Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ferromagnetism of undoped anatase TiO2 based on the first-principles calculations

Pan Feng-Chun Xu Jia-Nan Yang Hua Lin Xue-Ling Chen Huan-Ming

Citation:

Ferromagnetism of undoped anatase TiO2 based on the first-principles calculations

Pan Feng-Chun, Xu Jia-Nan, Yang Hua, Lin Xue-Ling, Chen Huan-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Compared with conventional semiconductors, the diluted magnetic semiconductors, in which the cations are substituted by transition metal ions, have attracted a great deal of attention due to their promising applications in spintronics. Recently, the unexpected room temperature ferromagnetism has been found in many undoped oxides. These findings challenge our understanding of magnetism in these systems, because neither cations nor anions have unpaired d or f electrons. Generally, the candidate defects responsible for the unexpected ferromagnetism must fulfill two conditions at the same time: (i) the defects should prefer a spin-polarized ground state with a nonzero local magnetic moments; (ii) the exchange interactions between local magnetic moments induced by defects should be ferromagnetic energetically. Among these oxides, TiO2 has recently attracted much attention because of its unique properties and potential applications in spintronics, laser diodes and biomaterials. In order to explore the origin of ferromagnetism in such an undoped TiO2 system, the electronic structures and magnetic properties of oxygen vacancy (VO) and Ti vacancy (VTi) in anatase TiO2 have been studied systematically by the first-principles calculation based on the density functional theory with the LDA+U method (UTi-3d = 5.8 eV). It is found that two electrons introduced by VO are captured by two neighbor Ti4+ ions, and thereby the Ti4+ ions are restored to Ti3+ ions with opposite spin orientation. Therefore, the single VO cannot induce local magnetic moment. The defect energy level locates near the Fermi level for VTi. Six oxygen atoms neighboring VTi constitute an octahedron, and the defect energy level is split into a single state A, a double state E and a triple state T in the octahedral crystal field. The occupation of four unpaired electrons introduced by six oxygen atoms is a+1t+3t-0e0 (subscripts + and - mean up-spin and down-spin, respectively), and the VTi can induce 4 B local moments. Furthermore, the magnetic coupling interaction between local magnetic moments induced by two VTi is ferromagnetic, and the magnetic coupling constant (JO) is 88.7 meV. It means the ferromagnetism can continue up to room-temperature. The VO cannot induce local magnetic moment, but it can enhance the coupling strength between two VTi, which can explain the origin of ferromagnetism observed experimentally in undoped anatase TiO2, i.e., the VTi induces local magnetic moment, while VO enhances the long range ferromagnetic coupling interaction between VTi. Especially, for the ferromagnetic coupling between local magnetic moments, we have proposed the second type direct exchange interaction model, which has been recommended in detail.
      Corresponding author: Lin Xue-Ling, nxulxl@163.com
    • Funds: Project supported by the Higher School Science Research Project of Ningxia (Grant No. NGY2016004).
    [1]

    Venkatesan M, Fitzgerald C B, Coey J M D 2004Nature 430 630

    [2]

    Hong N H, Sakai J, Poirot N, Brize V 2006Phys.Rev.B 73 132404

    [3]

    Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao C N R 2006Phys.Rev.B 74 161306

    [4]

    Xu Q, Schmidt H, Zhou S, Potzger K, Helm M, Hochmuth H, Lorenz M, Setzer A, Esquinazi P, Meinecke C, Grundmann M 2008Appl.Phys.Lett. 92 082508

    [5]

    Hong N H, Poirot N, Sakai J 2008Phys.Rev.B 77 033205

    [6]

    Kim D, Hong J, Park Y P, Kim K J 2009Phys.:Condens.Matter 21 195405

    [7]

    Singhal R K, Kumar S, Kumari P, Xing Y T, Saitovitch E 2011Appl.Phys.Lett. 98 092510

    [8]

    Santara B, Giri P K, Imakita K, Fujii M 2013Nanoscale 5 5476

    [9]

    Eltimov I S, Yunoki S, Sawatzky A 2002Phys.Rev.Lett. 89 216403

    [10]

    Pemmaraju C D, Sanvito S 2005Phys.Rev.Lett. 94 217205

    [11]

    Rahman G, Garcia V M, Hong S C 2008Phys.Rev.B 78 184404

    [12]

    Peng H W, Li J B, Li S S, Xia J B 2009Phys.Rev.B 79 092411

    [13]

