Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent development in two-dimensional magnetic materials and multi-field control of magnetism

Xiao Han Mi Meng-Juan Wang Yi-Lin

Citation:

Recent development in two-dimensional magnetic materials and multi-field control of magnetism

Xiao Han, Mi Meng-Juan, Wang Yi-Lin
PDF
HTML
Get Citation
  • The recently discovered two-dimensional magnetic materials have attracted tremendous attention and become a cutting-edge research topic due to their long-range magnetic ordering at a single-unit-cell thickness, which not only provide an ideal platform for studying the magnetism in the two-dimensional limit and other novel physical effects, but also open up a new way to develop low-power spintronics/magnetic storage devices. In this review, first, we introduce the crystal structures, magnetic structures and magnetic properties of various recently discovered intrinsic two-dimensional magnetic materials. Second, we discuss the research progress of controlling the magnetic properties of two-dimensional magnetic materials by magnetic field, electric field, electrostatic doping, ion intercalation, stacking, strain, interface, etc. Finally, we give a perspective of possible research directions of the two-dimensional magnetic materials. We believe that an in-depth understanding of the origin and mechanism of magnetism of the two-dimensional magnetic materials as well as the study of the relationship between magnetic properties and microstructures are of great significance in exploring a magnetic material with a substantially high Curie temperature (Néel temperature), and designing multifunctional new concept devices.
      Corresponding author: Wang Yi-Lin, yilinwang@email.sdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 92065206) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2020MA071)
    [1]

    Binasch G, Grunberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B 39 4828(RGoogle Scholar

    [2]

    Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Phys. Rev. Lett. 74 3273Google Scholar

    [3]

    Berger L 1996 Phys. Rev. B 54 9353Google Scholar

    [4]

    Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898Google Scholar

    [5]

    Mauger A, Godart C 1986 Phys. Rep. 141 51Google Scholar

    [6]

    Martin G W, Kellogg A T, White R L, White R M, Pinch H 1969 J. Appl. Phys. 40 1015Google Scholar

    [7]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. U. S. A. 102 10451Google Scholar

    [8]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [9]

    Slota M, Keerthi A, Myers W K, Tretyakov E, Baumgarten M, Ardavan A, Sadeghi H, Lambert C J, Narita A, Mullen K, Bogani L 2018 Nature 557 691Google Scholar

    [10]

    Tuček J, Blonski P, Ugolotti J, Swain A K, Enoki T, Zboril R 2018 Chem. Soc. Rev. 47 3899Google Scholar

    [11]

    Sethulakshmi N, Mishra A, Ajayan P M, Kawazoe Y, Roy A K, Singh A K, Tiwary C S 2019 Mater. Today 27 107Google Scholar

    [12]

    Siberchicot B, Jobic S, Carteaux V, Gressier P, Ouvrard G 1996 J. Phys. Chem. 100 5863Google Scholar

    [13]

    Zhu J X, Janoschek M, Chaves D S, Cezar J C, Durakiewicz T, Ronning F, Sassa Y, Mansson M, Scott B L, Wakeham N, Bauer E D, Thompson J D 2016 Phys. Rev. B 93 144404Google Scholar

    [14]

    Zhuang H L, Kent P R C, Hennig R G 2016 Phys. Rev. B 93 134407Google Scholar

    [15]

    Li X X, Yang J L 2014 J. Mater. Chem. C 2 7071Google Scholar

    [16]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [17]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [18]

    Zhang Z W, Shang J Z, Jiang C Y, Rasmita A, Gao W B, Yu T 2019 Nano Lett. 19 3138Google Scholar

    [19]

    Wang M S, Kang L X, Su J W, Zhang L M, Dai H W, Cheng X T, Han C, Zhai T Y, Liu Z, Han J B 2020 Nanoscale 12 16427Google Scholar

    [20]

    Kang L X, Ye C, Zhao X X, Zhou X Y, Hu J X, Li Q, Liu D, Das C M, Yang J F, Hu D Y, Chen J Q, Cao X, Zhang Y, Xu M Z, Di J, Tian D, Song P, Kutty G, Zeng Q S, Fu Q D, Deng Y, Zhou J D, Ariando A, Miao F, Hong G, Huang Y Z, Pennycook S J, Yong K T, Ji W, Renshaw Wang X, Liu Z 2020 Nat. Commun. 11 3729Google Scholar

    [21]

    Zhang Y, Chu J W, Yin L, Shifa T A, Cheng Z Z, Cheng R Q, Wang F, Wen Y, Zhan X Y, Wang Z X, He J 2019 Adv. Mater. 31 1900056Google Scholar

    [22]

    Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [23]

    Zhang Z P, Niu J J, Yang P F, Gong Y, Ji Q Q, Shi J P, Fang Q Y, Jiang S L, Li H, Zhou X B, Gu L, Wu X S, Zhang Y F 2017 Adv. Mater. 29 1702359Google Scholar

    [24]

    Zhang Y, Lu H Y, Zhu X G, Tan S Y, Feng W, Liu Q, Zhang W, Chen Q Y, Liu Y, Luo X B, Xie D H, Luo L Z, Zhang Z J, Lai X C 2018 Sci. Adv. 4 6791Google Scholar

    [25]

    Yi J, Zhuang H, Zou Q, Wu Z, Cao G, Tang S, Calder S A, Kent P R C, Mandrus D, Gai Z 2016 2D Mater. 4 011005

    [26]

    May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z Y, Liu Y H, Xu X D, McGuire M A 2019 ACS Nano 13 4436Google Scholar

    [27]

    Cai X H, Song T C, Wilson N P, Clark G, He M H, Zhang X O, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Cobden D H, Xu X D 2019 Nano Lett. 19 3993Google Scholar

    [28]

    McGuire M A, Clark G, Santosh K C, Chance W M, Jellison G E, J r., Cooper V R, Xu X, Sales B C 2017 Phys. Rev. Mater. 1 014001Google Scholar

    [29]

    Liu H N, Wang X S, Wu J X, Chen Y S, Wan J, Wen R, Yang J B, Liu Y, Song Z G, Xie L M 2020 ACS Nano 14 10544Google Scholar

    [30]

    Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G, Cheong H 2016 Nano Lett. 16 7433Google Scholar

    [31]

    Kim K, Lim S Y, Lee J U, Lee S, Kim T Y, Park K, Jeon G S, Park C H, Park J G, Cheong H 2019 Nat. Commun. 10 345Google Scholar

    [32]

    Liu P, Xu Z L, Huang H L, Li J, Feng C, Huang M, Zhu M, Wang Z P, Zhang Z M, Hou D Z, Lu Y L, Xiang B 2020 J. Alloys Compd. 828 154432Google Scholar

    [33]

    Otrokov M M, Menshchikova T V, Vergniory M G, Rusinov I P, Yu Vyazovskaya A, Koroteev Y M, Bihlmayer G, Ernst A, Echenique P M, Arnau A, Chulkov E V 2017 2D Mater. 4 025082Google Scholar

    [34]

    Ferrenti A M, Klemenz S, Lei S, Song X, Ganter P, Lotsch B V, Schoop L M 2020 Inorg. Chem. 59 1176Google Scholar

    [35]

    Mak K F, Shan J, Ralph D C 2019 Nat. Rev. Phys. 1 646Google Scholar

    [36]

    Gibertini M, Koperski M, Morpurgo A F, Novoselov K S 2019 Nat. Nanotechnol. 14 408Google Scholar

    [37]

    Bagga V, Kaur D 2020 Mater. Today: Proc. 28 1938Google Scholar

    [38]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [39]

    Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X D 2018 Nat. Nanotechnol. 13 544Google Scholar

    [40]

    Jiang S W, Shan J, Mak K F 2018 Nat. Mater. 17 406Google Scholar

    [41]

    Li T X, Jiang S W, Sivadas N, Wang Z F, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Fai Mak K, Shan J 2019 Nat. Mater. 18 1303Google Scholar

    [42]

    Guo Y L, Wang B, Zhang X W, Yuan S J, Ma L, Wang J L 2020 Info. Mat. 2 639Google Scholar

    [43]

    Huang B, McGuire M A, May A F, Xiao D, Jarillo-Herrero P, Xu X D 2020 Nat. Mater. 19 1276Google Scholar

    [44]

    McGuire M 2017 Crystals 7 121Google Scholar

    [45]

    McGuire M A, Dixit H, Cooper V R, Sales B C 2015 Chem. Mater. 27 612Google Scholar

    [46]

    Bedoya-Pinto A, Ji J R, Pandeya A, Gargiani P, Valvidares S, Sessi P, Radu F, Chang K, Parkin S 2020 arXiv: 2006.07605

    [47]

    Kim H H, Yang B W, Li S W, Jiang S W, Jin C H, Tao Z, Nichols G, Sfigakis F, Zhong S Z, Li C H, Tian S J, Cory D G, Miao G X, Shan J, Mak K F, Lei H C, Sun K, Zhao L Y, Tsen A W 2019 Proc. Natl. Acad. Sci. U. S. A. 116 11131Google Scholar

    [48]

    Zhong D, Seyler K L, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, McGuire M A, Fu K C, Xiao D, Yao W, Xu X D 2020 Nat. Nanotechnol. 15 187Google Scholar

    [49]

