搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大面积二维磁性材料的制备及居里温度调控

王海宇 刘英杰 寻璐璐 李竞 杨晴 田祺云 聂天晓 赵巍胜

引用本文:
Citation:

大面积二维磁性材料的制备及居里温度调控

王海宇, 刘英杰, 寻璐璐, 李竞, 杨晴, 田祺云, 聂天晓, 赵巍胜

Research progress of preparation of large-scale two-dimensional magnetic materials and manipulation of Curie temperature

Wang Hai-Yu, Liu Ying-Jie, Xun Lu-Lu, Li Jing, Yang Qing, Tian Qi-Yun, Nie Tian-Xiao, Zhao Wei-Sheng
PDF
HTML
导出引用
  • 当前, 尽管集成电路制造工艺水平不断提高, 但受到量子效应的限制, 器件尺寸的缩小使业界遇到了可靠性低、功耗大等瓶颈, 微电子行业延续了近50年的“摩尔定律”将难以持续. 2004年二维材料—石墨烯的问世, 为突破集成电路的功耗瓶颈带来了新的机遇. 由于低维特性, 二维材料在一层或者几层原子厚度中表现出丰富多样的电学、磁学、力学和光学等物理特性. 其中, 铁磁性在信息处理、存储等技术上有着广泛的应用价值. 然而, 目前在实验上合成的具有铁磁性的二维材料屈指可数. 同时, 在二维系统中长程有序磁态会因为热涨落的因素在有限温度内受到强烈的抑制, 无法在室温下保持铁磁性, 这为后续工作带来了不可忽视的限制与挑战. 因此实现二维磁性材料室温下的铁磁有序及其调控是现阶段需要解决的重大问题. 本综述详细地介绍了二维磁性材料的发展过程、制备方法及其优越性能, 并着重阐述了调控二维磁性材料居里温度的方法. 最后, 扼要地分析并展望了二维磁性材料在未来的应用前景.
    To date, despite the continuous improvement of integrated circuit manufacturing technology, it has been limited by quantum effects and the shrinking of device size has caused the industry to encounter bottlenecks such as low reliability and high power consumption. The “Moore’s Law” that has lasted for nearly 50 years in the microelectronics industry will not be sustainable. In 2004, the advent of graphene, a two-dimensional (2D) material, brought new opportunities to break through the power consumption bottleneck of integrated circuits. Due to the low dimensionality, 2D materials exhibit a variety of fasinatingly electrical, ferromagnetic, mechanical, and optical properties at an atomic level. Among them, ferromagnetism has a wide range of applications in information processing, magnetic memory and other technologies. However, only a few 2D ferromagnetic materials are successfully synthesized. Meanwhile, the magnetic long-range order will be strongly suppressed within a limited temperature range due to thermal fluctuations, and thus bringing non-ignorable limitations and challenges to subsequent work. Therefore, the realization and control of room-temperature ferromagnetism in 2D magnetic materials is the major concern at this stage. In light of the above, this review first introduces the development process, preparation methods and superior properties of 2D magnetic materials in detail, and then focuses on the methods of manipulating the Curie temperature of 2D magnetic material. Finally, we briefly give an outlook of the application prospects in the future.
      通信作者: 聂天晓, nietianxiao@buaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61774013)、国家重点研发计划(批准号: 2018YFB0407602)和国家科技重大专项(批准号: 2017ZX01032101)资助的课题
      Corresponding author: Nie Tian-Xiao, nietianxiao@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61774013), the National Key R&D Program of China (Grant No. 2018YFB0407602), and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2017ZX01032101)
    [1]

    Sato N, Xue F, White R M, Bi C, Wang S X 2018 Nat. Electron. 1 508Google Scholar

    [2]

    Chappert C, Fert A, Van Dau F N 2007 Nat. Mater. 6 813Google Scholar

    [3]

    Zhang D, Hou Y, Zeng L, Zhao W S 2019 IEEE Trans. Nanotechnol. 18 518Google Scholar

    [4]

    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020 Nature 579 62Google Scholar

    [5]

    Zhu J 2008 Proc. IEEE 96 1786Google Scholar

    [6]

    Liu L, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601

    [7]

    Sun J Z, Brown S L, Chen W, Delenia E A, Gaidis M C, Harms J, Hu G, Jiang X, Kilaru R, Kula W, Lauer G, Liu L Q, Murthy S, Nowak J, O’Sullivan E J, Parkin S S P, Robertazzi R P, Rice P M, Sandhu G, Topuria T, Worledge D C 2013 Phys. Rev. B 88 104426Google Scholar

    [8]

    Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S H 2004 Nat. Mater. 3 862Google Scholar

    [9]

    Wolf S A, Lu J, Stan M R, Chen E, Treger D M 2010 Proc. IEEE 98 2155Google Scholar

    [10]

    Van Den Brink A, Vermijs G, Solignac A, Koo J, Kohlhepp J T, Swagten H J M, Koopmans B 2016 Nat. Commun. 7 1

    [11]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [12]

    Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S 2004 Nature 430 870Google Scholar