    Wang Q, Sun Q, Chen G, Kawazoe Y, Jena P 2008Phys.Rev.B 77 205411

    [14]

    Lin X L, Yan S S, Zhao M W, Hu S J, Han C, Chen Y X, Liu G L, Dai Y Y, Mei L M 2011Phys.Lett.A 375 638

    [15]

    Lin X L, Chen Z P, Gao H, Pan F C, Wang X M, Chen H M 2016J.Supercond.Nov.Magn. 29 1533

    [16]

    Zhou S, Cizmar E, Potzger K, Krause G, Talut G, Helm M, Fassbender J, Zvyagin S A, Wosnitza J, Schmidt H 2009Phys.Rev.B 79 113201

    [17]

    Yang K, Dai Y, Huang B, Feng Y P 2010Phys.Rev.B 81 033202

    [18]

    Han G B, Hu S J, Yan S S, Mei L M 2009Phys.Status Solidi-Rapid Res.Lett. 3 148

    [19]

    Lin C W, Shin D H, Demkov A 2015J.Appl.Phys. 117 225703

    [20]

    Zuo X, Yoon S D, Yang A, Vittoria C, Harris G 2008J.Appl.Phys. 103 07B911

    [21]

    Shao B, He Y F, Feng M, Lu Y, Zuo X 2014J.Appl.Phys. 115 17A915

    [22]

    Wang H X, Zong Z C, Yan Y 2014J.Appl.Phys. 115 233909

    [23]

    Perdew J P, Wang Y 1992Phys.Rev.B 45 13244

    [24]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998Phys.Rev.B 57 1505

    [25]

    Pack J D, Monkhorst H J 1977Phys.Rev.B 16 1748

    [26]

    Monkhorst H J, Pack J D 1976Phys.Rev.B 13 5188

    [27]

    Zhou S, Xu Q, Potzger K, Talut G, Grtzsche R, Fassbender J, Vinnichenko M, Grenzer J, Helm M, Hochmuth H, Lorenz M, Grundmann M, Schmidt H 2008Appl.Phys.Lett. 93 232507

    [28]

    Burdett J K, Hughbanks T, Miller G J, Richardson J W, Smith J V 1987J.Am.Chem.Soc. 109 3639

    [29]

    Wang F G, Pang Z Y, Lin L, Fang S J, Dai Y, Han S H 2009Phys.Rev.B 80 144424

    [30]

    Pan F C, Lin X L, Chen H M 2015Acta Phys.Sin. 64 176101(in Chinese)[潘凤春, 林雪玲, 陈焕铭2015 64 176101]

    [31]

    Dev P, Xue Y, Zhang P 2008Phys.Rev.Lett. 100 117204

  • [1]

    Venkatesan M, Fitzgerald C B, Coey J M D 2004Nature 430 630

    [2]

    Hong N H, Sakai J, Poirot N, Brize V 2006Phys.Rev.B 73 132404

    [3]

    Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao C N R 2006Phys.Rev.B 74 161306

    [4]

    Xu Q, Schmidt H, Zhou S, Potzger K, Helm M, Hochmuth H, Lorenz M, Setzer A, Esquinazi P, Meinecke C, Grundmann M 2008Appl.Phys.Lett. 92 082508

    [5]

    Hong N H, Poirot N, Sakai J 2008Phys.Rev.B 77 033205

    [6]

    Kim D, Hong J, Park Y P, Kim K J 2009Phys.:Condens.Matter 21 195405

    [7]

    Singhal R K, Kumar S, Kumari P, Xing Y T, Saitovitch E 2011Appl.Phys.Lett. 98 092510

    [8]

    Santara B, Giri P K, Imakita K, Fujii M 2013Nanoscale 5 5476

    [9]

    Eltimov I S, Yunoki S, Sawatzky A 2002Phys.Rev.Lett. 89 216403

    [10]

    Pemmaraju C D, Sanvito S 2005Phys.Rev.Lett. 94 217205

    [11]

    Rahman G, Garcia V M, Hong S C 2008Phys.Rev.B 78 184404

    [12]

    Peng H W, Li J B, Li S S, Xia J B 2009Phys.Rev.B 79 092411

    [13]

    Wang Q, Sun Q, Chen G, Kawazoe Y, Jena P 2008Phys.Rev.B 77 205411

    [14]