    Niu B, Su T, Francisco B A, Ghosh S, Kargar F, Huang X, Lohmann M, Li J, Xu Y, Taniguchi T, Watanabe K, Wu D, Balandin A, Shi J, Cui Y T 2020 Nano Lett. 20 553Google Scholar

    [50]

    Kim H H, Yang B, Patel T, Sfigakis F, Li C, Tian S, Lei H, Tsen A W 2018 Nano Lett. 18 4885Google Scholar

    [51]

    Wang Z, Gutiérrez-Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoğlu A, Giannini E, Morpurgo A F 2018 Nat. Commun. 9 2516Google Scholar

    [52]

    Song T C, Fei Z Y, Yankowitz M, Lin Z, Jiang Q N, Hwangbo K, Zhang Q, Sun B, Taniguchi T, Watanabe K, McGuire M A, Graf D, Cao T, Chu J H, Cobden D H, Dean C R, Xiao D, Xu X D 2019 Nat. Mater. 18 1298Google Scholar

    [53]

    Thiel L, Wang Z, Tschudin M A, Rohner D, Gutiérrez-Lezama I, Ubrig N, Gibertini M, Giannini E, Morpurgo A F, Maletinsky P 2019 Science 364 973Google Scholar

    [54]

    Abramchuk M, Jaszewski S, Metz K R, Osterhoudt G B, Wang Y, Burch K S, Tafti F 2018 Adv. Mater. 30 1801325Google Scholar

    [55]

    Kulish V V, Huang W 2017 J. Mater. Chem. C 5 8734Google Scholar

    [56]

    Ashton M, Gluhovic D, Sinnott S B, Guo J, Stewart D A, Hennig R G 2017 Nano Lett. 17 5251Google Scholar

    [57]

    Wen Y, Liu Z H, Zhang Y, Xia C X, Zhai B X, Zhang X H, Zhai G H, Shen C, He P, Cheng R Q, Yin L, Yao Y Y, Getaye Sendeku M, Wang Z X, Ye X B, Liu C S, Jiang C, Shan C X, Long Y W, He J 2020 Nano Lett. 20 3130Google Scholar

    [58]

    Chen W Z, Kawazoe Y, Shi X Q, Pan H 2018 Phys. Chem. Chem. Phys. 20 18348Google Scholar

    [59]

    Cui F F, Zhao X X, Xu J J, Tang B, Shang Q Y, Shi J P, Huan Y H, Liao J H, Chen Q, Hou Y L, Zhang Q, Pennycook S J, Zhang Y F 2020 Adv. Mater. 32 1905896Google Scholar

    [60]

    Yu W, Li J, Herng T S, Wang Z S, Zhao X X, Chi X, Fu W, Abdelwahab I, Zhou J, Dan J D, Chen Z X, Chen Z, Li Z J, Lu J, Pennycook S J, Feng Y P, Ding J, Loh K P 2019 Adv. Mater. 31 1903779Google Scholar

    [61]

    O'Hara D J, Zhu T, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W, Kawakami R K 2018 Nano Lett. 18 3125Google Scholar

    [62]

    Gong C, Zhang X 2019 Science 363 4450Google Scholar

    [63]

    Chen P, Pai W W, Chan Y H, Madhavan V, Chou M Y, Mo S K, Fedorov A V, Chiang T C 2018 Phys. Rev. Lett. 121 196402Google Scholar

    [64]

    Wang Y M, Zhang J F, Li C H, Ma X L, Ji J T, Jin F, Lei H C, Liu K, Zhang W L, Zhang Q M 2019 Chin. Phys. B 28 056301Google Scholar

    [65]

    Coak M J, Jarvis D M, Hamidov H, Haines C R S, Alireza P L, Liu C, Son S, Hwang I, Lampronti G I, Daisenberger D, Nahai-Williamson P, Wildes A R, Saxena S S, Park J G 2020 J. Phys. Condens. Matter. 32 124003Google Scholar

    [66]

    Wildes A R, Simonet V, Ressouche E, Ballou R, McIntyre G J 2017 J. Phys. Condens. Matter. 29 455801Google Scholar

    [67]

    Kang S, Kim K, Kim B H, Kim J, Sim K I, Lee J U, Lee S, Park K, Yun S, Kim T, Nag A, Walters A, Garcia-Fernandez M, Li J, Chapon L, Zhou K J, Son Y W, Kim J H, Cheong H, Park J G 2020 Nature 583 785Google Scholar

    [68]

    Vaclavkova D, Delhomme A, Faugeras C, Potemski M, Bogucki A, Suffczyński J, Kossacki P, Wildes A R, Grémaud B, Saúl A 2020 2D Mater. 7 035030Google Scholar

    [69]

    Rule K C, McIntyre G J, Kennedy S J, Hicks T J 2007 Phys. Rev. B 76 134402Google Scholar

    [70]

    Kim K, Lim S Y, Kim J, Lee J U, Lee S, Kim P, Park K, Son S, Park C H, Park J G, Cheong H 2019 2D Mater. 6 041001Google Scholar

    [71]

    Ressouche E, Loire M, Simonet V, Ballou R, Stunault A, Wildes A 2010 Phys. Rev. B 82 100408Google Scholar

    [72]

    Lançon D, Walker H C, Ressouche E, Ouladdiaf B, Rule K C, McIntyre G J, Hicks T J, Rønnow H M, Wildes A R 2016 Phys. Rev. B 94 214407Google Scholar

    [73]

    Bhutani A, Zuo J L, McAuliffe R D, dela Cruz C R, Shoemaker D P 2020 Phys. Rev. Mater. 4 034411Google Scholar

    [74]

    Zheng Y, Jiang X X, Xue X X, Dai J, Feng Y 2019 Phys. Rev. B 100 174102Google Scholar

    [75]

    Lee J, Ko T Y, Kim J H, Bark H, Kang B, Jung S G, Park T, Lee Z, Ryu S, Lee C 2017 ACS Nano 11 10935Google Scholar

    [76]

    Peng Y X, Ding S L, Cheng M, Hu Q F, Yang J, Wang F G, Xue M Z, Liu Z, Lin Z C, Avdeev M, Hou Y L, Yang W Y, Zheng Y, Yang J B 2020 Adv. Mater. 32 2001200Google Scholar

    [77]

    Chen Q, Ding Q, Wang Y, Xu Y, Wang J 2020 J. Phys. Chem. C 124 12075Google Scholar

    [78]

    Liu W, Dai Y H, Yang Y E, Fan J Y, Pi L, Zhang L, Zhang Y H 2018 Phys. Rev. B 98 214420Google Scholar

    [79]

    Verzhbitskiy I A, Kurebayashi H, Cheng H, Zhou J, Khan S, Feng Y P, Eda G 2020 Nat. Electron. 3 460Google Scholar

    [80]

    Li Y F, Wang W, Guo W, Gu C Y, Sun H Y, He L, Zhou J, Gu Z B, Nie Y F, Pan X Q 2018 Phys. Rev. B 98 125127Google Scholar

    [81]

    Ito N, Kikkawa T, Barker J, Hirobe D, Shiomi Y, Saitoh E 2019 Phys. Rev. B 100 060402Google Scholar

    [82]

    Fei Z Y, Huang B, Malinowski P, Wang W B, Song T C, Sanchez J, Yao W, Xiao D, Zhu X Y, May A F, Wu W, Cobden D H, Chu J H, Xu X D 2018 Nat. Mater. 17 778Google Scholar

    [83]

    May A F, Calder S, Cantoni C, Cao H, McGuire M A 2016 Phys. Rev. B 93 014411Google Scholar

    [84]

    Otrokov M M, Klimovskikh I I, Bentmann H, Estyunin D, Zeugner A, Aliev Z S, Gaß S, Wolter A U B, Koroleva A V, Shikin A M, Blanco-Rey M, Hoffmann M, Rusinov I P, Vyazovskaya A Y, Eremeev S V, Koroteev Y M, Kuznetsov V M, Freyse F, Sánchez-Barriga J, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Alfonsov A, Kataev V, Büchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Di Santo G, Vidal R C, Schatz S, Kißner K, Ünzelmann M, Min C H, Moser S, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A, Chulkov E V 2019 Nature 576 416Google Scholar

    [85]

    Gong Y, Guo J W, Li J H, Zhu K J, Liao M H, Liu X Z, Zhang Q H, Gu L, Tang L, Feng X, Zhang D, Li W, Song C L, Wang L L, Yu P, Chen X, Wang Y Y, Yao H, Duan W H, Xu Y, Zhang S C, Ma X C, Xue Q K, He K 2019 Chin. Phys. Lett. 36 076801Google Scholar

    [86]

    Deng Y J, Yu Y J, Shi M Z, Guo Z X, Xu Z H, Wang J, Chen X H, Zhang Y B 2020 Science 367 895Google Scholar

    [87]

    Liu C, Wang Y C, Li H, Wu Y, Li Y X, Li J H, He K, Xu Y, Zhang J S, Wang Y Y 2020 Nat. Mater. 19 522Google Scholar

    [88]

    Ge J, Liu Y Z, Li J H, Li H, Luo T C, Wu Y, Xu Y, Wang J 2020 Natl. Sci. Rev. 7 1280Google Scholar

    [89]

    Yan J Q, Liu Y H, Parker D S, Wu Y, Aczel A A, Matsuda M, McGuire M A, Sales B C 2020 Phys. Rev. Mater. 4 054202Google Scholar

