磁耦合相互作用.此外,还提出了局域磁矩之间耦合的第二类直接交换作用模型.
    Compared with conventional semiconductors, the diluted magnetic semiconductors, in which the cations are substituted by transition metal ions, have attracted a great deal of attention due to their promising applications in spintronics. Recently, the unexpected room temperature ferromagnetism has been found in many undoped oxides. These findings challenge our understanding of magnetism in these systems, because neither cations nor anions have unpaired d or f electrons. Generally, the candidate defects responsible for the unexpected ferromagnetism must fulfill two conditions at the same time: (i) the defects should prefer a spin-polarized ground state with a nonzero local magnetic moments; (ii) the exchange interactions between local magnetic moments induced by defects should be ferromagnetic energetically. Among these oxides, TiO2 has recently attracted much attention because of its unique properties and potential applications in spintronics, laser diodes and biomaterials. In order to explore the origin of ferromagnetism in such an undoped TiO2 system, the electronic structures and magnetic properties of oxygen vacancy (VO) and Ti vacancy (VTi) in anatase TiO2 have been studied systematically by the first-principles calculation based on the density functional theory with the LDA+U method (UTi-3d = 5.8 eV). It is found that two electrons introduced by VO are captured by two neighbor Ti4+ ions, and thereby the Ti4+ ions are restored to Ti3+ ions with opposite spin orientation. Therefore, the single VO cannot induce local magnetic moment. The defect energy level locates near the Fermi level for VTi. Six oxygen atoms neighboring VTi constitute an octahedron, and the defect energy level is split into a single state A, a double state E and a triple state T in the octahedral crystal field. The occupation of four unpaired electrons introduced by six oxygen atoms is a+1t+3t-0e0 (subscripts + and - mean up-spin and down-spin, respectively), and the VTi can induce 4 B local moments. Furthermore, the magnetic coupling interaction between local magnetic moments induced by two VTi is ferromagnetic, and the magnetic coupling constant (JO) is 88.7 meV. It means the ferromagnetism can continue up to room-temperature. The VO cannot induce local magnetic moment, but it can enhance the coupling strength between two VTi, which can explain the origin of ferromagnetism observed experimentally in undoped anatase TiO2, i.e., the VTi induces local magnetic moment, while VO enhances the long range ferromagnetic coupling interaction between VTi. Especially, for the ferromagnetic coupling between local magnetic moments, we have proposed the second type direct exchange interaction model, which has been recommended in detail.
      通信作者: 林雪玲, nxulxl@163.com
    • 基金项目: 宁夏高等学校科学研究项目(批准号:NGY2016004)资助的课题.
      Corresponding author: Lin Xue-Ling, nxulxl@163.com
    • Funds: Project supported by the Higher School Science Research Project of Ningxia (Grant No. NGY2016004).
    [1]

    Venkatesan M, Fitzgerald C B, Coey J M D 2004Nature 430 630

    [2]

    Hong N H, Sakai J, Poirot N, Brize V 2006Phys.Rev.B 73 132404

    [3]

    Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao C N R 2006Phys.Rev.B 74 161306

    [4]

    Xu Q, Schmidt H, Zhou S, Potzger K, Helm M, Hochmuth H, Lorenz M, Setzer A, Esquinazi P, Meinecke C, Grundmann M 2008Appl.Phys.Lett. 92 082508

    [5]

    Hong N H, Poirot N, Sakai J 2008Phys.Rev.B 77 033205

    [6]

    Kim D, Hong J, Park Y P, Kim K J 2009Phys.:Condens.Matter 21 195405

    [7]

    Singhal R K, Kumar S, Kumari P, Xing Y T, Saitovitch E 2011Appl.Phys.Lett. 98 092510

    [8]

    Santara B, Giri P K, Imakita K, Fujii M 2013Nanoscale 5 5476

    [9]

    Eltimov I S, Yunoki S, Sawatzky A 2002Phys.Rev.Lett. 89 216403

    [10]