    [13]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652Google Scholar

    [14]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [15]

    Mas-Ballesté R, Gómez-Navarro C, Gómez-Herrero J, Zamora F 2011 Nanoscale 3 20Google Scholar

    [16]

    Dirac P A M, Fowler R H 1926 Proc. R. Soc. London, Ser. A 112 661Google Scholar

    [17]

    Gong C, Zhang X 2019 Science 363 6428

    [18]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [19]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. U.S.A. 102 10451Google Scholar

    [20]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [21]

    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotechnol. 13 246Google Scholar

    [22]

    Alghamdi M, Lohmann M, Li J, Jothi P R, Shao Q, Aldosary M, Su T, Fokwa B P T, Shi J 2019 Nano Lett. 19 4400Google Scholar

    [23]

    Wang X, Tang J, Xia X, He C, Zhang J, Liu Y, Wan C, Fang C, Guo C, Yang W, Guang Y, Zhang X, Xu H, Wei J, Liao M, Lu X, Feng J, Li X, Peng Y, Wei H, Yang R, Shi D, Zhang X, Han Z, Zhang Z, Zhang G, Yu G, Han X 2019 Sci. Adv. 5 eaaw8904Google Scholar

    [24]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 6298

    [25]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [26]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [27]

    Si C, Zhou J, Sun Z 2015 ACS Appl. Mater. Interfaces 7 17510Google Scholar

    [28]

    Zhu Y, Kong X, Rhone T D, Guo H 2018 Phys. Rev. Mater. 2 81001Google Scholar

    [29]

    Du J, Xia C, Xiong W, Wang T, Jia Y, Li J 2017 Nanoscale 9 17585Google Scholar

    [30]

    He J, Li X, Lyu P, Nachtigall P 2017 Nanoscale 9 2246Google Scholar

    [31]

    Wang H, Liu Y, Wu P, Hou W, Jiang Y, Li X, Pandey C, Chen D, Yang Q, Wang H, Wei D, Lei N, Kang W, Wen L, Nie T X, Zhao W S, Wang K L 2020 ACS Nano 14 10045Google Scholar

    [32]

    Dong X J, You J Y, Gu B, Su G 2019 Phys. Rev. Appl. 12 14020Google Scholar

    [33]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [34]

    Wen Y, Liu Z, Zhang Y, Xia C, Zhai B, Zhang X, Zhai G, Shen C, He P, Cheng R, Yin L, Yao Y, Getaye Sendeku M, Wang Z, Ye X, Liu C, Jiang C, Shan C, Long Y, He J 2020 Nano Lett. 20 3130Google Scholar

    [35]

    Cai X, Luo Y, Liu B, Cheng H M 2018 Chem. Soc. Rev. 47 6224Google Scholar

    [36]

    Yi M, Shen Z 2015 J. Mater. Chem. A 3 11700Google Scholar

    [37]

    Zhang Y, Zhang L, Zhou C 2013 Acc. Chem. Res. 46 2329Google Scholar

    [38]

    Ji Q, Zhang Y, Zhang Y, Liu Z 2015 Chem. Soc. Rev. 44 2587Google Scholar

    [39]

    Mattevi C, Kim H, Chhowalla M 2011 J. Mater. Chem. 21 3324Google Scholar

    [40]

    Ago H, Ito Y, Mizuta N, Yoshida K, Hu B, Orofeo C M, Tsuji M, Ikeda K, Mizuno S 2010 ACS Nano 4 7407Google Scholar

    [41]

    Vo-Van C, Kimouche A, Reserbat-Plantey A, Fruchart O, Bayle-Guillemaud P, Bendiab N, Coraux J 2011 Appl. Phys. Lett. 98 181903Google Scholar

    [42]

    Coleman J N 2009 Adv. Funct. Mater. 19 3680Google Scholar

    [43]

    Coleman J N 2013 Acc. Chem. Res. 46 14Google Scholar

    [44]

    Cui X, Zhang C, Hao R, Hou Y 2011 Nanoscale 3 2118Google Scholar

    [45]

    Ojrzynska M, Wroblewska A, Judek J, Malolepszy A, Duzynska A, Zdrojek M 2020 Opt. Express 28 7274Google Scholar

    [46]

    Ciesielski A, Samorì P 2014 Chem. Soc. Rev. 43 381Google Scholar

    [47]

    Neave J H, Dobson P J, Joyce B A, Zhang J 1985 Appl. Phys. Lett. 47 100Google Scholar

    [48]

    May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z, Liu Y, Xu X, McGuire M A 2019 ACS Nano 13 4436Google Scholar

    [49]

    Dalitz R H, Peierls R E 1997 Selected Scientific Papers of Sir Rudolf Peierls (Vol. 1) (Singapore: World Scientific Publishing Co. Pte. Ltd) pp 9–225

    [50]

    Joyce G S 1969 J. Phys. C: Solid State Phys. 2 1531Google Scholar

    [51]

    Hohenberg P C 1967 Phys. Rev. 158 383Google Scholar

    [52]

    Ising E 1925 Z. Phys. 31 253Google Scholar

    [53]