    [90]

    Li J H, Li Y, Du S, Wang Z, Gu B L, Zhang S C, He K, Duan W H, Xu Y 2019 Sci. Adv. 5 5685Google Scholar

    [91]

    Miao N, Xu B, Zhu L, Zhou J, Sun Z 2018 J. Am. Chem. Soc. 140 2417Google Scholar

    [92]

    Zhang J, Wölfel A, Li L, van Smaalen S, Williamson H L, Kremer R K 2012 Phys. Rev. B 86 134428Google Scholar

    [93]

    Guo Y L, Zhang Y H, Yuan S J, Wang B, Wang J L 2018 Nanoscale 10 18036Google Scholar

    [94]

    Grant R W 1971 J. Appl. Phys. 42 1619Google Scholar

    [95]

    Kauzlarich S M, Ellena J F, Stupik P D, Rieff W M, Averill B A 1987 J. Am. Chem. Soc. 109 4561Google Scholar

    [96]

    Zhang T L, Wang Y M, Li H X, Zhong F, Shi J, Wu M H, Sun Z Y, Shen W F, Wei B, Hu W D, Liu X F, Huang L, Hu C G, Wang Z C, Jiang C B, Yang S X, Zhang Q M, Qu Z 2019 ACS Nano 13 11353Google Scholar

    [97]

    Freitas D C, Weht R, Sulpice A, Remenyi G, Strobel P, Gay F, Marcus J, Núñez-Regueiro M 2015 J. Phys. Condens. Matter 27 176002Google Scholar

    [98]

    Feng S N, Mi W B 2018 Appl. Surf. Sci. 458 191Google Scholar

    [99]

    Niu J J, Yan B M, Ji Q Q, Liu Z F, Li M Q, Gao P, Zhang Y F, Yu D P, Wu X S 2017 Phys. Rev. B 96 075402Google Scholar

    [100]

    He X, Wang Y, Wu N, Caruso A N, Vescovo E, Belashchenko K D, Dowben P A, Binek C 2010 Nat. Mater. 9 579Google Scholar

    [101]

    Fallarino L, Binek C, Berger A 2015 Phys. Rev. B 91 214403Google Scholar

    [102]

    Budniak A K, Killilea N A, Zelewski S J, Sytnyk M, Kauffmann Y, Amouyal Y, Kudrawiec R, Heiss W, Lifshitz E 2020 Small 16 1905924Google Scholar

    [103]

    Lin M W, Zhuang H, Yan J, Ward T Z, Puretzky A A, Rouleau C M, Gai Z, Liang L, Meunier V, Sumpter B G, Ganesh P, Kent P R C, Geohegan D B, Mandrus D G, Xiao K 2016 J. Mater. Chem. C 4 315Google Scholar

    [104]

    Zhu W X, Song C, Liao L Y, Zhou Z Y, Bai H, Zhou Y J, Pan F 2020 Phys. Rev. B 102 085111Google Scholar

    [105]

    Jiang S G, Li L Z, Wang Z F, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [106]

    Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X D 2018 Science 360 1214Google Scholar

    [107]

    Hu C, Gordon K N, Liu P F, Liu J Y, Zhou X Q, Hao P P, Narayan D, Emmanouilidou E, Sun H Y, Liu Y T, Brawer H, Ramirez A P, Ding L, Cao H B, Liu Q H, Dessau D, Ni N 2020 Nat. Commun. 11 97Google Scholar

    [108]

    Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123Google Scholar

    [109]

    Dong S, Xiang H, Dagotto E 2019 Natl. Sci. Rev. 6 629Google Scholar

    [110]

    Cheong S W 2019 npj Quantum Mater. 4 53Google Scholar

    [111]

    Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S P, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554Google Scholar

    [112]

    Wang N Z, Tang H B, Shi M Z, Zhang H, Zhuo W Z, Liu D Y, Meng F B, Ma L K, Ying J J, Zou L J, Sun Z, Chen X H 2019 J. Am. Chem. Soc. 141 17166Google Scholar

    [113]

    Cai W, Sun H, Xia W, Wu C, Liu Y, Liu H, Gong Y, Yao D X, Guo Y, Wang M 2020 Phys. Rev. B 102 144525Google Scholar

    [114]

    Zhang H, Ni C, Zhang J, Zou L, Zeng Z, Wang X 2021 Phys. Chem. Chem. Phys. 23 9679Google Scholar

    [115]

    Chen W J, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W, Gao C L 2019 Science 366 983Google Scholar

    [116]

    Webster L, Yan J A 2018 Phys. Rev. B 98 144411Google Scholar

    [117]

    Hu X H, Zhao Y H, Shen X, Krasheninnikov A V, Chen Z F, Sun L T 2020 ACS Appl. Mater. Interfaces 12 26367Google Scholar

    [118]

    van Vleck J H 1937 Phys. Rev. 52 1178Google Scholar

    [119]

    Sheng P, Wang B M, Li R W 2018 J. Semicond. 39 011006Google Scholar

    [120]

    Wang Y, Wang C, Liang S J, Ma Z C, Xu K, Liu X W, Zhang L L, Admasu A S, Cheong S W, Wang L Z, Chen M Y, Liu Z L, Cheng B, Ji W, Miao F 2020 Adv. Mater. 32 2004533Google Scholar

    [121]

    Zhang L M, Huang X Y, Dai H W, Wang M S, Cheng H, Tong L, Li Z, Han X T, Wang X, Ye L, Han J B 2020 Adv. Mater. 32 2002032Google Scholar

    [122]

    Wang H Y, Liu Y J, Wu P C, Hou W J, Jiang Y H, Li X H, Pandey C D, Chen D D, Yang Q, Wang H, Wei D H, Lei N, Kang W, Wen L G, Nie T X, Zhao W S, Wang K L 2020 ACS Nano 14 10045Google Scholar

    [123]

    Idzuchi H, Llacsahuanga Allcca A E, Pan X C, Tanigaki K, Chen Y P 2019 Appl. Phys. Lett. 115 232403Google Scholar

    [124]

    Wang F, Xiao D, Yuan W, Jiang J, Zhao Y F, Zhang L, Yao Y, Liu W, Zhang Z, Liu C, Shi J, Han W, Chan M H W, Samarth N, Chang C Z 2019 Nano Lett. 19 2945Google Scholar

  • 图 1  不同FM和AFM自旋磁矩的示意图, 以磁性过渡金属离子为代表进行描述(自旋向上的磁矩为浅灰色, 自旋向下的磁矩为深灰色) (a) FM耦合; (b)层间A-type AFM耦合[35]; (c)层内AF-zigzag耦合[35]; (d)层内AF-stripy耦合[35]; (e)层内AF-Néel耦合[35]

    Figure 1.  Various types of FM and AFM order in layered magnetic materials, represented by magnetic transition metal ions (light grey and dark grey represent spin up and spin down, respectively). From left to right: (a) FM order; (b) interlayer A-type AFM order[35]; (c) intralayer AF-zigzag order[35]; (d) intralayer AF-stripy order[35]; (e) intralayer AF-Néel order[35].

    图 2  (a) 单层CrX3的俯视图(左), Cr3+ (紫色)和X(金色)组成的八面体笼(右)[43]; (b) 在低温菱方相的坐标系中CrX3的磁结构. 目前研究只报道CrCl3的磁矩在ab平面上, 在这里沿[110]和[$\bar {1}\bar {1}0$]方向画出; 在CrBr3和CrI3中, 磁矩沿c[44]

    Figure 2.  (a) Top view of a CrX3 monolayer along with an illustration of the coordination (left), and Cr3+ (purple) and X (gold) in an octahedral cage (right)[43]; (b) magnetic structures of CrX3 in the coordinate system of the low temperature rhombohedral structure. The moments in CrCl3 are drawn along the [110] and [$\bar {1}\bar {1}0$] directions here, but are only known to be in the ab plane. Moments in ferromagnetic CrBr3 and CrI3 are along the c axis[44].

    图 3  NiI2单斜晶体结构的俯视图(a)、侧视图(b)和晶胞结构(c)[29]

    Figure 3.  Top view (a), side view(b) and unit cell structure (c) of NiI2 monoclinic structure[29].

    图 4  (a) CrTe晶体结构的俯视图(左)和侧视图(右)[19]; (b) Cr2Te3晶体结构的俯视图(左)和侧视图(右)[57]

    Figure 4.  (a) Top view (left) and side view (right) of CrTe crystal structure[19]; (b) top view (left) and side view (right) of Cr2Te3 crystal structure[57].

    图 5  1T-VSe2晶体结构的俯视图(左)和侧视图(右) (a = b = 3.35 Å, c = 6.1 Å)[60]

    Figure 5.  Top view (left) and side view (right) of the atomic structure of layered 1T-VSe2 crystal (a = b = 3.35 Å, c = 6.1 Å)[60].

    图 6  (a) FePS3晶体结构的俯视图和侧视图[30]; (b) FePS3的原胞结构; (c)—(e)分别为FePS3, MnPS3以及NiPS3的磁结构示意图[65]

    Figure 6.  (a) Top and side views of atomic structure of FePS3 crystal[30]; (b) unit-cell structure of FePS3; (c)−(e) magnetic structures of FePS3, MnPS3 and NiPS3, respectively[65].