    Pemmaraju C D, Sanvito S 2005Phys.Rev.Lett. 94 217205

    [11]

    Rahman G, Garcia V M, Hong S C 2008Phys.Rev.B 78 184404

    [12]

    Peng H W, Li J B, Li S S, Xia J B 2009Phys.Rev.B 79 092411

    [13]

    Wang Q, Sun Q, Chen G, Kawazoe Y, Jena P 2008Phys.Rev.B 77 205411

    [14]

    Lin X L, Yan S S, Zhao M W, Hu S J, Han C, Chen Y X, Liu G L, Dai Y Y, Mei L M 2011Phys.Lett.A 375 638

    [15]

    Lin X L, Chen Z P, Gao H, Pan F C, Wang X M, Chen H M 2016J.Supercond.Nov.Magn. 29 1533

    [16]

    Zhou S, Cizmar E, Potzger K, Krause G, Talut G, Helm M, Fassbender J, Zvyagin S A, Wosnitza J, Schmidt H 2009Phys.Rev.B 79 113201

    [17]

    Yang K, Dai Y, Huang B, Feng Y P 2010Phys.Rev.B 81 033202

    [18]

    Han G B, Hu S J, Yan S S, Mei L M 2009Phys.Status Solidi-Rapid Res.Lett. 3 148

    [19]

    Lin C W, Shin D H, Demkov A 2015J.Appl.Phys. 117 225703

    [20]

    Zuo X, Yoon S D, Yang A, Vittoria C, Harris G 2008J.Appl.Phys. 103 07B911

    [21]

    Shao B, He Y F, Feng M, Lu Y, Zuo X 2014J.Appl.Phys. 115 17A915

    [22]

    Wang H X, Zong Z C, Yan Y 2014J.Appl.Phys. 115 233909

    [23]

    Perdew J P, Wang Y 1992Phys.Rev.B 45 13244

    [24]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998Phys.Rev.B 57 1505

    [25]

    Pack J D, Monkhorst H J 1977Phys.Rev.B 16 1748

    [26]

    Monkhorst H J, Pack J D 1976Phys.Rev.B 13 5188

    [27]

    Zhou S, Xu Q, Potzger K, Talut G, Grtzsche R, Fassbender J, Vinnichenko M, Grenzer J, Helm M, Hochmuth H, Lorenz M, Grundmann M, Schmidt H 2008Appl.Phys.Lett. 93 232507

    [28]

    Burdett J K, Hughbanks T, Miller G J, Richardson J W, Smith J V 1987J.Am.Chem.Soc. 109 3639

    [29]

    Wang F G, Pang Z Y, Lin L, Fang S J, Dai Y, Han S H 2009Phys.Rev.B 80 144424

    [30]

    Pan F C, Lin X L, Chen H M 2015Acta Phys.Sin. 64 176101(in Chinese)[潘凤春, 林雪玲, 陈焕铭2015 64 176101]

    [31]

    Dev P, Xue Y, Zhang P 2008Phys.Rev.Lett. 100 117204

  • [1]

    Venkatesan M, Fitzgerald C B, Coey J M D 2004Nature 430 630

    [2]

    Hong N H, Sakai J, Poirot N, Brize V 2006Phys.Rev.B 73 132404

    [3]

    Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao C N R 2006Phys.Rev.B 74 161306

    [4]

    Xu Q, Schmidt H, Zhou S, Potzger K, Helm M, Hochmuth H, Lorenz M, Setzer A, Esquinazi P, Meinecke C, Grundmann M 2008Appl.Phys.Lett. 92 082508

    [5]

    Hong N H, Poirot N, Sakai J 2008Phys.Rev.B 77 033205

    [6]

    Kim D, Hong J, Park Y P, Kim K J 2009Phys.:Condens.Matter 21 195405

    [7]