    Kosterlitz J M, Thouless D J 1973 J. Phys. C: Solid State Phys. 6 1181Google Scholar

    [54]

    Berezinsky V L 1971 Sov. Phys. JETP 32 493

    [55]

    Liu S, Yuan X, Zou Y, Sheng Y, Huang C, Zhang E, Ling J, Liu Y, Wang W, Zhang C, Zou J, Wang K, Xiu F X 2017 npj 2D Mater. Appl. 1 30Google Scholar

    [56]

    Tan C, Lee J, Jung S G, Park T, Albarakati S, Partridge J, Field M R, McCulloch D G, Wang L, Lee C 2018 Nat. Commun. 9 1554

    [57]

    Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H, Xu X D 2018 Nat. Mater. 17 778Google Scholar

    [58]

    Kim D, Park S, Lee J, Yoon J, Joo S, Kim T, Min K, Park S Y, Kim C, Moon K W, Lee C, Hong J, Hwang C 2019 Nanotechnology 30 245701Google Scholar

    [59]

    Xu J, Phelan W A, Chien C L 2019 Nano Lett. 19 8250Google Scholar

    [60]

    Park S Y, Kim D S, Liu Y, Hwang J, Kim Y, Kim W, Kim J Y, Petrovic C, Hwang C, Mo S K, Kim H, Min B C, Koo H C, Chang J, Jang C, Choi J W, Ryu H 2020 Nano Lett. 20 95Google Scholar

    [61]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [62]

    Gibertini M, Koperski M, Morpurgo A F, Novoselov K S 2019 Nat. Nanotechnol. 14 408Google Scholar

    [63]

    Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X D 2018 Nat. Nanotechnol. 13 544Google Scholar

    [64]

    Jiang S, Li L, Wang Z, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [65]

    Lin X, Yang W, Wang K L, Zhao W 2019 Nat. Electron. 2 274Google Scholar

    [66]

    Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [67]

    O’Hara D J, Zhu T, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W, Kawakami R K 2018 Nano Lett. 18 3125Google Scholar

    [68]

    Wang Z, Zhang T, Ding M, Dong B, Li Y, Chen M, Li X, Huang J, Wang H, Zhao X, Li Y, Li D, Jia C, Sun L, Guo H, Ye Y, Sun D, Chen Y, Yang T, Zhang J, Ono S, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554Google Scholar

    [69]

    Verzhbitskiy I A, Kurebayashi H, Cheng H, Zhou J, Khan S, Feng Y P, Eda G 2020 Nat. Electron. 3 460Google Scholar

    [70]

    Seo J, Kim D Y, An E S, Kim K, Kim G Y, Hwang S Y, Kim D W, Jang B G, Kim H, Eom G, Seo S Y, Stania R, Muntwiler M, Lee J, Watanabe K, Taniguchi T, Jo Y J, Lee J, Min B Il, Jo M H, Yeom H W, Choi S Y, Shim J H, Kim J S 2020 Sci. Adv. 6 eaay8912Google Scholar

    [71]

    Yang M, Li Q, Chopdekar R V, Stan C, Cabrini S, Choi J W, Wang S, Wang T, Gao N, Scholl A, Tamura N, Hwang C, Wang F, Qiu Z Q 2020 Adv. Quantum Technol. 3 2000017Google Scholar

    [72]

    Li Q, Yang M, Gong C, Chopdekar R V, N’Diaye A T, Turner J, Chen G, Scholl A, Shafer P, Arenholz E, Schmid A K, Wang S, Liu K, Gao N, Admasu A S, Cheong S W, Hwang C, Li J, Wang F, Zhang X, Qiu Z Q 2018 Nano Lett. 18 5974Google Scholar

    [73]

    Liu S, Yang K, Liu W, Zhang E, Li Z, Zhang X, Liao Z, Zhang W, Sun J, Yang Y, Gao H, Huang C, Ai L, Wong P K J, Wee A T S, N’Diaye A T, Morton S A, Kou X, Zou J, Xu Y, Wu H, Xiu F X 2019 Natl. Sci. Rev. 7 745

    [74]

    Dong X J, You J Y, Zhang Z, Gu B, Su G 2020 Phys. Rev. B 102 144443Google Scholar

    [75]

    Kou X, Fan Y, Wang K L 2019 J. Phys. Chem. Solids 128 2Google Scholar

    [76]

    Yu J, Wu W, Wang Y, Zhu K, Zeng X, Chen Y, Liu Y, Yin C, Cheng S, Lai Y, He K, Xue Q 2020 Appl. Phys. Lett. 116 141603Google Scholar

    [77]

    Katmis F, Lauter V, Nogueira F S, Assaf B A, Jamer M E, Wei P, Satpati B, Freeland J W, Eremin I, Heiman D, Jarillo-Herrero P, Moodera J S 2016 Nature 533 513Google Scholar

    [78]

    Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D, Morpurgo A F 2018 Nano Lett. 18 4303Google Scholar

    [79]

    Albarakati S, Tan C, Chen Z J, Partridge J G, Zheng G, Farrar L, Mayes E L H, Field M R, Lee C, Wang Y, Xiong Y, Tian M, Xiang F, Hamilton A R, Tretiakov O A, Culcer D, Zhao Y J, Wang L 2019 Sci. Adv. 5 eaaw0409Google Scholar

  • 图 1  单层石墨烯机械剥离流程[36]

    Fig. 1.  Mechanical peeling process of single-layer graphene[36].

