Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study on levitation control of particles and liquid droplets by vortex acoustic field enhanced by subwavelength pipe

Chen Cong Zhang Ruo-Qin Li Feng Li Zhi-Yuan

Citation:

Experimental study on levitation control of particles and liquid droplets by vortex acoustic field enhanced by subwavelength pipe

Chen Cong, Zhang Ruo-Qin, Li Feng, Li Zhi-Yuan
PDF
HTML
Get Citation
  • The nonlinear propagation of acoustic waves in a medium generates acoustic radiation force. Using acoustic radiation force, particles and liquid droplets in gases can be levitated and manipulated. Acoustic levitation techniques can manipulate larger objects in the medium without contact, and therefore have been widely used in chemical analysis, droplet dynamics, and bioreactors. The acoustic levitation researches mainly focus on manipulating particles and droplets in an open environment, which provides flexibility in its use. However, this approach has limitations in terms of its efficiency in utilizing acoustic field energy. In this work we propose a concept of subwavelength pipe-enhanced acoustic tweezers, in which the acoustic field is used to manipulate expanded polystyrene particles (EPS) and droplets inside an acoustic pipe with an inner diameter smaller than the wavelength. In this work, we use four small transducers to excite a single low-order mode of a circular waveguide and its simplex state, and we also use the vortex sound field generated inside the waveguide to levitate and manipulate expanded polystyrene particle and droplet in the air. Compared with previous work in an open environment, we significantly enhance the acoustic radiation force by means of the acoustic resonance effect of the subwavelength duct, with both radial and axial suspension force magnitude increasing considerably. Similar concepts of subwavelength optical waveguides and resonant cavities and their effectiveness were already well known and widely used in the field of optics. In this work we first explain theoretically the basis for the design of subwavelength pipe-enhanced acoustic tweezer dimensions. Then, we point out in simulation that the pipe-enhanced acoustic tweezers, compared with the open environment acoustic tweezers, have strong sound field gradient distribution and acoustic radiation force distribution in the pipe. This conclusion is demonstrated experimentally. Finally, the manipulation of droplet and particle levitation and rotation in subwavelength-pipe-enhanced acoustic tweezers is systematically carried out. In this work we introduce the concept of subwavelength acoustic pipe for acoustic manipulation, which is expected to deepen the physical understanding of the interaction between acoustic fields and matter, and to develop new miniaturized acoustic manipulation devices for levitating particles and droplets.
      Corresponding author: Li Zhi-Yuan, phzyli@scut.edu.cn
    [1]

    Brandt E H 2001 Nature 413 474Google Scholar

    [2]

    Wu J 1991 J. Acoust. l Soc. Am. 89 2140Google Scholar

    [3]

    朱纪霖, 高东宝, 曾新吾 2021 70 214302Google Scholar

    Zhu J L, Gao D B, Zeng X W 2021 Acta Phys. Sin. 70 214302Google Scholar

    [4]

    Xie W J, Cao C D, Lü Y J, Hong Z Y, Wei B 2006 Appl. Phys. Lett. 89 214102Google Scholar

    [5]

    齐绍富, 蔡飞燕, 田振, 黄先玉, 周娟, 王金萍, 李文成, 郑海荣, 邓科 2023 72 024301Google Scholar

    Qi S F, Cai F Y, Tian Z, Huang X Y, Zhou J, Wang J P, Li W C, Zheng H R, Deng K 2023 Acta Phys. Sin. 72 024301Google Scholar

    [6]

    Ozcelik A, Rufo J, Guo F, Gu Y, Li P, Lata J, Huang T J 2018 Nat. Methods 15 1021Google Scholar

    [7]

    Santesson S, Nilsson S 2004 Anal. Bioanal. Chem. 378 1704Google Scholar

    [8]

    Jin H, Wang W, Liu F, Yu Z, Chang H, Li K, Gong J 2017 Int. J. Multiphase Flow 94 44Google Scholar

    [9]

    Foresti D, Poulikakos D 2014 Phys. Rev. Lett. 112 024301Google Scholar

    [10]

