搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声单向操控研究进展

梁彬 袁樱 程建春

引用本文:
Citation:

声单向操控研究进展

梁彬, 袁樱, 程建春

Recent advances in acoustic one-way manipulation

Liang Bin, Yuan Ying, Cheng Jian-Chun
PDF
导出引用
  • 电子二极管的发明标志着现代电子学的诞生, 在整个人类社会中引起了科技的深刻变革. 声波是一种具有非常悠久的研究历史的经典波, 却始终被认为仅具有对称的传播形式. 若能制造出可像电子二极管控制电流般实现声波单向导通的声学器件, 显然将对整个声学研究领域产生重大影响, 具有重要的科学意义及应用价值. 第一个基于非线性媒质与声子晶体的声二极管利用非线性突破声学互易原理的局限, 首次实现了将声能流限制在单一方向上的声整流效应. 针对非线性系统转换效率低下的固有缺陷, 在线性体系内围绕声单向传播这个重要科学问题开展了一系列理论和实验研究, 设计与制备了多种具有特殊结构和性能的线性声学单向结构, 在器件的效率、带宽及尺寸方面产生了突破. 在声二极管研究的基础上, 第一个可以像电子三极管操控电流般对声流进行操控与放大的声三极管理论模型也被提出. 本文介绍了声单向传播这一新兴且富有蓬勃生机的研究领域中的主要进展.
    Realizations of one-way manipulations in various kinds of energy flux are always highly desirable. The most famous example should be the invention of electric diodes which marked the emergence of modern electronics and resulted in worldwide technology revolutions. Acoustic wave, albeit a classical wave with much longer reflearch history in comparison with the electricity, has long been thought to propagate easily along two opposite directions in any path. Hence it should be intriguing to realize the one-way transmission of acoustic waves by designing the acoustical analogy of electric diodes, which would have deep implications in all the acoustics-based applications and the field of acoustics in general. In this review, we briefly describe reflent advances in acoustic one-way manipulation which has become a new frontier of science and is of remarkable significance in both the physics and engineering communities. The emergence of the first “acoustic diode”, formed by coupling a phononic crystal (PC) with a nonlinear medium, offers the possibility of rectifying acoustic energy flux by breaking through the barrier of reciprocity principle via the introduction of nonlinearity. Despite of the efforts in enhancing the performances of nonlinear acoustic diodes by updating their structures, the inherent shortcomings in nonlinear systems such as low efficiency and narrow bandwidth still attract considerable attentions on the potential of linear structures, aiming at constructing a one-way manipulation on particular modes of an acoustic wave without breaking the reciprocity principle. A series of linear acoustic one-way devices have already been designed and fabricated with significantly improved performances. On the basis of asymmetric mode conversion, a linear one-way plate for Lamb waves is designed. High efficient one-way transmission for plane waves propagating along two opposite directions is realized by coupling a PC and a diffraction structure. Unidirectional waveguide is designed and fabricated which only allows for a plane wave incident from one of the two openings to pass. A unidirectional structure with a total thickness as thin as the wavelength is realized by reconstructing the otherwise plane wavefront with acoustic gratings. An acoustic gradient-index structure is proposed that can directly manipulate the wave trajectory asymmetrically and then yield asymmetric acoustic transmission within a considerably broad band. Acoustic metamaterials with near-zero indexes have also been employed to realize unidirectional transmission with a controllable transmitting angle and consistent wavefront. These advances are important steps towards the practical applications which generally require integration and minimization of devices having high efficiency and broad bandwidth. The reflently emerged “acoustic transistor” has been described as well, which can be regarded as the acoustical counterpart of an electric transistor and enables the amplification and switch of acoustic waves by an acoustic wave, or by exploiting the three-wave mixing effect. We also discuss the challenge and promise of the usage of acoustic one-way devices in controlling acoustic waves.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2010CB327803, 2012CB921504)和国家自然科学基金(批准号: 11174138, 11174139, 11222442, 81127901, 11274168)资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2010CB327803, 2012CB921504), and the National Natural Science Foundation of China (Grant Nos. 11174138, 11174139, 11222442, 81127901, 11274168).
    [1]

    Li B, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301

    [2]

    Chang C W, Okawa D, Majumdar A, Zettl A 2006 Science 314 1121

    [3]

    Kobayashi W, Teraoka Y, Terasaki I 2009 Appl. Phys. Lett. 95 171905

    [4]