    图 2  (a) 分子束外延生长腔示意图; (b) 薄膜生长过程示意图

    Fig. 2.  (a) Schematic diagram of molecular beam epitaxial growth cavity; (b) schematic diagram of film growth process.

    图 3  (a) Cr2Ge2Te6的原子结构视图[25], 其中蓝色、黄色和橘色的球分别代表Cr, Ge和 Te原子. (b) 单层CrI3的平面内原子结构视图, 其中灰色和紫色的球分别代表Cr和I原子[26]. (c) Fe3GeTe2的面内和面外原子结构视图, 其中黄色、紫色和绿色的球分别代表Fe, Ge和 Te原子[55]

    Fig. 3.  (a) Atomic structure view of Cr2Ge2Te6. The blue, yellow, and orange balls represent Cr, Ge, and Te atoms, respectively[25]. (b) In-plane atomic structure view of a single layer of CrI3. The gray and purple balls represent Cr and I atoms, respectively[26]. (c) In-plane and out-of-plane atomic structure views of Fe3GeTe2. The yellow, purple and green balls represent Fe, Ge and Te atoms, respectively[55].

    图 4  (a), (b) FGT薄膜的居里温度随厚度的依赖关系[56,57]; (c)不同温度下30 nm FGT/O-FGT薄膜器件的反常霍尔电阻与垂直磁场的关系, 其中在90 K温度下出现负的剩磁[58]; (d) FGT薄膜的能斯特信号横向电压与垂直磁场的关系, 温度梯度分别为$\nabla {T_x} = 1.3\;{\rm{K}} \cdot {{\text{μ} }}{{\rm{m}}^{ - 1}}$$\nabla {T_x} = - 1.1\;{\rm{K}} \cdot {\text{μ} }{{\rm{m}}^{ - 1}}$[59]; (e) Fe3–xGeTe2薄膜的磁晶各向异性能与磁化强度随掺杂浓度变化的关系[60]

    Fig. 4.  (a), (b) Thickness-dependent Curie temperature of FGT films for critical analysis[56,57]; (c) relationship between the anomalous Hall resistance of 30 nm thick FGT/O-FGT device and the perpendicular magnetic field under different temperatures, where the negative remanence magnetization appears at 90 K[58]; (d) relationship between the transverse voltage of the Nernst signal of FGT film and the perpendicular magnetic field with temperature gradient of $\nabla {T_x} = 1.3\;{\rm{K}} \cdot {\text{μ} }{{\rm{m}}^{ - 1}}$ and $\nabla {T_x} = - 1.1\;{\rm{K}} \cdot {\text{μ} }{{\rm{m}}^{ - 1}}$, respectively[59]; (e) change of the magnetocrystalline anisotropy of Fe3–xGeTe2 film and the magnetization with doping concentration[60]

    图 5  (a) 在μ0H = 0.78 T时, RMCD强度与顶栅电压和背栅电压的关系, 可以看出在双层CrI3中利用静电门控制的磁性转变[63]; (b) 4 K时双层CrI3中栅极电压-掺杂密度-磁场相位图, 可以看出双层CrI3中利用电子掺杂控制的磁性转变[64]

    Fig. 5.  (a) RMCD signals under the top gate and back gate voltage at μ0H = 0.78 T. Magnetic transition can be controlled by electrostatic gate in double-layer CrI3[63]. (b) Gate voltage-electron doping density-magnetic field phase diagram in double layer CrI3 at 4 K. Magnetic transition can be controlled by electron doping in double-layer CrI3[64].

    图 6  (a) HOPG上单层VSe2在300 K处的面内和面外磁滞回线[66]; (b) MnSex在300 K处的面外磁滞回线[67]

    Fig. 6.  (a) In-plane and out-of-plane hysteresis loops of a single layer of VSe2 on HOPG at 300 K[66]; (b) out-of-plane hysteresis loops of MnSex at 300 K[67].

    图 7  (a) CGT薄膜在不同栅电压下的场效应曲线[68]; (b)静电掺杂的CGT薄膜器件在不同栅电压下居里温度的变化[69]; (c)栅电压调控的四层FGT薄膜的霍尔曲线[33]

    Fig. 7.  (a) Field-effect Ids curves of CGT film[68]; (b) variation of Curie temperature of CGT device with electron doping under different voltages[69]; (c) gate-voltage controlled Hall curves of four-layer FGT flake[33].

    图 8  (a), (b), (c) 改变Fe的浓度调控FGT薄膜居里温度的变化[55,48,70]; (d) 改变Ga的曝光时间调控FGT薄膜居里温度的变化[71]

    Fig. 8.  (a), (b), (c) Changing the concentration of Fe to regulate Curie temperature of FGT films[55,48,70]; (d) exposure time of Ga-controlled Curie temperature of FGT film[71].