    Bouyer C, Chen P, Güven S, Demirtaş T T, Nieland T J F, Padilla F, Demirci U 2016 Adv. Mater. 28 161Google Scholar

    [11]

    Zhang R, Guo H, Deng W, Huang X, Li F, Lu J, Liu Z 2020 Appl. Phys. Lett. 116 123503Google Scholar

    [12]

    Ahmed D, Ozcelik A, Bojanala N, Nama N, Upadhyay A, Chen Y, Hanna-Rose W, Huang T J 2016 Nat. Commun. 7 11085Google Scholar

    [13]

    Priego-Capote F, de Castro L 2006 TrAC Trends Anal. Chem. 25 856Google Scholar

    [14]

    Xie W J, Cao C D, Lu Y J, Wei B 2002 Phys. Rev. Lett. 89 104304Google Scholar

    [15]

    Nordine P C, Merkley D, Sickel J, Finkelman S, Telle R, Kaiser A, Prieler R 2012 Rev. Sci. Instrum. 83 125107Google Scholar

    [16]

    Yan N, Hong Z Y, Geng D L, Wei B 2015 Appl. Phys. A 120 207Google Scholar

    [17]

    Anilkumar A V, Lee C P, Wang T G 1993 Phy. Fluids A:Fluid Dyn. 5 2763Google Scholar

    [18]

    Hong Z Y, Yin J F, Zhai W, Yan N, Wang W L, Zhang J, Drinkwater B W 2017 Sci. Rep. 7 7093Google Scholar

    [19]

    Liu P, Li H, Zhou Z, Pei Y 2022 Appl. Phys. Lett. 120 222202Google Scholar

    [20]

    Watanabe A, Hasegawa K, Abe Y 2018 Sci. Rep. 8 10221Google Scholar

    [21]

    李鑫鹏, 曹睿杰, 李铭, 郭各朴, 李禹志, 马青玉 2022 71 204304Google Scholar

    Li X P, Cao R J, Li M, Guo G P, Li Y Z, Ma Q Y 2022 Acta Phys. Sin. 71 204304Google Scholar

    [22]

    陈心成 2019 硕士学位论文 (武汉: 华中科技大学)

    Chen X C 2019 M. S. Thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [23]

    Gor’kov L P 1962 Sov. Phys. Dokl. 6 773

  • 图 1  亚波长管道增强型空气声镊 (a) 亚波长管道增强型空气声镊的尺寸, D1是管内壁内径, D2是超声入射通道直径, H1是超声入射通道的长度; (b) 亚波长管道增强型空气声镊操控实验示意图

    Figure 1.  Subwavelength pipe-enhanced acoustic air tweezers: (a) Dimension of subwavelength pipe-enhanced acoustic air tweezers, D1 is the inner diameter of the tube wall, D2 is the diameter of the ultrasonic incidence channel, and H1 is the length of the ultrasonic incidence channel; (b) schematic diagram of subwavelength pipe-enhanced acoustic air tweezers manipulation experiment.

    图 2  开放环境型声镊和亚波长管道增强型的声镊声场和声辐射力分布 (a)开放环境型声镊XY截面上声场强度分布; (b) 开放环境型声镊ZY截面上声场强度分布; (c) 亚波长管道增强型声镊XY截面上声场强度分布; (d) 亚波长管道增强型声镊ZY截面上声场强度分布; (e) 2种声镊在X轴上的声辐射力X分量分布; (f) 2种声镊在Z轴上的声辐射力Z分量分布

    Figure 2.  Sound field and acoustic radiation force distributions of open environment tweezers and subwavelength pipe-enhanced tweezers: (a) Sound field intensity distribution on XY cross-section of open environment tweezers; (b) sound field intensity distribution on ZY cross-section of open environment tweezers; (c) sound field intensity distribution on XY cross-section of subwavelength pipe-enhanced tweezers; (d) sound field intensity distribution on ZY cross-section of subwavelength pipe-enhanced tweezers; (e) X-component distribution of acoustic radiation force on X-axis of both tweezers; (f) Z-component distribution of acoustic radiation force on Z-axis of both tweezers.