    Nesterenko V F, Daraio C, Herbold E B, Jin S 2005 Phys. Rev. Lett. 95 158702

    [5]

    Liang B, Yuan B, Cheng J C 2009 Phys. Rev. Lett. 103 104301

    [6]

    Liang B, Guo X S, Tu J, Zhang D, Cheng J C 2010 Nature Mater. 9 989

    [7]

    Boechler N, Theocharis G, Daraio C 2011 Nature Mater. 10 665

    [8]

    Kan W W, Liang B, Zhu X F, Zou X Y, Yang J, Cheng J C 2013 J. Appl. Phys. 114 134508

    [9]

    Zhu X F, Zou X Y, Liang B, Cheng J C 2010 J. Appl. Phys. 108 124909

    [10]

    Li X F, Ni X J, Feng L, Lu M H, He C, Chen Y F 2011 Phys. Rev. Lett. 106 084301

    [11]

    Li Y, Tu J, Liang B, Guo X S, Zhang D, Cheng J C 2012 J. Appl. Phys. 112 064504

    [12]

    Yuan B, Liang B, Tao J C, Zou X Y, Cheng J C 2012 Appl. Phys. Lett. 101 043503

    [13]

    Li R Q, Liang B, Li Y, Kan W W, Zou X Y, Cheng J C 2012 Appl. Phys. Lett. 101 263502

    [14]

    Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Appl. Phys. Lett. 103 053505

    [15]

    Zou X Y, Liang B, Yuan Y, Zhu X F, Cheng J C 2013 J. Appl. Phys. 114 164504

    [16]

    Li C H, Ke M Z, Ye Y T, Xu S J, Qiu C Y, Liu Z Y 2014 Appl. Phys. Lett. 105 023511

    [17]

    Jia H, Ke M Z, Li C H, Qiu C Y, Liu Z Y 2013 Appl. Phys. Lett. 102 153508

    [18]

    Danworaphong S 2011 Appl. Phys. Lett. 99 201910

    [19]

    Yuan B, Liang B, Tao J C, Zou X Y, Cheng J C 2012 Appl. Phys. Lett. 101 043503

    [20]

    Li B W 2010 Nature Mater. 9 962

    [21]

    Liang B, Kan W W, Zou X Y, Yin L L, Cheng J C 2014 Appl. Phys. Lett. 105 083510

  • [1]

    Li B, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301

    [2]

    Chang C W, Okawa D, Majumdar A, Zettl A 2006 Science 314 1121

    [3]

    Kobayashi W, Teraoka Y, Terasaki I 2009 Appl. Phys. Lett. 95 171905

    [4]

    Nesterenko V F, Daraio C, Herbold E B, Jin S 2005 Phys. Rev. Lett. 95 158702

    [5]

    Liang B, Yuan B, Cheng J C 2009 Phys. Rev. Lett. 103 104301

    [6]

    Liang B, Guo X S, Tu J, Zhang D, Cheng J C 2010 Nature Mater. 9 989

    [7]

    Boechler N, Theocharis G, Daraio C 2011 Nature Mater. 10 665

    [8]

    Kan W W, Liang B, Zhu X F, Zou X Y, Yang J, Cheng J C 2013 J. Appl. Phys. 114 134508

    [9]

    Zhu X F, Zou X Y, Liang B, Cheng J C 2010 J. Appl. Phys. 108 124909

    [10]

    Li X F, Ni X J, Feng L, Lu M H, He C, Chen Y F 2011 Phys. Rev. Lett. 106 084301

    [11]

    Li Y, Tu J, Liang B, Guo X S, Zhang D, Cheng J C 2012 J. Appl. Phys. 112 064504

    [12]

    Yuan B, Liang B, Tao J C, Zou X Y, Cheng J C 2012 Appl. Phys. Lett. 101 043503

    [13]

    Li R Q, Liang B, Li Y, Kan W W, Zou X Y, Cheng J C 2012 Appl. Phys. Lett. 101 263502

    [14]

    Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Appl. Phys. Lett. 103 053505

    [15]

    Zou X Y, Liang B, Yuan Y, Zhu X F, Cheng J C 2013 J. Appl. Phys. 114 164504

    [16]

    Li C H, Ke M Z, Ye Y T, Xu S J, Qiu C Y, Liu Z Y 2014 Appl. Phys. Lett. 105 023511

    [17]