    图 9  (a) 图形诱导FGT薄膜铁磁性的变化[72]; (b) 应变诱导CGT薄膜居里温度的变化[32]

    Fig. 9.  (a) Pattern induces the variation of ferromagnetism of FGT film[72]; (b) strain induces the variation of Curie temperature of CGT film[32].

    图 10  (a) 反铁磁MnTe增强Fe3GeTe2铁磁性[55]; (b) 反铁磁CrSb近邻效应诱导居里温度的变化[73]; (c) EuS/Bi2Se3界面增强居里温度[77]

    Fig. 10.  (a) Antiferromagnetic MnTe induced Fe3GeTe2 ferromagnetism enhancement[55]; (b) antiferromagnetic CrSb proximity-induced Curie temperature increase[73]; (c) EuS/Bi2Se3 interfacial-enhanced Curie temperature[77].

    图 11  (a) Bi2Te3(8)/FGT(5)异质结构随温度变化的电阻率; (b), (c) 不同温度下的面外反常霍尔曲线; (d) 不同温度下的面内反常霍尔曲线; (e) 阿罗特图来精准表征居里温度; (f) 300 K下异质结构的磁光克尔信号; (g), (h), (i) 不同厚度下异质结构的居里温度表征[31]

    Fig. 11.  (a) Resistivity of Bi2Te3(8)/FGT(5) heterostructure with the variation of temperature; (b), (c) out-of-plane anomalous Hall curves under different temperatures; (d) in-plane anomalous Hall curves under different temperatures; (e) Arrott plot for characterizing the Curie temperature; (f) magneto-optical Kerr signal of the heterostructure at 300 K; (g), (h), (i) thickness-dependent Curie temperature[31].

    表 1  部分二维磁性材料的汇总[65]

    Table 1.  Summary of some two-dimensional (2D) magnetic materials[65].

    2D材料/异质结构$ {T_{\rm{c}}}/K $计算/制造方法
    VSe2/MoS2和VSe2/HOPE
    vdW heterostructure
    > 300MBE
    VS2/WS2 vdW heterostructure487DFT
    VS2/MoS2 vdW heterostructure485DFT
    VTe2128DFT
    MnSe2/GaSe和MnSe2/SnSe2
    vdW heterostructure
    > 300MBE
    MnSe2286DFT
    MnS2253DFT
    MnI215DFT
    NiI263DFT
    CrSCI150DFT
    CrSBr160DFT
    CrSI170DFT
    CrI345机械剥离法
    CrI3161DFT
    CrI395DFT
    CrCl349DFT
    CrBr373DFT
    CrF341DFT
    CrTe371DFT
    NiCl3400DFT
    CrGeTe330机械剥离法
    CrGeTe3314DFT
    CrGeTe3130DFT
    CrSiTe3214DFT
    CrSiTe390DFT
    CrSiTe3170DFT
    Cr3Te42057DFT
    Fe3GeTe220—300机械剥离法
    Fe3GeTe2270—300机械剥离法
    Cr3C > 300DFT
    下载: 导出CSV

    表 2  FGT和Bi2Te3/FGT磁性相互交换作用

    Table 2.  Magnetic interaction of FGT and Bi2Te3/FGT.

    E0EFM
    /eV
    EAFM-In
    /eV
    EAFM-L
    /eV
    J1
    /meV
    J2
    /meV
    J3
    /meV
    Pure FGT0–11.441–10.703–11.2723.675–1.8170.663
    Bi2Te3/FGT0–16.400–15.196–15.7425.906–2.9231.064
    下载: 导出CSV
    Baidu
  • [1]

    Sato N, Xue F, White R M, Bi C, Wang S X 2018 Nat. Electron. 1 508Google Scholar

    [2]

    Chappert C, Fert A, Van Dau F N 2007 Nat. Mater. 6 813Google Scholar

    [3]

    Zhang D, Hou Y, Zeng L, Zhao W S 2019 IEEE Trans. Nanotechnol. 18 518Google Scholar

    [4]

    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020 Nature 579 62Google Scholar

    [5]

    Zhu J 2008 Proc. IEEE 96 1786Google Scholar

    [6]

    Liu L, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601

    [7]

    Sun J Z, Brown S L, Chen W, Delenia E A, Gaidis M C, Harms J, Hu G, Jiang X, Kilaru R, Kula W, Lauer G, Liu L Q, Murthy S, Nowak J, O’Sullivan E J, Parkin S S P, Robertazzi R P, Rice P M, Sandhu G, Topuria T, Worledge D C 2013 Phys. Rev. B 88 104426Google Scholar

    [8]

    Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S H 2004 Nat. Mater. 3 862Google Scholar

    [9]

    Wolf S A, Lu J, Stan M R, Chen E, Treger D M 2010 Proc. IEEE 98 2155Google Scholar

    [10]