    图 7  (a) CrPS4的晶体结构和磁结构, 黑色和红色的箭头指向磁矩的方向; (b) CrPS4单层的ab平面图[76]

    Figure 7.  (a) Crystal structure and magnetic structure of CrPS4, the black and red arrows point to the directions of magnetic moments; (b) ab plane of CrPS4 monolayer[76].

    图 8  Cr2Ge(Si)2Te6晶体结构的俯视图(左)和侧视图(右), 单位原胞用黑线表示[80]

    Figure 8.  Schematic illustration of the crystalline structure of Cr2Ge(Si)2Te6 from the top view (left) and the side view (right), a unit cell is indicated by a black line[80].

    图 9  (a) 单层Fe3GeTe2的晶体结构示意图, 左边为俯视图(沿着[001]), 右边为侧视图(沿着[010])[38]; (b) Fe2.76Ge0.94Te2的磁结构[83]

    Figure 9.  (a) Atomic structure of monolayer Fe3GeTe2. The left panel shows the view along [001], and the right panel shows the view along [010][38]. (b) The magnetic structure of Fe2.76Ge0.94Te2[83].

    图 10  (a) Bi2Te3的五原子单元层; (b) MnBi2Te4的七原子单元层; (c) MnBi2Te4的晶体结构和磁结构; (d) MnBi4Te7的晶体结构和磁结构[89]

    Figure 10.  (a) Quintuple layer of Bi2Te3; (b) septuple layer of MnBi2Te4; (c) crystal structure and magnetic structure of MnBi2Te4; (d) crystal structure and magnetic structure of MnBi4Te7[89].

    图 11  (a) 过渡金属卤化物的俯视图; (b) 4个氧和2个卤化物离子配位过渡金属离子形成强扭曲八面体结构图(顶部)和过渡金属卤化物的侧视图(底部)[91]

    Figure 11.  (a) Top view of transition-metal oxyhalides; (b) a strongly distorted octahedron formed by one metal ion coordinated by 4 oxygen and 2 halide ions (top), the side view of transition-metal oxyhalides (bottom)[91].

    图 12  (a)双层反铁磁CrI3中MCD信号随磁场的变化[16]; (b) 在H // (0001) 和H⊥(0001) 方向MnBi2Te4依赖磁场的磁化曲线(HSF为自旋-翻转磁场)[84]; (c) 双层反铁磁CrI3的线性磁电效应[40]: 在一个固定的磁场下磁化的样品的磁化强度的相对和绝对变化(分别为ΔM/M0和ΔM)随施加电场的变化; (d) H // c方向、不同温度下MnBi4Te7等温磁化的磁滞回线, Hf, 一级自旋翻转场[107]

    Figure 12.  (a) MCD signal in AFM bilayer CrI3 as a function of magnetic field[16]; (b) field-dependent magnetization curves of MnBi2Te4 for H // (0001) and H⊥(0001), where HSF is spin-flop magnetic field[84]; (c) linear magnetoelectric effect in AFM bilayer CrI3[40]: relative and absolute changes in the sheet magnetization (ΔM/M0 and ΔM, respectively) as a function of applied electric field measured under a fixed magnetic field; (d) full magnetic hysteresis loop of isothermal magnetization of MnBi4Te7 taken at various temperatures for H // c, Hf, first-order spin-flip transition field[107].

    图 13  (a) 双栅控双层CrI3器件结构示意图[39]; (b), (c) 静电掺杂控制单层(b)和双层(c) CrI3的磁性[105], 其中(b)是以零栅压下相应值归一化的矫顽场(洋红色)、饱和场(紫色)、居里温度(橙色)与栅压(底轴)及掺杂浓度(顶轴)的关系, 正(负)值分别代表电子(空穴)浓度, (c) 4 K下掺杂浓度-磁场决定的双层CrI3相图

    Figure 13.  (a) Schematic of a dual-gated bilayer CrI3 device[39]. (b), (c) Controlling magnetism in monolayer (b) and bilayer CrI3 (c) by electrostatic doping[105]: (b) Coercive force (magenta), saturation magnetization (purple) (both at 4 K) and Curie temperature (orange) normalized by their values at zero gate voltage as a function of gate voltage (bottom axis) and induced doping density (top axis) with positive (negative) value for electron (hole) density; (c) doping density-magnetic field phase diagram of bilayer CrI3 at 4 K.

    图 14  离子插层实验结果 (a), (b) Cr2Ge2Te6有机阳离子插层的实验结果[112], 其中(a) Cr2Ge2Te6和 (TBA) Cr2Ge2Te6晶体结构示意图; (b) 纯Cr2Ge2Te6和 (TBA) Cr2Ge2Te6H // ab方向磁化强度随温度(左)及(TBA) Cr2Ge2Te6H // ab方向磁化强度随磁场(右)的变化; (c), (d) Fe3GeTe2锂离子插层的实验结果[38], 其中(c) Fe3GeTe2器件结构示意图, 电解质(LiClO4溶解在聚氧乙烯中)覆盖Fe3GeTe2薄片和侧栅; (d) 3层Fe3GeTe2的居里温度随栅极电压的变化

    Figure 14.  Experimental results of ion intercalation. (a), (b) Results of the organic cation intercalation for Cr2Ge2Te6[112]: (a) Schematic diagrams of crystal structures of Cr2Ge2Te6 and (TBA) Cr2Ge2Te6; (b) temperature-dependent magnetization (M-T) of pristine Cr2Ge2Te6 and (TBA) Cr2Ge2Te6 for H//ab (left) and magnetic field-dependent magnetization (M-H) of (TBA) Cr2Ge2Te6 for H//ab (right). (c), (d) Results of the Li+ intercalation for Fe3GeTe2[38]: (c) Schematic of the Fe3GeTe2 device structure, the electrolyte (LiClO4 dissolved in polyethylene oxide) covers both Fe3GeTe2 flake and side gate; (d) Curie temperature of the tri-layer Fe3GeTe2 as a function of the gate voltage.

    图 15  CrI3压力调控的实验结果[52] (a) CrI3的菱方相和单斜相的俯视图(左)和侧视图(右), 其中绿(紫)色原子分别代表顶层(底层)的Cr原子, 棕色原子代表I原子; (b)高压实验装置示意图; (c)在不同静水压力下, 隧穿电流It随磁场的变化关系

    Figure 15.  Experimental results of CrI3 under hydrostatic pressure[52]: (a) Schematic of rhombohedral stacking and monoclinic stacking with top (left) and side (right) view, the green (purple) atoms represent the Cr atoms in the top (bottom) layer while the brown ones represent the I atoms; (b) schematic of high-pressure experimental set-up; (c) tunneling current, It, versus magnetic field, H, at different pressures.

    图 16  CrBr3自旋极化STM的实验结果[115], 其中(a), (b)分别为H型堆叠(a)和R型堆叠(b)的单层(1L)和双层(2L)区域的STM图以及高分辨的原子图像; (c) SP-STM测量示意图; (d), (e) 利用Cr针尖测得的H型堆叠(d)和R型堆叠(e)双层CrBr3的自旋-极化隧穿与磁场的关系, 黑色(红色)曲线对应面外磁场正向(反向)扫描的结果

    Figure 16.  Experimental results of spin-polarized STM for CrBr3[115]. (a), (b) STM images of H-type stacked (a) and R-type stacked (b) CrBr3 films with both a monolayer (1L) region and a bilayer (2L) island. Magnified, atomically resolved images of the bilayer island and its extended bottom region of the H-type stacked and R-type stacked CrBr3 films are resolved. (c) Schematic of SP-STM measurement. (d), (e) Spin-polarized tunneling on the H-type stacked (d) and R-type stacked (e) CrBr3 bilayer as a function of magnetic field with a Cr tip. The out-of-plane magnetic field was swept upward (black curve) and downward (red curve).

    图 17  Fe3GeTe2的应力调控[120] (a) 应变实验装置示意图; (b) 1.5 K下矫顽场随应力的变化关系; (c) 剩余反常霍尔电阻$R_{xy}^{\rm r}$(由165 K的值归一化)在不同压力下随温度的变化关系

    Figure 17.  Straining regulation of Fe3GeTe2[120]: (a) Schematic diagram of device in the strain experimental set-up; (b) coercive field as a function of strain at 1.5 K; (c) remnant anomalous Hall resistance $R_{xy}^{\rm r}$ normalized by the values at 165 K as a function of temperature with varying strain.

    图 18  (a), (b) FePS3/Fe3GeTe2异质结的实验结果[121], 其中(a)为FePS3, Fe3GeTe2薄片中的磁序; (b) Fe3GeTe2 (红线), FePS3/Fe3GeTe2 (蓝线)的Kerr角度随温度的变化; (c), (d) Bi2Te3/Fe3GeTe2异质结的实验结果[122], 其中(c) Bi2Te3和Fe3GeTe2晶体结构示意图; (d) Bi2Te3(8)/Fe3GeTe2(4)异质结在不同温度下的反常霍尔电阻, 数字表示样品的厚度; (e), (f) 纯Cr2Ge2Te6 (e)及沉积50 nm NiO后的Cr2Ge2Te6/NiO (f) MOKE信号随温度的变化曲线[123]

    Figure 18.  (a), (b) Experimental results of FePS3/Fe3GeTe2[121]: (a) Magnetic ordering in vdW Fe3GeTe2 and FePS3 thin flakes; (b) extracted Kerr rotations as a function of the temperature for Fe3GeTe2 (red curve) and FePS3/Fe3GeTe2 (blue curve), respectively. (c), (d) Experimental results of Bi2Te3/Fe3GeTe2[122]: (c) Schematic structures of Bi2Te3 and Fe3GeTe2; (d) anomalous Hall resistances of the Bi2Te3(8)/Fe3GeTe2(4) heterostructure at different temperatures, respectively, the number represents the thickness of the sample. (e), (f) Temperature dependence of MOKE signals of the Cr2Ge2Te6 without (e) and with (f) NiO capping layer[123].