    图 3  十字管道增强型声镊和开放环境型声镊悬浮效果对比

    Figure 3.  Comparison of the suspension effect of cross-type pipe enhanced acoustic tweezers and open environment acoustic tweezers

    图 4  亚波长管道增强型声镊微粒和液滴操控实验结果 (a) 亚波长管道增强型声镊相位分布图; (b)控制EPS小球旋转运动的效果图; (c)控制EPS小球静止悬浮的效果图; (d)悬浮液滴的效果图

    Figure 4.  Experimental results of particle and droplet manipulation with subwavelength pipe-enhanced acoustic tweezers: (a) Phase distribution of subwavelength pipe-enhanced acoustic tweezers; (b) effect of controlling rotational motion of EPS spheres; (c) effect of controlling static suspension of EPS spheres; (d) effect of suspending droplet.

    图 5  EPS小球旋转情况 (a)使用高速CCD相机拍摄EPS小球旋转; (b) EPS小球旋转角度和时间的关系; (c) EPS小球旋转速度和换能器驱动电压的关系

    Figure 5.  Rotation of EPS ball: (a) Photograph of EPS ball rotating obtained by high-speed CCD camera; (b) relationship between time and rotation angle of EPS ball; (c) relationship between rotation speed of EPS ball and driving voltage of transducer.

    表 1  材料声学参数

    Table 1.  Material acoustic parameters.

    参数空气发泡塑料
    密度/(kg·m–3)1.29100
    纵波声速/(m·s–1)343820
    横波声速/(m·s–1)550
    DownLoad: CSV
    Baidu
  • [1]

    Brandt E H 2001 Nature 413 474Google Scholar

    [2]

    Wu J 1991 J. Acoust. l Soc. Am. 89 2140Google Scholar

    [3]

    朱纪霖, 高东宝, 曾新吾 2021 70 214302Google Scholar

    Zhu J L, Gao D B, Zeng X W 2021 Acta Phys. Sin. 70 214302Google Scholar

    [4]

    Xie W J, Cao C D, Lü Y J, Hong Z Y, Wei B 2006 Appl. Phys. Lett. 89 214102Google Scholar

    [5]

    齐绍富, 蔡飞燕, 田振, 黄先玉, 周娟, 王金萍, 李文成, 郑海荣, 邓科 2023 72 024301Google Scholar

    Qi S F, Cai F Y, Tian Z, Huang X Y, Zhou J, Wang J P, Li W C, Zheng H R, Deng K 2023 Acta Phys. Sin. 72 024301Google Scholar

    [6]

    Ozcelik A, Rufo J, Guo F, Gu Y, Li P, Lata J, Huang T J 2018 Nat. Methods 15 1021Google Scholar

    [7]

    Santesson S, Nilsson S 2004 Anal. Bioanal. Chem. 378 1704Google Scholar

    [8]

    Jin H, Wang W, Liu F, Yu Z, Chang H, Li K, Gong J 2017 Int. J. Multiphase Flow 94 44Google Scholar

    [9]

    Foresti D, Poulikakos D 2014 Phys. Rev. Lett. 112 024301Google Scholar

    [10]

    Bouyer C, Chen P, Güven S, Demirtaş T T, Nieland T J F, Padilla F, Demirci U 2016 Adv. Mater. 28 161Google Scholar

    [11]

    Zhang R, Guo H, Deng W, Huang X, Li F, Lu J, Liu Z 2020 Appl. Phys. Lett. 116 123503Google Scholar

    [12]

    Ahmed D, Ozcelik A, Bojanala N, Nama N, Upadhyay A, Chen Y, Hanna-Rose W, Huang T J 2016 Nat. Commun. 7 11085Google Scholar

    [13]

    Priego-Capote F, de Castro L 2006 TrAC Trends Anal. Chem. 25 856Google Scholar

    [14]

    Xie W J, Cao C D, Lu Y J, Wei B 2002 Phys. Rev. Lett. 89 104304Google Scholar

    [15]