    Van Den Brink A, Vermijs G, Solignac A, Koo J, Kohlhepp J T, Swagten H J M, Koopmans B 2016 Nat. Commun. 7 1

    [11]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [12]

    Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S 2004 Nature 430 870Google Scholar

    [13]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652Google Scholar

    [14]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [15]

    Mas-Ballesté R, Gómez-Navarro C, Gómez-Herrero J, Zamora F 2011 Nanoscale 3 20Google Scholar

    [16]

    Dirac P A M, Fowler R H 1926 Proc. R. Soc. London, Ser. A 112 661Google Scholar

    [17]

    Gong C, Zhang X 2019 Science 363 6428

    [18]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [19]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. U.S.A. 102 10451Google Scholar

    [20]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [21]

    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotechnol. 13 246Google Scholar

    [22]

    Alghamdi M, Lohmann M, Li J, Jothi P R, Shao Q, Aldosary M, Su T, Fokwa B P T, Shi J 2019 Nano Lett. 19 4400Google Scholar

    [23]

    Wang X, Tang J, Xia X, He C, Zhang J, Liu Y, Wan C, Fang C, Guo C, Yang W, Guang Y, Zhang X, Xu H, Wei J, Liao M, Lu X, Feng J, Li X, Peng Y, Wei H, Yang R, Shi D, Zhang X, Han Z, Zhang Z, Zhang G, Yu G, Han X 2019 Sci. Adv. 5 eaaw8904Google Scholar

    [24]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 6298

    [25]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [26]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [27]

    Si C, Zhou J, Sun Z 2015 ACS Appl. Mater. Interfaces 7 17510Google Scholar

    [28]

    Zhu Y, Kong X, Rhone T D, Guo H 2018 Phys. Rev. Mater. 2 81001Google Scholar

    [29]

    Du J, Xia C, Xiong W, Wang T, Jia Y, Li J 2017 Nanoscale 9 17585Google Scholar

    [30]

    He J, Li X, Lyu P, Nachtigall P 2017 Nanoscale 9 2246Google Scholar

    [31]

    Wang H, Liu Y, Wu P, Hou W, Jiang Y, Li X, Pandey C, Chen D, Yang Q, Wang H, Wei D, Lei N, Kang W, Wen L, Nie T X, Zhao W S, Wang K L 2020 ACS Nano 14 10045Google Scholar

    [32]

    Dong X J, You J Y, Gu B, Su G 2019 Phys. Rev. Appl. 12 14020Google Scholar

    [33]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [34]

    Wen Y, Liu Z, Zhang Y, Xia C, Zhai B, Zhang X, Zhai G, Shen C, He P, Cheng R, Yin L, Yao Y, Getaye Sendeku M, Wang Z, Ye X, Liu C, Jiang C, Shan C, Long Y, He J 2020 Nano Lett. 20 3130Google Scholar

    [35]

    Cai X, Luo Y, Liu B, Cheng H M 2018 Chem. Soc. Rev. 47 6224Google Scholar

    [36]

    Yi M, Shen Z 2015 J. Mater. Chem. A 3 11700Google Scholar

    [37]

    Zhang Y, Zhang L, Zhou C 2013 Acc. Chem. Res. 46 2329Google Scholar

    [38]

    Ji Q, Zhang Y, Zhang Y, Liu Z 2015 Chem. Soc. Rev. 44 2587Google Scholar

    [39]

    Mattevi C, Kim H, Chhowalla M 2011 J. Mater. Chem. 21 3324Google Scholar

    [40]

    Ago H, Ito Y, Mizuta N, Yoshida K, Hu B, Orofeo C M, Tsuji M, Ikeda K, Mizuno S 2010 ACS Nano 4 7407Google Scholar

    [41]

    Vo-Van C, Kimouche A, Reserbat-Plantey A, Fruchart O, Bayle-Guillemaud P, Bendiab N, Coraux J 2011 Appl. Phys. Lett. 98 181903Google Scholar

    [42]

    Coleman J N 2009 Adv. Funct. Mater. 19 3680Google Scholar

    [43]

    Coleman J N 2013 Acc. Chem. Res. 46 14Google Scholar

    [44]

    Cui X, Zhang C, Hao R, Hou Y 2011 Nanoscale 3 2118Google Scholar

    [45]

    Ojrzynska M, Wroblewska A, Judek J, Malolepszy A, Duzynska A, Zdrojek M 2020 Opt. Express 28 7274Google Scholar

    [46]

    Ciesielski A, Samorì P 2014 Chem. Soc. Rev. 43 381Google Scholar

    [47]

    Neave J H, Dobson P J, Joyce B A, Zhang J 1985 Appl. Phys. Lett. 47 100Google Scholar

    [48]

    May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z, Liu Y, Xu X, McGuire M A 2019 ACS Nano 13 4436Google Scholar

    [49]

    Dalitz R H, Peierls R E 1997 Selected Scientific Papers of Sir Rudolf Peierls (Vol. 1) (Singapore: World Scientific Publishing Co. Pte. Ltd) pp 9–225

    [50]

    Joyce G S 1969 J. Phys. C: Solid State Phys. 2 1531Google Scholar

    [51]