    表 1  常见的磁性材料及其磁性质

    Table 1.  A list of typical magnetic materials and their magnetic properties.

    材料类别材料磁耦合磁转变温度TN/Tc描述模型带隙/eV参考文献
    过渡金属
    卤化物
    CrCl3A-type AFM1L: 10 K/Tc
    2L: 16 K/TN
    Bulk: 17 K/TN
    //XY3.0[44,46,47]
    CrBr3FM1L: 27 K/Tc
    2L: 36 K/Tc
    Bulk: 37 K/Tc
    ⊥between Isingand Heisenberg2.2[44,45,47]
    CrI3A-type AFM/Few L1L: 45 K/Tc
    2L: 45 K/TN
    Few L: 46 K/TN
    ⊥Ising 1.2 [44,45,47,48]
    FM/BulkBulk: 61 K/Tc
    1T-FeCl2A-type AFM/BulkBulk: 24 K/TN[44]
    FM/1L1L: 109 K/Tc⊥HeisenbergSemimetal[55]
    1T-FeBr2A-type AFM/BulkBulk: 14 K/TN[44]
    FM/1L1L: 81 K/Tc⊥HeisenbergSemimetal[55]
    1T-FeI2Intralayer AF-stripy/BulkBulk: 9 K/TN[44]
    FM/1L1L: 42 K/Tc⊥HeisenbergSemimetal[55]
    1T-CoCl2AFM/BulkBulk: 25 K/TN//[44]
    FM/1L1L: 85 K/TcHeisenberg[55]
    1T-CoBr2A-type AFM/BulkBulk: 19 K/TN//[44]
    FM/1L1L: 23 K/TcHeisenberg[55]
    1T-CoI2AFMBulk: 11 K/TN[44]
    NiI2A-type AFM2.0 nm: 35 K/TN
    Bulk: 75 K/TN
    1.11/1L
    1.23/Bulk
    [29]
    过渡金属
    硫化物
    CrSe#FMBulk: 280 K/Tc[21]
    CrTe2#FMBulk: 310 K/Tc0[97]
    CrTeFM11 nm: 140 K/Tc
    45 nm: 205 K/Tc
    0[19]
    Cr2Te3FM5 nm: 280 K/Tc
    40.3 nm: 170 K/Tc
    0[57]
    FeTe (hexagonal)FM4 nm: 170 K/Tc
    Bulk: 220 K/Tc
    Heisenberg[20]
    ${\rm MnSe}_x{}^*$FM/1L1L: > 300 K/Tc3.39[61]
    AFM/Bulk
    1T-VSe2*FM/1L1L: > 300 K (470 K)/Tc//0[22,60]
    2H-VSe2A-type AFM//Semimetal[98]
    V5S8FM/3.2 nm3.2 nm: 2 K/Tc0[99]
    AFM/BulkBulk: 32 K/TN
    FeTe (tetragonal)AFM-Néel5 nm: 45 K/TN
    Bulk: 70 K/TN
    Heisenberg[20]
    Cr2S3FM15 nm: 120 K/Tc
    45 nm: 300 K/Tc
    [59]
    Cr2O3#AFMBulk: 307 K/ TN3.5[100,101]
    过渡金属磷
    化合物
    FePS3Intralayer AF-zigzag, interlayer FM1L: 118 K/TN
    Bulk: 118 K/TN
    ⊥Ising1.5[30,65,72]
    NiPS3Intralayer AF-zigzag, interlayer FM2L: 130 K/TN
    Bulk: 150 K/TN
    // XY1.6[31,65,67]
    MnPS3Intralayer AF-Néel, interlayer FMBulk: 78 K/TN// Heisenberg2.4[65,68,71]
    CoPS3Intralayer AF-zigzag, interlayer FMBulk: 120 K/TN// XY[66]
    MnPSe3Intralayer AF-zigzag, interlayer FM5L: 70 K/TN
    Bulk: 70 K/TN
    // XY2.3[32]
    FePSe3#Intralayer AF-zigzag, interlayer FMBulk: 119 K/TN⊥Ising1.3[73,74]
    CrPS4A-type AFMBulk: 36 K/TN1.3[75,76,102]
    FM/1L1L: 50 K/Tc2.28[77]
    过渡金属锗
    碲化合物
    Cr2Si2Te6FM1L: 80 K/Tc
    Bulk: 31 K/Tc
    ⊥Ising1.2[80,81,103]
    Cr2Ge2Te6FM2L: 28 K/Tc
    3L: 35 K/Tc
    Bulk: 61 K/Tc
    ⊥Heisenberg0.45[17,80]
    Fe3GeTe2FM1L (onAl2O3): 20 K/Tc
    1L (on Au): 130 K/Tc
    Bulk: 220—230 K/Tc
    ⊥Ising0[38,82]
    Fe5GeTe2FM12 nm: 270—300 K/Tc
    Bulk: 310 K/Tc
    0[26]
    过渡金属铋
    碲化合物
    MnBi2Te4A-type AFM3SL: 18 K/TN
    4SL: 21 K/TN
    Bulk: 25 K/TN
    ⊥Heisenberg[84,85]
    MnBi4Te7A-type AFMBulk: 13 K/TN[89]
    MnBi6Te10A-type AFMBulk: 11 K/TN[89]
    VBi2Te4A-type AFM//[90,104]
    NiBi2Te4A-type AFM//[90]
    EuBi2Te4 A-type AFM//[90]
    过渡金属氧
    卤化物
    FeOClAFM2.0—2.4 nm: 14 K/TN
    Bulk: 84—92 K/TN
    [34]
    CrOCl FM/1L1L: 160 K/Tc⊥Ising2.38[91]
    AFMBulk: 13.5 K/TN2.31[96]
    CrSBrFM/1L1L: 160 K/Tc// Heisenberg0.757[93]
    CrSClFM/1L1L: 150 K/Tc// Heisenberg0.856[93]
    CrSIFM/1L1L: 170 K/Tc// Heisenberg0.473[93]
    注: 绿色背底表示为实验中发现的铁磁材料, 橙色背底表示为实验中发现的反铁磁材料, 灰色背底表示为理论预测的铁磁或反铁磁材料; 上标#为体相材料, 其单层磁性在实验中还未发现; 上标*为磁性是否为本征磁性尚未确定的磁性材料; ⊥表示易磁化轴垂直于平面(ab), ∥表示易磁化轴平行于平面(ab).
    DownLoad: CSV
    Baidu
  • [1]

    Binasch G, Grunberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B 39 4828(RGoogle Scholar

    [2]

    Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Phys. Rev. Lett. 74 3273Google Scholar

    [3]

    Berger L 1996 Phys. Rev. B 54 9353Google Scholar

    [4]

    Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898Google Scholar

    [5]

    Mauger A, Godart C 1986 Phys. Rep. 141 51Google Scholar

    [6]

    Martin G W, Kellogg A T, White R L, White R M, Pinch H 1969 J. Appl. Phys. 40 1015Google Scholar

    [7]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. U. S. A. 102 10451Google Scholar

    [8]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [9]

    Slota M, Keerthi A, Myers W K, Tretyakov E, Baumgarten M, Ardavan A, Sadeghi H, Lambert C J, Narita A, Mullen K, Bogani L 2018 Nature 557 691Google Scholar

    [10]

    Tuček J, Blonski P, Ugolotti J, Swain A K, Enoki T, Zboril R 2018 Chem. Soc. Rev. 47 3899Google Scholar

    [11]

    Sethulakshmi N, Mishra A, Ajayan P M, Kawazoe Y, Roy A K, Singh A K, Tiwary C S 2019 Mater. Today 27 107Google Scholar

    [12]

    Siberchicot B, Jobic S, Carteaux V, Gressier P, Ouvrard G 1996 J. Phys. Chem. 100 5863Google Scholar

    [13]

    Zhu J X, Janoschek M, Chaves D S, Cezar J C, Durakiewicz T, Ronning F, Sassa Y, Mansson M, Scott B L, Wakeham N, Bauer E D, Thompson J D 2016 Phys. Rev. B 93 144404Google Scholar

    [14]

    Zhuang H L, Kent P R C, Hennig R G 2016 Phys. Rev. B 93 134407Google Scholar

    [15]

    Li X X, Yang J L 2014 J. Mater. Chem. C 2 7071Google Scholar

    [16]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [17]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [18]

    Zhang Z W, Shang J Z, Jiang C Y, Rasmita A, Gao W B, Yu T 2019 Nano Lett. 19 3138Google Scholar

    [19]

    Wang M S, Kang L X, Su J W, Zhang L M, Dai H W, Cheng X T, Han C, Zhai T Y, Liu Z, Han J B 2020 Nanoscale 12 16427Google Scholar

    [20]