    Singhal R K, Kumar S, Kumari P, Xing Y T, Saitovitch E 2011Appl.Phys.Lett. 98 092510

    [8]

    Santara B, Giri P K, Imakita K, Fujii M 2013Nanoscale 5 5476

    [9]

    Eltimov I S, Yunoki S, Sawatzky A 2002Phys.Rev.Lett. 89 216403

    [10]

    Pemmaraju C D, Sanvito S 2005Phys.Rev.Lett. 94 217205

    [11]

    Rahman G, Garcia V M, Hong S C 2008Phys.Rev.B 78 184404

    [12]

    Peng H W, Li J B, Li S S, Xia J B 2009Phys.Rev.B 79 092411

    [13]

    Wang Q, Sun Q, Chen G, Kawazoe Y, Jena P 2008Phys.Rev.B 77 205411

    [14]

    Lin X L, Yan S S, Zhao M W, Hu S J, Han C, Chen Y X, Liu G L, Dai Y Y, Mei L M 2011Phys.Lett.A 375 638

    [15]

    Lin X L, Chen Z P, Gao H, Pan F C, Wang X M, Chen H M 2016J.Supercond.Nov.Magn. 29 1533

    [16]

    Zhou S, Cizmar E, Potzger K, Krause G, Talut G, Helm M, Fassbender J, Zvyagin S A, Wosnitza J, Schmidt H 2009Phys.Rev.B 79 113201

    [17]

    Yang K, Dai Y, Huang B, Feng Y P 2010Phys.Rev.B 81 033202

    [18]

    Han G B, Hu S J, Yan S S, Mei L M 2009Phys.Status Solidi-Rapid Res.Lett. 3 148

    [19]

    Lin C W, Shin D H, Demkov A 2015J.Appl.Phys. 117 225703

    [20]

    Zuo X, Yoon S D, Yang A, Vittoria C, Harris G 2008J.Appl.Phys. 103 07B911

    [21]

    Shao B, He Y F, Feng M, Lu Y, Zuo X 2014J.Appl.Phys. 115 17A915

    [22]

    Wang H X, Zong Z C, Yan Y 2014J.Appl.Phys. 115 233909

    [23]

    Perdew J P, Wang Y 1992Phys.Rev.B 45 13244

    [24]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998Phys.Rev.B 57 1505

    [25]

    Pack J D, Monkhorst H J 1977Phys.Rev.B 16 1748

    [26]

    Monkhorst H J, Pack J D 1976Phys.Rev.B 13 5188

    [27]

    Zhou S, Xu Q, Potzger K, Talut G, Grtzsche R, Fassbender J, Vinnichenko M, Grenzer J, Helm M, Hochmuth H, Lorenz M, Grundmann M, Schmidt H 2008Appl.Phys.Lett. 93 232507

    [28]

    Burdett J K, Hughbanks T, Miller G J, Richardson J W, Smith J V 1987J.Am.Chem.Soc. 109 3639

    [29]

    Wang F G, Pang Z Y, Lin L, Fang S J, Dai Y, Han S H 2009Phys.Rev.B 80 144424

    [30]

    Pan F C, Lin X L, Chen H M 2015Acta Phys.Sin. 64 176101(in Chinese)[潘凤春, 林雪玲, 陈焕铭2015 64 176101]

    [31]