    Nordine P C, Merkley D, Sickel J, Finkelman S, Telle R, Kaiser A, Prieler R 2012 Rev. Sci. Instrum. 83 125107Google Scholar

    [16]

    Yan N, Hong Z Y, Geng D L, Wei B 2015 Appl. Phys. A 120 207Google Scholar

    [17]

    Anilkumar A V, Lee C P, Wang T G 1993 Phy. Fluids A:Fluid Dyn. 5 2763Google Scholar

    [18]

    Hong Z Y, Yin J F, Zhai W, Yan N, Wang W L, Zhang J, Drinkwater B W 2017 Sci. Rep. 7 7093Google Scholar

    [19]

    Liu P, Li H, Zhou Z, Pei Y 2022 Appl. Phys. Lett. 120 222202Google Scholar

    [20]

    Watanabe A, Hasegawa K, Abe Y 2018 Sci. Rep. 8 10221Google Scholar

    [21]

    李鑫鹏, 曹睿杰, 李铭, 郭各朴, 李禹志, 马青玉 2022 71 204304Google Scholar

    Li X P, Cao R J, Li M, Guo G P, Li Y Z, Ma Q Y 2022 Acta Phys. Sin. 71 204304Google Scholar

    [22]

    陈心成 2019 硕士学位论文 (武汉: 华中科技大学)

    Chen X C 2019 M. S. Thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [23]