    Kang L X, Ye C, Zhao X X, Zhou X Y, Hu J X, Li Q, Liu D, Das C M, Yang J F, Hu D Y, Chen J Q, Cao X, Zhang Y, Xu M Z, Di J, Tian D, Song P, Kutty G, Zeng Q S, Fu Q D, Deng Y, Zhou J D, Ariando A, Miao F, Hong G, Huang Y Z, Pennycook S J, Yong K T, Ji W, Renshaw Wang X, Liu Z 2020 Nat. Commun. 11 3729Google Scholar

    [21]

    Zhang Y, Chu J W, Yin L, Shifa T A, Cheng Z Z, Cheng R Q, Wang F, Wen Y, Zhan X Y, Wang Z X, He J 2019 Adv. Mater. 31 1900056Google Scholar

    [22]

    Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [23]

    Zhang Z P, Niu J J, Yang P F, Gong Y, Ji Q Q, Shi J P, Fang Q Y, Jiang S L, Li H, Zhou X B, Gu L, Wu X S, Zhang Y F 2017 Adv. Mater. 29 1702359Google Scholar

    [24]

    Zhang Y, Lu H Y, Zhu X G, Tan S Y, Feng W, Liu Q, Zhang W, Chen Q Y, Liu Y, Luo X B, Xie D H, Luo L Z, Zhang Z J, Lai X C 2018 Sci. Adv. 4 6791Google Scholar

    [25]

    Yi J, Zhuang H, Zou Q, Wu Z, Cao G, Tang S, Calder S A, Kent P R C, Mandrus D, Gai Z 2016 2D Mater. 4 011005

    [26]

    May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z Y, Liu Y H, Xu X D, McGuire M A 2019 ACS Nano 13 4436Google Scholar

    [27]

    Cai X H, Song T C, Wilson N P, Clark G, He M H, Zhang X O, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Cobden D H, Xu X D 2019 Nano Lett. 19 3993Google Scholar

    [28]

    McGuire M A, Clark G, Santosh K C, Chance W M, Jellison G E, J r., Cooper V R, Xu X, Sales B C 2017 Phys. Rev. Mater. 1 014001Google Scholar

    [29]

    Liu H N, Wang X S, Wu J X, Chen Y S, Wan J, Wen R, Yang J B, Liu Y, Song Z G, Xie L M 2020 ACS Nano 14 10544Google Scholar

    [30]

    Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G, Cheong H 2016 Nano Lett. 16 7433Google Scholar

    [31]

    Kim K, Lim S Y, Lee J U, Lee S, Kim T Y, Park K, Jeon G S, Park C H, Park J G, Cheong H 2019 Nat. Commun. 10 345Google Scholar

    [32]

    Liu P, Xu Z L, Huang H L, Li J, Feng C, Huang M, Zhu M, Wang Z P, Zhang Z M, Hou D Z, Lu Y L, Xiang B 2020 J. Alloys Compd. 828 154432Google Scholar

    [33]

    Otrokov M M, Menshchikova T V, Vergniory M G, Rusinov I P, Yu Vyazovskaya A, Koroteev Y M, Bihlmayer G, Ernst A, Echenique P M, Arnau A, Chulkov E V 2017 2D Mater. 4 025082Google Scholar

    [34]

    Ferrenti A M, Klemenz S, Lei S, Song X, Ganter P, Lotsch B V, Schoop L M 2020 Inorg. Chem. 59 1176Google Scholar

    [35]

    Mak K F, Shan J, Ralph D C 2019 Nat. Rev. Phys. 1 646Google Scholar

    [36]

    Gibertini M, Koperski M, Morpurgo A F, Novoselov K S 2019 Nat. Nanotechnol. 14 408Google Scholar

    [37]

    Bagga V, Kaur D 2020 Mater. Today: Proc. 28 1938Google Scholar

    [38]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [39]

    Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X D 2018 Nat. Nanotechnol. 13 544Google Scholar

    [40]

    Jiang S W, Shan J, Mak K F 2018 Nat. Mater. 17 406Google Scholar

    [41]

    Li T X, Jiang S W, Sivadas N, Wang Z F, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Fai Mak K, Shan J 2019 Nat. Mater. 18 1303Google Scholar

    [42]

    Guo Y L, Wang B, Zhang X W, Yuan S J, Ma L, Wang J L 2020 Info. Mat. 2 639Google Scholar

    [43]

    Huang B, McGuire M A, May A F, Xiao D, Jarillo-Herrero P, Xu X D 2020 Nat. Mater. 19 1276Google Scholar

    [44]

    McGuire M 2017 Crystals 7 121Google Scholar

    [45]

    McGuire M A, Dixit H, Cooper V R, Sales B C 2015 Chem. Mater. 27 612Google Scholar

    [46]

    Bedoya-Pinto A, Ji J R, Pandeya A, Gargiani P, Valvidares S, Sessi P, Radu F, Chang K, Parkin S 2020 arXiv: 2006.07605

    [47]

    Kim H H, Yang B W, Li S W, Jiang S W, Jin C H, Tao Z, Nichols G, Sfigakis F, Zhong S Z, Li C H, Tian S J, Cory D G, Miao G X, Shan J, Mak K F, Lei H C, Sun K, Zhao L Y, Tsen A W 2019 Proc. Natl. Acad. Sci. U. S. A. 116 11131Google Scholar

    [48]

    Zhong D, Seyler K L, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, McGuire M A, Fu K C, Xiao D, Yao W, Xu X D 2020 Nat. Nanotechnol. 15 187Google Scholar

    [49]

    Niu B, Su T, Francisco B A, Ghosh S, Kargar F, Huang X, Lohmann M, Li J, Xu Y, Taniguchi T, Watanabe K, Wu D, Balandin A, Shi J, Cui Y T 2020 Nano Lett. 20 553Google Scholar

    [50]

    Kim H H, Yang B, Patel T, Sfigakis F, Li C, Tian S, Lei H, Tsen A W 2018 Nano Lett. 18 4885Google Scholar

    [51]

    Wang Z, Gutiérrez-Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoğlu A, Giannini E, Morpurgo A F 2018 Nat. Commun. 9 2516Google Scholar

    [52]

    Song T C, Fei Z Y, Yankowitz M, Lin Z, Jiang Q N, Hwangbo K, Zhang Q, Sun B, Taniguchi T, Watanabe K, McGuire M A, Graf D, Cao T, Chu J H, Cobden D H, Dean C R, Xiao D, Xu X D 2019 Nat. Mater. 18 1298Google Scholar

    [53]

    Thiel L, Wang Z, Tschudin M A, Rohner D, Gutiérrez-Lezama I, Ubrig N, Gibertini M, Giannini E, Morpurgo A F, Maletinsky P 2019 Science 364 973Google Scholar

    [54]

    Abramchuk M, Jaszewski S, Metz K R, Osterhoudt G B, Wang Y, Burch K S, Tafti F 2018 Adv. Mater. 30 1801325Google Scholar

    [55]

    Kulish V V, Huang W 2017 J. Mater. Chem. C 5 8734Google Scholar

    [56]

    Ashton M, Gluhovic D, Sinnott S B, Guo J, Stewart D A, Hennig R G 2017 Nano Lett. 17 5251Google Scholar

    [57]

    Wen Y, Liu Z H, Zhang Y, Xia C X, Zhai B X, Zhang X H, Zhai G H, Shen C, He P, Cheng R Q, Yin L, Yao Y Y, Getaye Sendeku M, Wang Z X, Ye X B, Liu C S, Jiang C, Shan C X, Long Y W, He J 2020 Nano Lett. 20 3130Google Scholar

    [58]

    Chen W Z, Kawazoe Y, Shi X Q, Pan H 2018 Phys. Chem. Chem. Phys. 20 18348Google Scholar

    [59]

    Cui F F, Zhao X X, Xu J J, Tang B, Shang Q Y, Shi J P, Huan Y H, Liao J H, Chen Q, Hou Y L, Zhang Q, Pennycook S J, Zhang Y F 2020 Adv. Mater. 32 1905896Google Scholar

    [60]

    Yu W, Li J, Herng T S, Wang Z S, Zhao X X, Chi X, Fu W, Abdelwahab I, Zhou J, Dan J D, Chen Z X, Chen Z, Li Z J, Lu J, Pennycook S J, Feng Y P, Ding J, Loh K P 2019 Adv. Mater. 31 1903779Google Scholar

    [61]

    O'Hara D J, Zhu T, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W, Kawakami R K 2018 Nano Lett. 18 3125Google Scholar

    [62]

    Gong C, Zhang X 2019 Science 363 4450Google Scholar

    [63]

    Chen P, Pai W W, Chan Y H, Madhavan V, Chou M Y, Mo S K, Fedorov A V, Chiang T C 2018 Phys. Rev. Lett. 121 196402Google Scholar

    [64]

    Wang Y M, Zhang J F, Li C H, Ma X L, Ji J T, Jin F, Lei H C, Liu K, Zhang W L, Zhang Q M 2019 Chin. Phys. B 28 056301Google Scholar

    [65]

    Coak M J, Jarvis D M, Hamidov H, Haines C R S, Alireza P L, Liu C, Son S, Hwang I, Lampronti G I, Daisenberger D, Nahai-Williamson P, Wildes A R, Saxena S S, Park J G 2020 J. Phys. Condens. Matter. 32 124003Google Scholar