    Dev P, Xue Y, Zhang P 2008Phys.Rev.Lett. 100 117204

  • [1] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红. 二维钒掺杂Cr2S3纳米片的生长与磁性研究.  , 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231229
    [2] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红. 二维钒掺杂Cr2S3纳米片的生长与磁性研究.  , 2023, 72(24): 247501. doi: 10.7498/aps.72.20231229
    [3] 姚仲瑜, 孙丽, 潘孟美, 孙书娟, 刘汉军. 第一性原理研究half-Heusler合金VLiBi和CrLiBi的半金属铁磁性.  , 2018, 67(21): 217501. doi: 10.7498/aps.67.20181129
    [4] 李聪, 郑友进, 付斯年, 姜宏伟, 王丹. 稀土(La/Ce/Pr/Nd)掺杂锐钛矿相TiO2磁性及光催化活性的第一性原理研究.  , 2016, 65(3): 037102. doi: 10.7498/aps.65.037102
    [5] 王庆宝, 张仲, 徐锡金, 吕英波, 张芹. N, Fe, La三掺杂锐钛矿型TiO2能带调节的理论与实验研究.  , 2015, 64(1): 017101. doi: 10.7498/aps.64.017101
    [6] 潘凤春, 林雪玲, 陈焕铭. C掺杂金红石相TiO2的电子结构和光学性质的第一性原理研究.  , 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [7] 曹娟, 崔磊, 潘靖. V,Cr,Mn掺杂MoS2磁性的第一性原理研究.  , 2013, 62(18): 187102. doi: 10.7498/aps.62.187102
    [8] 刘芳, 姜振益. 第一性原理研究Eu/N共掺杂锐钛矿TiO2光催化剂的电子和光学性质.  , 2013, 62(19): 193103. doi: 10.7498/aps.62.193103
    [9] 彭丽萍, 夏正才, 尹建武. 金红石相和锐钛矿相TiO2本征缺陷的第一性原理计算.  , 2012, 61(3): 037103. doi: 10.7498/aps.61.037103
    [10] 顾建军, 孙会元, 刘力虎, 岂云开, 徐芹. 结构相变对Fe掺杂TiO2薄膜室温铁磁性的影响.  , 2012, 61(1): 017501. doi: 10.7498/aps.61.017501
    [11] 吴孔平, 顾书林, 朱顺明, 黄友锐, 周孟然. 非故意掺杂碳对ZnMnO:N磁性影响的实验与理论研究.  , 2012, 61(5): 057503. doi: 10.7498/aps.61.057503
    [12] 彭丽萍, 夏正才, 杨昌权. 金属和非金属共掺杂锐钛矿相TiO2的第一性原理计算.  , 2012, 61(12): 127104. doi: 10.7498/aps.61.127104
    [13] 李明标, 张天羡, 史力斌. 氮掺杂(1120) ZnO 薄膜磁性质研究.  , 2011, 60(9): 097504. doi: 10.7498/aps.60.097504
    [14] 肖振林, 史力斌. 利用第一性原理研究Ni掺杂ZnO铁磁性起源.  , 2011, 60(2): 027502. doi: 10.7498/aps.60.027502
    [15] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究.  , 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [16] 马新国, 江建军, 梁 培. 锐钛矿型TiO2(101)面本征点缺陷的理论研究.  , 2008, 57(5): 3120-3125. doi: 10.7498/aps.57.3120
    [17] 侯兴刚, 刘安东. V+注入锐钛矿TiO2第一性原理研究.  , 2007, 56(8): 4896-4900. doi: 10.7498/aps.56.4896
    [18] 马新国, 唐超群, 黄金球, 胡连峰, 薛 霞, 周文斌. 锐钛矿型TiO2(101)面原子几何及弛豫结构的第一性原理计算.  , 2006, 55(8): 4208-4213. doi: 10.7498/aps.55.4208
    [19] 宋红强, 陈延学, 任妙娟, 季 刚. Ti1-xCoxO2铁磁性半导体薄膜研究.  , 2005, 54(1): 369-372. doi: 10.7498/aps.54.369
    [20] 宋功保, 刘福生, 彭同江, 梁敬魁, 饶光辉. 金属离子掺杂对TiO2/白云母纳米复合材料中TiO2的颗粒形态及相组成的影响.  , 2002, 51(12): 2793-2797. doi: 10.7498/aps.51.2793
计量
  • 文章访问数:  6762
  • PDF下载量:  311
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-18
  • 修回日期:  2016-12-01
  • 刊出日期:  2017-03-05

/

返回文章
返回
Baidu
map