    Lin X L, Yan S S, Zhao M W, Hu S J, Han C, Chen Y X, Liu G L, Dai Y Y, Mei L M 2011Phys.Lett.A 375 638

    [15]

    Lin X L, Chen Z P, Gao H, Pan F C, Wang X M, Chen H M 2016J.Supercond.Nov.Magn. 29 1533

    [16]

    Zhou S, Cizmar E, Potzger K, Krause G, Talut G, Helm M, Fassbender J, Zvyagin S A, Wosnitza J, Schmidt H 2009Phys.Rev.B 79 113201

    [17]

    Yang K, Dai Y, Huang B, Feng Y P 2010Phys.Rev.B 81 033202

    [18]

    Han G B, Hu S J, Yan S S, Mei L M 2009Phys.Status Solidi-Rapid Res.Lett. 3 148

    [19]

    Lin C W, Shin D H, Demkov A 2015J.Appl.Phys. 117 225703

    [20]

    Zuo X, Yoon S D, Yang A, Vittoria C, Harris G 2008J.Appl.Phys. 103 07B911

    [21]

    Shao B, He Y F, Feng M, Lu Y, Zuo X 2014J.Appl.Phys. 115 17A915

    [22]

    Wang H X, Zong Z C, Yan Y 2014J.Appl.Phys. 115 233909

    [23]

    Perdew J P, Wang Y 1992Phys.Rev.B 45 13244

    [24]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998Phys.Rev.B 57 1505

    [25]

    Pack J D, Monkhorst H J 1977Phys.Rev.B 16 1748

    [26]

    Monkhorst H J, Pack J D 1976Phys.Rev.B 13 5188

    [27]

    Zhou S, Xu Q, Potzger K, Talut G, Grtzsche R, Fassbender J, Vinnichenko M, Grenzer J, Helm M, Hochmuth H, Lorenz M, Grundmann M, Schmidt H 2008Appl.Phys.Lett. 93 232507

    [28]

    Burdett J K, Hughbanks T, Miller G J, Richardson J W, Smith J V 1987J.Am.Chem.Soc. 109 3639

    [29]

    Wang F G, Pang Z Y, Lin L, Fang S J, Dai Y, Han S H 2009Phys.Rev.B 80 144424

    [30]

    Pan F C, Lin X L, Chen H M 2015Acta Phys.Sin. 64 176101(in Chinese)[潘凤春, 林雪玲, 陈焕铭2015 64 176101]

    [31]