    [66]

    Wildes A R, Simonet V, Ressouche E, Ballou R, McIntyre G J 2017 J. Phys. Condens. Matter. 29 455801Google Scholar

    [67]

    Kang S, Kim K, Kim B H, Kim J, Sim K I, Lee J U, Lee S, Park K, Yun S, Kim T, Nag A, Walters A, Garcia-Fernandez M, Li J, Chapon L, Zhou K J, Son Y W, Kim J H, Cheong H, Park J G 2020 Nature 583 785Google Scholar

    [68]

    Vaclavkova D, Delhomme A, Faugeras C, Potemski M, Bogucki A, Suffczyński J, Kossacki P, Wildes A R, Grémaud B, Saúl A 2020 2D Mater. 7 035030Google Scholar

    [69]

    Rule K C, McIntyre G J, Kennedy S J, Hicks T J 2007 Phys. Rev. B 76 134402Google Scholar

    [70]

    Kim K, Lim S Y, Kim J, Lee J U, Lee S, Kim P, Park K, Son S, Park C H, Park J G, Cheong H 2019 2D Mater. 6 041001Google Scholar

    [71]

    Ressouche E, Loire M, Simonet V, Ballou R, Stunault A, Wildes A 2010 Phys. Rev. B 82 100408Google Scholar

    [72]

    Lançon D, Walker H C, Ressouche E, Ouladdiaf B, Rule K C, McIntyre G J, Hicks T J, Rønnow H M, Wildes A R 2016 Phys. Rev. B 94 214407Google Scholar

    [73]

    Bhutani A, Zuo J L, McAuliffe R D, dela Cruz C R, Shoemaker D P 2020 Phys. Rev. Mater. 4 034411Google Scholar

    [74]

    Zheng Y, Jiang X X, Xue X X, Dai J, Feng Y 2019 Phys. Rev. B 100 174102Google Scholar

    [75]

    Lee J, Ko T Y, Kim J H, Bark H, Kang B, Jung S G, Park T, Lee Z, Ryu S, Lee C 2017 ACS Nano 11 10935Google Scholar

    [76]

    Peng Y X, Ding S L, Cheng M, Hu Q F, Yang J, Wang F G, Xue M Z, Liu Z, Lin Z C, Avdeev M, Hou Y L, Yang W Y, Zheng Y, Yang J B 2020 Adv. Mater. 32 2001200Google Scholar

    [77]

    Chen Q, Ding Q, Wang Y, Xu Y, Wang J 2020 J. Phys. Chem. C 124 12075Google Scholar

    [78]

    Liu W, Dai Y H, Yang Y E, Fan J Y, Pi L, Zhang L, Zhang Y H 2018 Phys. Rev. B 98 214420Google Scholar

    [79]

    Verzhbitskiy I A, Kurebayashi H, Cheng H, Zhou J, Khan S, Feng Y P, Eda G 2020 Nat. Electron. 3 460Google Scholar

    [80]

    Li Y F, Wang W, Guo W, Gu C Y, Sun H Y, He L, Zhou J, Gu Z B, Nie Y F, Pan X Q 2018 Phys. Rev. B 98 125127Google Scholar

    [81]

    Ito N, Kikkawa T, Barker J, Hirobe D, Shiomi Y, Saitoh E 2019 Phys. Rev. B 100 060402Google Scholar

    [82]

    Fei Z Y, Huang B, Malinowski P, Wang W B, Song T C, Sanchez J, Yao W, Xiao D, Zhu X Y, May A F, Wu W, Cobden D H, Chu J H, Xu X D 2018 Nat. Mater. 17 778Google Scholar

    [83]

    May A F, Calder S, Cantoni C, Cao H, McGuire M A 2016 Phys. Rev. B 93 014411Google Scholar

    [84]

    Otrokov M M, Klimovskikh I I, Bentmann H, Estyunin D, Zeugner A, Aliev Z S, Gaß S, Wolter A U B, Koroleva A V, Shikin A M, Blanco-Rey M, Hoffmann M, Rusinov I P, Vyazovskaya A Y, Eremeev S V, Koroteev Y M, Kuznetsov V M, Freyse F, Sánchez-Barriga J, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Alfonsov A, Kataev V, Büchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Di Santo G, Vidal R C, Schatz S, Kißner K, Ünzelmann M, Min C H, Moser S, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A, Chulkov E V 2019 Nature 576 416Google Scholar

    [85]

    Gong Y, Guo J W, Li J H, Zhu K J, Liao M H, Liu X Z, Zhang Q H, Gu L, Tang L, Feng X, Zhang D, Li W, Song C L, Wang L L, Yu P, Chen X, Wang Y Y, Yao H, Duan W H, Xu Y, Zhang S C, Ma X C, Xue Q K, He K 2019 Chin. Phys. Lett. 36 076801Google Scholar

    [86]

    Deng Y J, Yu Y J, Shi M Z, Guo Z X, Xu Z H, Wang J, Chen X H, Zhang Y B 2020 Science 367 895Google Scholar

    [87]

    Liu C, Wang Y C, Li H, Wu Y, Li Y X, Li J H, He K, Xu Y, Zhang J S, Wang Y Y 2020 Nat. Mater. 19 522Google Scholar

    [88]

    Ge J, Liu Y Z, Li J H, Li H, Luo T C, Wu Y, Xu Y, Wang J 2020 Natl. Sci. Rev. 7 1280Google Scholar

    [89]

    Yan J Q, Liu Y H, Parker D S, Wu Y, Aczel A A, Matsuda M, McGuire M A, Sales B C 2020 Phys. Rev. Mater. 4 054202Google Scholar

    [90]

    Li J H, Li Y, Du S, Wang Z, Gu B L, Zhang S C, He K, Duan W H, Xu Y 2019 Sci. Adv. 5 5685Google Scholar

    [91]

    Miao N, Xu B, Zhu L, Zhou J, Sun Z 2018 J. Am. Chem. Soc. 140 2417Google Scholar

    [92]

    Zhang J, Wölfel A, Li L, van Smaalen S, Williamson H L, Kremer R K 2012 Phys. Rev. B 86 134428Google Scholar

    [93]

    Guo Y L, Zhang Y H, Yuan S J, Wang B, Wang J L 2018 Nanoscale 10 18036Google Scholar

    [94]

    Grant R W 1971 J. Appl. Phys. 42 1619Google Scholar

    [95]

    Kauzlarich S M, Ellena J F, Stupik P D, Rieff W M, Averill B A 1987 J. Am. Chem. Soc. 109 4561Google Scholar

    [96]

    Zhang T L, Wang Y M, Li H X, Zhong F, Shi J, Wu M H, Sun Z Y, Shen W F, Wei B, Hu W D, Liu X F, Huang L, Hu C G, Wang Z C, Jiang C B, Yang S X, Zhang Q M, Qu Z 2019 ACS Nano 13 11353Google Scholar

    [97]

    Freitas D C, Weht R, Sulpice A, Remenyi G, Strobel P, Gay F, Marcus J, Núñez-Regueiro M 2015 J. Phys. Condens. Matter 27 176002Google Scholar

    [98]

    Feng S N, Mi W B 2018 Appl. Surf. Sci. 458 191Google Scholar

    [99]

    Niu J J, Yan B M, Ji Q Q, Liu Z F, Li M Q, Gao P, Zhang Y F, Yu D P, Wu X S 2017 Phys. Rev. B 96 075402Google Scholar

    [100]

    He X, Wang Y, Wu N, Caruso A N, Vescovo E, Belashchenko K D, Dowben P A, Binek C 2010 Nat. Mater. 9 579Google Scholar

    [101]

    Fallarino L, Binek C, Berger A 2015 Phys. Rev. B 91 214403Google Scholar

    [102]

    Budniak A K, Killilea N A, Zelewski S J, Sytnyk M, Kauffmann Y, Amouyal Y, Kudrawiec R, Heiss W, Lifshitz E 2020 Small 16 1905924Google Scholar

    [103]

    Lin M W, Zhuang H, Yan J, Ward T Z, Puretzky A A, Rouleau C M, Gai Z, Liang L, Meunier V, Sumpter B G, Ganesh P, Kent P R C, Geohegan D B, Mandrus D G, Xiao K 2016 J. Mater. Chem. C 4 315Google Scholar

    [104]

    Zhu W X, Song C, Liao L Y, Zhou Z Y, Bai H, Zhou Y J, Pan F 2020 Phys. Rev. B 102 085111Google Scholar

    [105]

    Jiang S G, Li L Z, Wang Z F, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [106]

    Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X D 2018 Science 360 1214Google Scholar

    [107]

    Hu C, Gordon K N, Liu P F, Liu J Y, Zhou X Q, Hao P P, Narayan D, Emmanouilidou E, Sun H Y, Liu Y T, Brawer H, Ramirez A P, Ding L, Cao H B, Liu Q H, Dessau D, Ni N 2020 Nat. Commun. 11 97Google Scholar

    [108]

    Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123Google Scholar

    [109]

    Dong S, Xiang H, Dagotto E 2019 Natl. Sci. Rev. 6 629Google Scholar

    [110]

    Cheong S W 2019 npj Quantum Mater. 4 53Google Scholar

    [111]

    Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S P, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554Google Scholar

    [112]