    Gor’kov L P 1962 Sov. Phys. Dokl. 6 773

  • [1] Liu Hui, Lu Zhan-Peng, Xu Zhi-Hao. Delocalization-localization transitions in 1D non-Hermitian cross-stitch lattices. Acta Physica Sinica, 2024, 73(13): 137201. doi: 10.7498/aps.73.20240510
    [2] Bai Jing, Ma Wen-Hao, Ge Cheng-Xian, Wu Zhen-Sen, Xu Tong. Radiation force characteristics of non-uniform chiral stratified particles in standing wave field. Acta Physica Sinica, 2024, 73(18): 184201. doi: 10.7498/aps.73.20240842
    [3] Wang Jun, Cai Fei-Yan, Zhang Ru-Jun, Li Yong-Chuan, Zhou Wei, Li Fei, Deng Ke, Zheng Hai-Rong. Acoustic manipulation of microparticles using a piezoelectric phononic crystal plate. Acta Physica Sinica, 2024, 73(7): 074302. doi: 10.7498/aps.73.20231886
    [4] Wang Yan-Ping, Cai Fei-Yan, Li Fei, Zhang Ru-Jun, Li Yong-Chuan, Wang Jin-Ping, Zhang Xin, Zheng Hai-Rong. Acoustic manipulation of microparticles using a two-dimensional phononic crystal plate. Acta Physica Sinica, 2023, 72(14): 144207. doi: 10.7498/aps.72.20230099
    [5] Qi Shao-Fu, Cai Fei-Yan, Tian Zhen, Huang Xian-Yu, Zhou Juan, Wang Jin-Ping, Li Wen-Cheng, Zheng Hai-Rong, Deng Ke. Experimental investigation of multiple-particle pattern based on one-dimensional grating resonance field. Acta Physica Sinica, 2023, 72(2): 024301. doi: 10.7498/aps.72.20221793
    [6] Pan Rui-Qi, Li Fan, Du Zhi-Wei, Hu Jing, Mo Run-Yang, Wang Cheng-Hui. Acoustic radiation force of elastic spherical shell with eccentric droplet in plane wave acoustic field. Acta Physica Sinica, 2023, 72(5): 054302. doi: 10.7498/aps.72.20222155
    [7] Zang Yu-Chen, Su Chang, Wu Peng-Fei, Lin Wei-Jun. Born approximation of acoustic radiation force and torque for an arbitrary particle in a zero-order standing Bessel beam. Acta Physica Sinica, 2022, 71(10): 104302. doi: 10.7498/aps.71.20212251
    [8] Zhu Ji-Lin, Gao Dong-Bao, Zeng Xin-Wu. In-plane manipulation of single particle based on phase-modulating acoustic tweezer. Acta Physica Sinica, 2021, 70(21): 214302. doi: 10.7498/aps.70.20210981
    [9] Zang Yu-Chen, Lin Wei-Jun, Su Chang, Wu Peng-Fei. Acoustic radiation torque on an off-axis elliptical cylinder in Gauss beams. Acta Physica Sinica, 2021, 70(8): 084301. doi: 10.7498/aps.70.20201635
    [10] Liao Yu, Jian Xiao-Hua, Cui Yao-Yao, Zhang Qi. Photoacoustic temperature measurement based on dual-wavelength method. Acta Physica Sinica, 2017, 66(11): 117802. doi: 10.7498/aps.66.117802
    [11] Huang Xian-Yu, Cai Fei-Yan, Li Wen-Cheng, Zheng Hai-Rong, He Zhao-Jian, Deng Ke, Zhao He-Ping. Acoustic manipulation of particles by a resonant one-dimensional grating in air. Acta Physica Sinica, 2017, 66(4): 044301. doi: 10.7498/aps.66.044301
    [12] Zhang Yong-Yuan, Luo Li-Na, Zhang Zhong-Yue. Surface plasmon polaritons splitting properties of silver cross nanowires. Acta Physica Sinica, 2015, 64(9): 097303. doi: 10.7498/aps.64.097303
    [13] Liang Bin, Yuan Ying, Cheng Jian-Chun. Recent advances in acoustic one-way manipulation. Acta Physica Sinica, 2015, 64(9): 094305. doi: 10.7498/aps.64.094305
    [14] Zhong Ming-Liang, Li Shan, Xiong Zu-Hong, Zhang Zhong-Yue. Plasmonic properties of silver cross-shape nanostructure. Acta Physica Sinica, 2012, 61(2): 027803. doi: 10.7498/aps.61.027803
    [15] Yang Chen, Zhang Hong-Xin, Wang Hai-Xia, Xu Nan, Xu Yuan-Yuan, Huang Li-Yu, Zhang Ke-Xin. Design and simulation of a cross split ring lefthanded materials unit structure. Acta Physica Sinica, 2012, 61(16): 164101. doi: 10.7498/aps.61.164101
    [16] Wang Shan-Shan, Gao Jin-Song, Liang Feng-Chao, Wang Yan-Song, Chen Xin. Multiband fractal cross dipole frequency selective surface. Acta Physica Sinica, 2011, 60(5): 050703. doi: 10.7498/aps.60.050703
    [17] Liu Mu-Ren, Wang Bing-Hong, Li Qi-Lang, Sun Xiao-Yan. Phase diagrams of the crossroad traffic model with low velocity vehicles. Acta Physica Sinica, 2010, 59(9): 5996-6002. doi: 10.7498/aps.59.5996
    [18] Jiang Yun-Feng, Lu Xuan-Hui, Zhao Cheng-Liang. Radiation force of highly focused cosine-Gaussian beam on a particle in the Rayleigh scattering regime. Acta Physica Sinica, 2010, 59(6): 3959-3964. doi: 10.7498/aps.59.3959
    [19] Zhang Bi-Xing, Wang Cheng-Hao, Bostr?m Anders. Study of SH acoustic radiation field excited by a piezoelectric strip. Acta Physica Sinica, 2005, 54(5): 2111-2117. doi: 10.7498/aps.54.2111
    [20] QIAN ZU-WEN. ON THE SCATTERING OF SOUND BY SOUND. Acta Physica Sinica, 1976, 25(6): 472-480. doi: 10.7498/aps.25.472
  • supplement 124302-20230383补充视频1.mp4
Metrics
  • Abstract views:  3067
  • PDF Downloads:  77
  • Cited By: 0
Publishing process
  • Received Date:  13 March 2023
  • Accepted Date:  12 April 2023
  • Available Online:  23 April 2023
  • Published Online:  20 June 2023

/

返回文章
返回
Baidu
map