    Hohenberg P C 1967 Phys. Rev. 158 383Google Scholar

    [52]

    Ising E 1925 Z. Phys. 31 253Google Scholar

    [53]

    Kosterlitz J M, Thouless D J 1973 J. Phys. C: Solid State Phys. 6 1181Google Scholar

    [54]

    Berezinsky V L 1971 Sov. Phys. JETP 32 493

    [55]

    Liu S, Yuan X, Zou Y, Sheng Y, Huang C, Zhang E, Ling J, Liu Y, Wang W, Zhang C, Zou J, Wang K, Xiu F X 2017 npj 2D Mater. Appl. 1 30Google Scholar

    [56]

    Tan C, Lee J, Jung S G, Park T, Albarakati S, Partridge J, Field M R, McCulloch D G, Wang L, Lee C 2018 Nat. Commun. 9 1554

    [57]

    Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H, Xu X D 2018 Nat. Mater. 17 778Google Scholar

    [58]

    Kim D, Park S, Lee J, Yoon J, Joo S, Kim T, Min K, Park S Y, Kim C, Moon K W, Lee C, Hong J, Hwang C 2019 Nanotechnology 30 245701Google Scholar

    [59]

    Xu J, Phelan W A, Chien C L 2019 Nano Lett. 19 8250Google Scholar

    [60]

    Park S Y, Kim D S, Liu Y, Hwang J, Kim Y, Kim W, Kim J Y, Petrovic C, Hwang C, Mo S K, Kim H, Min B C, Koo H C, Chang J, Jang C, Choi J W, Ryu H 2020 Nano Lett. 20 95Google Scholar

    [61]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [62]

    Gibertini M, Koperski M, Morpurgo A F, Novoselov K S 2019 Nat. Nanotechnol. 14 408Google Scholar

    [63]

    Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X D 2018 Nat. Nanotechnol. 13 544Google Scholar

    [64]

    Jiang S, Li L, Wang Z, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [65]

    Lin X, Yang W, Wang K L, Zhao W 2019 Nat. Electron. 2 274Google Scholar

    [66]

    Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [67]

    O’Hara D J, Zhu T, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W, Kawakami R K 2018 Nano Lett. 18 3125Google Scholar

    [68]

    Wang Z, Zhang T, Ding M, Dong B, Li Y, Chen M, Li X, Huang J, Wang H, Zhao X, Li Y, Li D, Jia C, Sun L, Guo H, Ye Y, Sun D, Chen Y, Yang T, Zhang J, Ono S, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554Google Scholar

    [69]

    Verzhbitskiy I A, Kurebayashi H, Cheng H, Zhou J, Khan S, Feng Y P, Eda G 2020 Nat. Electron. 3 460Google Scholar

    [70]

    Seo J, Kim D Y, An E S, Kim K, Kim G Y, Hwang S Y, Kim D W, Jang B G, Kim H, Eom G, Seo S Y, Stania R, Muntwiler M, Lee J, Watanabe K, Taniguchi T, Jo Y J, Lee J, Min B Il, Jo M H, Yeom H W, Choi S Y, Shim J H, Kim J S 2020 Sci. Adv. 6 eaay8912Google Scholar

    [71]

    Yang M, Li Q, Chopdekar R V, Stan C, Cabrini S, Choi J W, Wang S, Wang T, Gao N, Scholl A, Tamura N, Hwang C, Wang F, Qiu Z Q 2020 Adv. Quantum Technol. 3 2000017Google Scholar

    [72]

    Li Q, Yang M, Gong C, Chopdekar R V, N’Diaye A T, Turner J, Chen G, Scholl A, Shafer P, Arenholz E, Schmid A K, Wang S, Liu K, Gao N, Admasu A S, Cheong S W, Hwang C, Li J, Wang F, Zhang X, Qiu Z Q 2018 Nano Lett. 18 5974Google Scholar

    [73]

    Liu S, Yang K, Liu W, Zhang E, Li Z, Zhang X, Liao Z, Zhang W, Sun J, Yang Y, Gao H, Huang C, Ai L, Wong P K J, Wee A T S, N’Diaye A T, Morton S A, Kou X, Zou J, Xu Y, Wu H, Xiu F X 2019 Natl. Sci. Rev. 7 745

    [74]

    Dong X J, You J Y, Zhang Z, Gu B, Su G 2020 Phys. Rev. B 102 144443Google Scholar

    [75]

    Kou X, Fan Y, Wang K L 2019 J. Phys. Chem. Solids 128 2Google Scholar

    [76]

    Yu J, Wu W, Wang Y, Zhu K, Zeng X, Chen Y, Liu Y, Yin C, Cheng S, Lai Y, He K, Xue Q 2020 Appl. Phys. Lett. 116 141603Google Scholar

    [77]

    Katmis F, Lauter V, Nogueira F S, Assaf B A, Jamer M E, Wei P, Satpati B, Freeland J W, Eremin I, Heiman D, Jarillo-Herrero P, Moodera J S 2016 Nature 533 513Google Scholar