    Jia H, Ke M Z, Li C H, Qiu C Y, Liu Z Y 2013 Appl. Phys. Lett. 102 153508

    [18]

    Danworaphong S 2011 Appl. Phys. Lett. 99 201910

    [19]

    Yuan B, Liang B, Tao J C, Zou X Y, Cheng J C 2012 Appl. Phys. Lett. 101 043503

    [20]

    Li B W 2010 Nature Mater. 9 962

    [21]

    Liang B, Kan W W, Zou X Y, Yin L L, Cheng J C 2014 Appl. Phys. Lett. 105 083510

  • [1] 高慧芬, 周小芳, 黄学勤. 二维声子晶体中Zak相位诱导的界面态.  , 2022, 71(4): 044301. doi: 10.7498/aps.71.20211642
    [2] 韩东海, 张广军, 赵静波, 姚宏. 新型Helmholtz型声子晶体的低频带隙及隔声特性.  , 2022, 71(11): 114301. doi: 10.7498/aps.71.20211932
    [3] 高慧芬, 周小芳, 黄学勤. 二维声子晶体中Zak相位诱导的界面态.  , 2021, (): . doi: 10.7498/aps.70.20211642
    [4] 王莎, 林书玉. 基于二维声子晶体的大尺寸夹心式换能器的优化设计.  , 2019, 68(2): 024303. doi: 10.7498/aps.68.20181955
    [5] 耿治国, 彭玉桂, 沈亚西, 赵德刚, 祝雪丰. 手性声子晶体中拓扑声传输.  , 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [6] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体.  , 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [7] 王健, 吴世巧, 梅军. 二维声子晶体中简单旋转操作导致的拓扑相变.  , 2017, 66(22): 224301. doi: 10.7498/aps.66.224301
    [8] 陈泽国, 吴莹. 声子晶体中的多重拓扑相.  , 2017, 66(22): 227804. doi: 10.7498/aps.66.227804
    [9] 曹惠娴, 梅军. 声子晶体中的半狄拉克点研究.  , 2015, 64(19): 194301. doi: 10.7498/aps.64.194301
    [10] 赵寰宇, 何存富, 吴斌, 汪越胜. 二维正方晶格多点缺陷声子晶体实验研究.  , 2013, 62(13): 134301. doi: 10.7498/aps.62.134301
    [11] 陈圣兵, 韩小云, 郁殿龙, 温激鸿. 不同压电分流电路对声子晶体梁带隙的影响.  , 2010, 59(1): 387-392. doi: 10.7498/aps.59.387
    [12] 董华锋, 吴福根, 牟中飞, 钟会林. 二维复式声子晶体中基元配置对声学能带结构的影响.  , 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
    [13] 李晓春, 高俊丽, 刘绍娥, 周科朝, 黄伯云. 无序对二维声子晶体平板负折射成像的影响.  , 2010, 59(1): 376-380. doi: 10.7498/aps.59.376
    [14] 高国钦, 马守林, 金峰, 金东范, 卢天健. 声波在二维固/流声子晶体中的禁带特性研究.  , 2010, 59(1): 393-400. doi: 10.7498/aps.59.393
    [15] 李晓春, 高俊丽, 刘绍娥, 周科朝, 黄伯云. 二维声子晶体平板成像中的通道特征.  , 2010, 59(1): 381-386. doi: 10.7498/aps.59.381
    [16] 王文刚, 刘正猷, 赵德刚, 柯满竹. 声波在一维声子晶体中共振隧穿的研究.  , 2006, 55(9): 4744-4747. doi: 10.7498/aps.55.4744
    [17] 蔡 力, 韩小云. 二维声子晶体带结构的多散射分析及解耦模式.  , 2006, 55(11): 5866-5871. doi: 10.7498/aps.55.5866
    [18] 李晓春, 易秀英, 肖清武, 梁宏宇. 三组元声子晶体中的缺陷态.  , 2006, 55(5): 2300-2305. doi: 10.7498/aps.55.2300
    [19] 赵 芳, 苑立波. 二维复式格子声子晶体带隙结构特性.  , 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
    [20] 齐共金, 杨盛良, 白书欣, 赵 恂. 基于平面波算法的二维声子晶体带结构的研究.  , 2003, 52(3): 668-671. doi: 10.7498/aps.52.668
计量
  • 文章访问数:  7742
  • PDF下载量:  630
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-09
  • 修回日期:  2015-01-28
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map