    Dev P, Xue Y, Zhang P 2008Phys.Rev.Lett. 100 117204

  • [1] Yang Rui-Long, Zhang Yu-Ying, Yang Ke, Jiang Qi-Tao, Yang Xiao-Ting, Guo Jin-Zhong, Xu Xiao-Hong. Growth and magnetic properties of two-dimensional vanadium-doped Cr2S3 nanosheets. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231229
    [2] Yang Rui-Long, Zhang Yu-Ying, Yang Ke, Jiang Qi-Tao, Yang Xiao-Ting, Guo Jin-Zhong, Xu Xiao-Hong. Growth and magnetic properties of two-dimensional vanadium-doped Cr2S3 nanosheets. Acta Physica Sinica, 2023, 72(24): 247501. doi: 10.7498/aps.72.20231229
    [3] Yao Zhong-Yu, Sun Li, Pan Meng-Mei, Sun Shu-Juan, Liu Han-Jun. First-principles study on half-metallic ferromagnetism of half-Heusler alloys VLiBi and CrLiBi. Acta Physica Sinica, 2018, 67(21): 217501. doi: 10.7498/aps.67.20181129
    [4] Li Cong, Zheng You-Jin, Fu Si-Nian, Jiang Hong-Wei, Wang Dan. First-principle study of the magnetism and photocatalyticactivity of RE(La/Ce/Pr/Nd) doping anatase TiO2. Acta Physica Sinica, 2016, 65(3): 037102. doi: 10.7498/aps.65.037102
    [5] Wang Qing-Bao, Zhang Zhong, Xu Xi-Jin, Lü Ying-Bao, Zhang Qin. Theoretical and experimental studies on N, Fe, La co-doped anatase TiO2 band adjustment. Acta Physica Sinica, 2015, 64(1): 017101. doi: 10.7498/aps.64.017101
    [6] Pan Feng-Chun, Lin Xue-Ling, Chen Huan-Ming. Electronic structure and optical properties of C doped rutile TiO2: the first-principles calculations. Acta Physica Sinica, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [7] Cao Juan, Cui Lei, Pan Jing. Magnetism of V, Cr and Mn doped MoS2 by first-principal study. Acta Physica Sinica, 2013, 62(18): 187102. doi: 10.7498/aps.62.187102
    [8] Liu Fang, Jiang Zhen-Yi. First-principles study on the electronic and optical properties of the (Eu,N)-codoped anatase TiO2 photocatalyst. Acta Physica Sinica, 2013, 62(19): 193103. doi: 10.7498/aps.62.193103
    [9] Peng Li-Ping, Xia Zheng-Cai, Yin Jian-Wu. First-principles calculation of rutile and anatase TiO2 intrinsic defect. Acta Physica Sinica, 2012, 61(3): 037103. doi: 10.7498/aps.61.037103
    [10] Gu Jian-Jun, Sun Hui-Yuan, Liu Li-Hu, Qi Yun-Kai, Xu Qin. Influence of structural phase transition on Ferromagnetism in Fe-doped TiO2 thin films. Acta Physica Sinica, 2012, 61(1): 017501. doi: 10.7498/aps.61.017501
    [11] Wu Kong-Ping, Gu Shu-Lin, Zhu Shun-Ming, Huang You-Rui, Zhou Meng-Ran. Experimental and theoretical studies on the influence of unintentionally doped carbon on magnetic properties in ZnMnO:N. Acta Physica Sinica, 2012, 61(5): 057503. doi: 10.7498/aps.61.057503
    [12] Peng Li-Ping, Xia Zheng-Cai, Yang Chang-Quan. First-principles calculation of matal and nonmetal codoped anantase TiO2. Acta Physica Sinica, 2012, 61(12): 127104. doi: 10.7498/aps.61.127104
    [13] Li Ming-Biao, Zhang Tian-Xian, Shi Li-Bin. Magnetic properties of N-doped(1120) ZnO thin films. Acta Physica Sinica, 2011, 60(9): 097504. doi: 10.7498/aps.60.097504
    [14] Shi Li-Bin, Xiao Zhen-Lin. Origin of ferromagnetic properties in Ni doped ZnO by the first principles study. Acta Physica Sinica, 2011, 60(2): 027502. doi: 10.7498/aps.60.027502
    [15] Lin Zhu, Guo Zhi-You, Bi Yan-Jun, Dong Yu-Cheng. Ferromagnetism and the optical properties of Cu-doped AlN from first-principles study. Acta Physica Sinica, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [16] Ma Xin-Guo, Jiang Jian-Jun, Liang Pei. Theoretical study of native point defects on anatase TiO2 (101) surface. Acta Physica Sinica, 2008, 57(5): 3120-3125. doi: 10.7498/aps.57.3120
    [17] Hou Xing-Gang, Liu An-Dong. First principles calculations on anatase implanted by V+. Acta Physica Sinica, 2007, 56(8): 4896-4900. doi: 10.7498/aps.56.4896
    [18] Ma Xin-Guo, Tang Chao-Qun, Huang Jin-Qiu, Hu Lian-Feng, Xue Xia, Zhou Wen-Bin. First-principle calculations on the geometry and relaxation structure of anatase TiO2(101) surface. Acta Physica Sinica, 2006, 55(8): 4208-4213. doi: 10.7498/aps.55.4208
    [19] Song Hong-Qiang, Chen Yan-Xue, Ren Miao-Juan, Ji Gang. Study of ferromagnetic semiconductor films: Ti1-xCoxO2. Acta Physica Sinica, 2005, 54(1): 369-372. doi: 10.7498/aps.54.369
    [20] Song Gong-Bao, Liu Fu-Sheng, Peng Tong-Jiang, Liang Jing-Kui, Rao Guang-Hui. Influence of metal ions on the morphology and phase composition of titanium dioxide in TiO-2 muscovite nanocomposites*. Acta Physica Sinica, 2002, 51(12): 2793-2797. doi: 10.7498/aps.51.2793
Metrics
  • Abstract views:  6765
  • PDF Downloads:  311
  • Cited By: 0
Publishing process
  • Received Date:  18 September 2016
  • Accepted Date:  01 December 2016
  • Published Online:  05 March 2017

/

返回文章
返回
Baidu
map