    [78]

    Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D, Morpurgo A F 2018 Nano Lett. 18 4303Google Scholar

    [79]

    Albarakati S, Tan C, Chen Z J, Partridge J G, Zheng G, Farrar L, Mayes E L H, Field M R, Lee C, Wang Y, Xiong Y, Tian M, Xiang F, Hamilton A R, Tretiakov O A, Culcer D, Zhao Y J, Wang L 2019 Sci. Adv. 5 eaaw0409Google Scholar

  • [1] 弭孟娟, 于立轩, 肖寒, 吕兵兵, 王以林. 有机阳离子插层调控二维反铁磁MPX3磁性能.  , 2024, 73(5): 057501. doi: 10.7498/aps.73.20232010
    [2] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红. 二维钒掺杂Cr2S3纳米片的生长与磁性研究.  , 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231229
    [3] 熊宜浓, 吴闯文, 任传童, 孟德全, 陈是位, 梁世恒. 基于二维磁性材料的自旋轨道力矩研究进展.  , 2024, 73(1): 017502. doi: 10.7498/aps.73.20231244
    [4] 刘冰心, 李宗良. CrO2单层: 一种兼具高居里温度和半金属特性的二维铁磁体.  , 2024, 73(10): 106102. doi: 10.7498/aps.73.20240246
    [5] 孙敬淇, 吴绪才, 阙志雄, 张卫兵. 基于材料组分信息的高居里温度铁磁材料预测.  , 2023, 72(18): 180202. doi: 10.7498/aps.72.20230382
    [6] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红. 二维钒掺杂Cr2S3纳米片的生长与磁性研究.  , 2023, 72(24): 247501. doi: 10.7498/aps.72.20231229
    [7] 刘南舒, 王聪, 季威. 磁性二维材料的近期研究进展.  , 2022, 71(12): 127504. doi: 10.7498/aps.71.20220301
    [8] 张浩杰, 张茹菲, 傅立承, 顾轶伦, 智国翔, 董金瓯, 赵雪芹, 宁凡龙. 一种具有“1111”型结构的新型稀磁半导体(La1–xSrx)(Zn1–xMnx)SbO.  , 2021, 70(10): 107501. doi: 10.7498/aps.70.20201966
    [9] 黄玉昊, 张贵涛, 王如倩, 陈乾, 王金兰. 二维双金属铁磁半导体CrMoI6的电子结构与稳定性.  , 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [10] 张颂歌, 陈雨彤, 王宁, 柴扬, 龙根, 张广宇. 二维CrI3晶体的磁性测量与调控.  , 2021, 70(12): 127504. doi: 10.7498/aps.70.20202197
    [11] 肖寒, 弭孟娟, 王以林. 二维磁性材料及多场调控研究进展.  , 2021, 70(12): 127503. doi: 10.7498/aps.70.20202204
    [12] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控.  , 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [13] 王芳, 汪金芝, 冯唐福, 孙仁兵, 余盛. La(Fe, Si)13化合物的居里温度机制.  , 2014, 63(12): 127501. doi: 10.7498/aps.63.127501
    [14] 郝延明, 王玲玲, 严达利, 安力群. 电弧炉制备的Sm2Fe17-xCrx化合物的结构与磁性.  , 2009, 58(10): 7222-7226. doi: 10.7498/aps.58.7222
    [15] 郝延明, 严达利, 傅斌, 王立群, 郝小鹏, 王宝义. Tb2AlFe16-xMnx化合物的结构、磁性及正电子湮没谱研究.  , 2009, 58(9): 6494-6499. doi: 10.7498/aps.58.6494
    [16] 吴文霞, 郭永权, 李安华, 李 卫. Nd2Fe14B的价电子结构分析和磁性计算.  , 2008, 57(4): 2486-2492. doi: 10.7498/aps.57.2486
    [17] 张继业, 骆 军, 梁敬魁, 纪丽娜, 刘延辉, 李静波, 饶光辉. 赝二元固溶体TbGa1-xGex(0≤x≤0.4)的结构与磁性.  , 2008, 57(10): 6482-6487. doi: 10.7498/aps.57.6482
    [18] 申 晔, 邢怀中, 俞建国, 吕 斌, 茅惠兵, 王基庆. 极化诱导的内建电场对Mn δ掺杂的GaN/AlGaN量子阱居里温度的调制.  , 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [19] 刘喜斌, 沈保根. Mn5Ge2.7M0.3 (M=Ga,Al,Sn) 化合物的磁性和磁熵变.  , 2005, 54(12): 5884-5889. doi: 10.7498/aps.54.5884
    [20] 江 阔, 李合非, 马 文, 宫声凯. Mn的价态对La0.8Ba0.2MnO3电磁性能的影响.  , 2005, 54(9): 4374-4378. doi: 10.7498/aps.54.4374
计量
  • 文章访问数:  15976
  • PDF下载量:  1363
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-29
  • 修回日期:  2021-02-25
  • 上网日期:  2021-06-18
  • 刊出日期:  2021-06-20

/

返回文章
返回
Baidu
map