    Wang N Z, Tang H B, Shi M Z, Zhang H, Zhuo W Z, Liu D Y, Meng F B, Ma L K, Ying J J, Zou L J, Sun Z, Chen X H 2019 J. Am. Chem. Soc. 141 17166Google Scholar

    [113]

    Cai W, Sun H, Xia W, Wu C, Liu Y, Liu H, Gong Y, Yao D X, Guo Y, Wang M 2020 Phys. Rev. B 102 144525Google Scholar

    [114]

    Zhang H, Ni C, Zhang J, Zou L, Zeng Z, Wang X 2021 Phys. Chem. Chem. Phys. 23 9679Google Scholar

    [115]

    Chen W J, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W, Gao C L 2019 Science 366 983Google Scholar

    [116]

    Webster L, Yan J A 2018 Phys. Rev. B 98 144411Google Scholar

    [117]

    Hu X H, Zhao Y H, Shen X, Krasheninnikov A V, Chen Z F, Sun L T 2020 ACS Appl. Mater. Interfaces 12 26367Google Scholar

    [118]

    van Vleck J H 1937 Phys. Rev. 52 1178Google Scholar

    [119]

    Sheng P, Wang B M, Li R W 2018 J. Semicond. 39 011006Google Scholar

    [120]

    Wang Y, Wang C, Liang S J, Ma Z C, Xu K, Liu X W, Zhang L L, Admasu A S, Cheong S W, Wang L Z, Chen M Y, Liu Z L, Cheng B, Ji W, Miao F 2020 Adv. Mater. 32 2004533Google Scholar

    [121]

    Zhang L M, Huang X Y, Dai H W, Wang M S, Cheng H, Tong L, Li Z, Han X T, Wang X, Ye L, Han J B 2020 Adv. Mater. 32 2002032Google Scholar

    [122]

    Wang H Y, Liu Y J, Wu P C, Hou W J, Jiang Y H, Li X H, Pandey C D, Chen D D, Yang Q, Wang H, Wei D H, Lei N, Kang W, Wen L G, Nie T X, Zhao W S, Wang K L 2020 ACS Nano 14 10045Google Scholar

    [123]

    Idzuchi H, Llacsahuanga Allcca A E, Pan X C, Tanigaki K, Chen Y P 2019 Appl. Phys. Lett. 115 232403Google Scholar

    [124]

    Wang F, Xiao D, Yuan W, Jiang J, Zhao Y F, Zhang L, Yao Y, Liu W, Zhang Z, Liu C, Shi J, Han W, Chan M H W, Samarth N, Chang C Z 2019 Nano Lett. 19 2945Google Scholar

  • [1] Yang Rui-Long, Zhang Yu-Ying, Yang Ke, Jiang Qi-Tao, Yang Xiao-Ting, Guo Jin-Zhong, Xu Xiao-Hong. Growth and magnetic properties of two-dimensional vanadium-doped Cr2S3 nanosheets. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231229
    [2] Zhang Ying, Li Zhuo-Lin, Shen Bao-Gen. Research progress in the magnetic domain wall topology. Acta Physica Sinica, 2024, 73(1): 017504. doi: 10.7498/aps.73.20231612
    [3] Xiong Yi-Nong, Wu Chuang-Wen, Ren Chuan-Tong, Meng De-Quan, Chen Shi-Wei, Liang Shi-Heng. Research progress of spin orbit torque of two-dimensional magnetic materials. Acta Physica Sinica, 2024, 73(1): 017502. doi: 10.7498/aps.73.20231244
    [4] Mi Meng-Juan, Yu Li-Xuan, Xiao Han, Lü Bing-Bing, Wang Yi-Lin. Tuning magnetic properties of two-dimensional antiferromagnetic MPX3 by organic cations intercalation. Acta Physica Sinica, 2024, 73(5): 057501. doi: 10.7498/aps.73.20232010
    [5] Chang Chao, Kou Jin-Zong, Xu Xiao-Zhi. Growth of two-dimensional single crystal materials controlled by atomic steps. Acta Physica Sinica, 2023, 72(20): 208101. doi: 10.7498/aps.72.20230887
    [6] Yang Rui-Long, Zhang Yu-Ying, Yang Ke, Jiang Qi-Tao, Yang Xiao-Ting, Guo Jin-Zhong, Xu Xiao-Hong. Growth and magnetic properties of two-dimensional vanadium-doped Cr2S3 nanosheets. Acta Physica Sinica, 2023, 72(24): 247501. doi: 10.7498/aps.72.20231229
    [7] Zhang Jian-Qiang, Qin Yan-Jun, Fang Zheng, Fan Xiao-Zhen, Ma Yun, Li Wen-Zhong, Yang Hui-Ya, Kuang Fu-Li, Zhai Yao, Shi Ying-Long, Dang Wen-Qiang, Ye Hui-Qun, Fang Yun-Zhang. Regulation mechanism of giant magneto-impedance effect of multi-field coupling Fe-based alloy. Acta Physica Sinica, 2022, 71(23): 237501. doi: 10.7498/aps.71.20221376
    [8] Liu Nan-Shu, Wang Cong, Ji Wei. Recent research advances in two-dimensional magnetic materials. Acta Physica Sinica, 2022, 71(12): 127504. doi: 10.7498/aps.71.20220301
    [9] Preface to the special topic: Two-dimensional magnetic materials. Acta Physica Sinica, 2021, 70(12): 120101. doi: 10.7498/aps.70.120101
    [10] Zhang Jing-Yan, Dou Peng-Wei, Zhao Yun-Chi, Zhang Shi-Lei, Liu Jia-Qiang, Qi Jie, Lü Hao-Chang, Liu Ruo-Yang, Yu Guang-Hua, Jiang Yong, Shen Bao-Gen, Wang Shou-Guo. Multi-field manipulation in Hall balance. Acta Physica Sinica, 2021, 70(4): 048501. doi: 10.7498/aps.70.20201799
    [11] Yi En-Kui, Wang Bin, Shen Han, Shen Bing. Properties of axion insulator candidate layered Eu1–xCaxIn2As2. Acta Physica Sinica, 2021, 70(12): 127502. doi: 10.7498/aps.70.20210042
    [12] Zhang Song-Ge, Chen Yu-Tong, Wang Ning, Chai Yang, Long Gen, Zhang Guang-Yu. Probe and manipulation of magnetism of two-dimensional CrI3 crystal. Acta Physica Sinica, 2021, 70(12): 127504. doi: 10.7498/aps.70.20202197
    [13] Wang Hai-Yu, Liu Ying-Jie, Xun Lu-Lu, Li Jing, Yang Qing, Tian Qi-Yun, Nie Tian-Xiao, Zhao Wei-Sheng. Research progress of preparation of large-scale two-dimensional magnetic materials and manipulation of Curie temperature. Acta Physica Sinica, 2021, 70(12): 127301. doi: 10.7498/aps.70.20210223
    [14] Jiang Xiao-Hong, Qin Si-Chen, Xing Zi-Yue, Zou Xing-Yu, Deng Yi-Fan, Wang Wei, Wang Lin. Study on physical properties and magnetism controlling of two-dimensional magnetic materials. Acta Physica Sinica, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [15] Dong Bo-Wen, Zhang Jing-Yan, Peng Li-Cong, He Min, Zhang Ying, Zhao Yun-Chi, Wang Chao, Sun Yang, Cai Jian-Wang, Wang Wen-Hong, Wei Hong-Xiang, Shen Bao-Gen, Jiang Yong, Wang Shou-Guo. Multi-field control on magnetic skyrmions. Acta Physica Sinica, 2018, 67(13): 137507. doi: 10.7498/aps.67.20180931
    [16] Qi Wei-Hua, Li Zhuang-Zhi, Ma Li, Tang Gui-De, Wu Guang-Heng, Hu Feng-Xia. Molecular field origin for magnetic ordering of magnetic materials. Acta Physica Sinica, 2017, 66(6): 067501. doi: 10.7498/aps.66.067501
    [17] Zhang Zhi-Dong. Magnetic structures, magnetic domains and topological magnetic textures of magnetic materials. Acta Physica Sinica, 2015, 64(6): 067503. doi: 10.7498/aps.64.067503
    [18] Zhang Yan-Ru, Zhang Lin, Ren Jun-Feng, Yuan Xiao-Bo, Hu Gui-Chao. Magnetic coupling properties of Gd-doped ZnO nanowires studied by first-principles calculations. Acta Physica Sinica, 2015, 64(17): 178103. doi: 10.7498/aps.64.178103
    [19] Zhang Hao, Zhao Jian-Lin, Zhang Xiao-Juan, Di Nan. Two-dimensional magnetophotonic crystals and analysis of the mode field. Acta Physica Sinica, 2007, 56(6): 3546-3552. doi: 10.7498/aps.56.3546
    [20] WEI GUO-ZHU, CHEN LING-FU. THE RKKY COUPLING RESISTIVITY OF 2-DIMENSIONAL MAGNETIC ALLOY. Acta Physica Sinica, 1986, 35(5): 681-686. doi: 10.7498/aps.35.681
Metrics
  • Abstract views:  27034
  • PDF Downloads:  2360
  • Cited By: 0
Publishing process
  • Received Date:  24 December 2020
  • Accepted Date:  30 January 2021
  • Available Online:  17 June 2021
  • Published Online:  20 June 2021

/

返回文章
返回
Baidu
map