Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Radiation force characteristics of non-uniform chiral stratified particles in standing wave field

Bai Jing Ma Wen-Hao Ge Cheng-Xian Wu Zhen-Sen Xu Tong

Citation:

Radiation force characteristics of non-uniform chiral stratified particles in standing wave field

Bai Jing, Ma Wen-Hao, Ge Cheng-Xian, Wu Zhen-Sen, Xu Tong
cstr: 32037.14.aps.73.20240842
PDF
HTML
Get Citation
  • Objective With the development of optical technology, the investigation of light-field-particle interactions has gained significant momentum. Such studies find widespread applications in optical manipulation, precision laser ranging, laser gas spectroscopy, and related fields. In optical manipulation techniques, employing two or more laser beams proves more effective for capturing and manipulating particles than using a single beam alone. In addition, with the increasing demand for manipulating particles with complex structures, it is necessary to conduct in-depth research on the radiation force characteristics of double Gaussian beams on non-uniform chiral particles. This research aims to deepen our understanding of how optical fields influence particles, thereby offering fresh perspectives in manipulating and utilizing non-uniform chiral layered particles on both a microscale and a nanoscale. Method Based on the generalized Lorentz-Mie theory (GLMT) and spherical vector wave functions (SVWFs), the total incident field of a double Gaussian beam can be expanded by using the coordinate addition theorem. The incident field coefficient and scattering coefficient of each region of the multilayer chiral sphere are obtained by enforcing boundary continuity and employing multilayer sphere scattering theory. The radiation force acting on non-uniform chiral layered particles within a double Gaussian beam is then derived through application of the electromagnetic momentum conservation theorem. Results and Discussions The theory and programs in this paper is compared with those in existing literature. The influence of various parameters on the radiation force is analyzed in detail, such as the incident angle, polarization angle, beam waist width, beam center position, and internal and external chiral parameters. These results indicate that compared with a single Gaussian beam, counter-propagating Gaussian standing waves exhibit significant advantages in capturing or confining inhomogeneous chiral layered particles, offering enhanced particle manipulation capabilities. Additionally, by selecting an appropriate polarization state of the incident light, a delicate balance can be achieved among these parameters, effectively stabilizing the capture of inhomogeneous chiral particles. Conclusions This study employs the generalized Lorenz-Mie theory and the principle of electromagnetic momentum conservation to derive analytical expressions for the transverse and axial radiation forces exerted by dual Gaussian beams on multi-layered chiral particles propagating in arbitrary directions. The research provides an in-depth analysis of how standing wave beams affect the radiation force behavior of non-uniform chiral particles. Numerical analysis reveals significant influences of beam waist, particle size, chiral parameters, polarization angle and mode, as well as particle refractive index on both transverse and axial radiation forces. This research is important in analyzing and understanding the optical properties of complex-shaped multilayer biological cells and realizing the applications in the micromanipulation of multilayer biological structures.
      Corresponding author: Bai Jing, jbaiyoudian@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62001377, 62101445, 61571355, 61601355, 61308025), the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2023-JC-QN-0657, 2023-JC-QN-0774, 2022KJXX-95), and the Science and Technology Association Youth Talent Nurturing Program of Xi’an, China (Grant No. 959202313013).
    [1]

    Ashkin A 1970 Phys. Rev. Lett. 24 156Google Scholar

    [2]

    Ashkin A 1980 Science 210 1081Google Scholar

    [3]

    Leach J, Howard D, Roberts S, Gibson G, Gothard D, Cooper J, Buttery L 2009 J. Mod. Optic. 56 448Google Scholar

    [4]

    Molloy J E, Dholakia K, Padgett M J 2003 J. Mod. Optic. 50 1501Google Scholar

    [5]

    Parlatan U, Başar G, Başar G 2019 J. Mod. Optic. 66 228Google Scholar

    [6]

    Jordan P, Clare H, Flendrig L, Leach J, Cooper J, Padgett M 2004 J. Mod. Optic. 51 627Google Scholar

    [7]

    Tang Q, Liu P Z, Tang S 2022 Chin. Phys. B 31 044301Google Scholar

    [8]

    Barton J P, Alexander D R, Schaub S A 1989 J. Appl. Phys. 66 4594Google Scholar

    [9]

    Yang A H, Moore S D, Schmidt B S, Klug M, Lipson M, Erickson D 2009 Nature 457 71Google Scholar

    [10]

    Padgett M, Bowman R 2011 Nat. Photon. 5 343Google Scholar

    [11]

    Wang Z L, Yin J P 2008 Chin. Phys. B 17 2466Google Scholar

    [12]

    Kiselev A D, Plutenko D O 2016 Phys. Rev. A 94 013804Google Scholar

    [13]

    Zang Y C, Lin W J, Su C, Wu P F 2021 Chin. Phys. B 30 044301Google Scholar

    [14]

    Dong F B, Chang C H, Jun F H, Yi W 2009 Chin. Phys. B 18 2853Google Scholar

    [15]

    Ng J, Lin Z F, Chan C T 2010 Phys. Rev. Lett. 104 103601Google Scholar

    [16]

    Liu X Y, Sun C, Deng D M 2021 Chin. Phys. B 30 024202Google Scholar

    [17]

    王焱, 彭妙, 程伟, 彭政, 成浩, 臧圣寅, 刘浩, 任孝东, 帅雨贝, 黄承志, 吴加贵, 杨俊波 2023 72 027801Google Scholar

    Wang Y, Peng M, Cheng W, Peng Z, Cheng H, Zang S Y, Liu H, Ren X D, Shuai Y B, Huang C Z, Wu J G, Yang J B 2023 Acta Phys. Sin. 72 027801Google Scholar

    [18]

    殷杰, 陶超, 刘晓峻 2015 64 098102Google Scholar

    Yin J, Tao C, Liu X J 2015 Acta Phys. Sin. 64 098102Google Scholar

    [19]

    Ashkin A, Dziedzic J M 1971 Appl. Phys. Lett. 19 283Google Scholar

    [20]

    Zemánek P, Jonáš A, Šrámek L, Liška M 1998 Opt. Commun. 151 273Google Scholar

    [21]

    Zemánek P, Jonáš A, Liška M 2002 J. Opt. Soc. Am. A 19 1025Google Scholar

    [22]

    Gauthier R C, Frangioudakis A 2000 Appl. Opt. 39 26Google Scholar

    [23]

    Ren K F, Greha G, Gouesbet G 1994 Opt. Commun. 108 343Google Scholar

    [24]

    Gouesbet G, Lock J A 1994 J. Opt. Soc. Am. A 11 2516Google Scholar

    [25]

    Zemánek P, Jonáš A, Jákl P, Šerý M, Liška M 2003 Opt. Commun. 220 401Google Scholar

    [26]

    Cizmar T, Garces-Chavez V, Dholakia K, Zemanek P 2004 Opt. Trap. Micro. 5514 643Google Scholar

    [27]

    Van der Horst A, van Oostrum P D J, Moroz A, van Blaaderen A, Dogterom M 2008 Appl. Opt. 47 3196Google Scholar

    [28]

    Zhao L, Li Y, Qi J, Xu J, Sun Q 2010 Opt. Express 18 5724Google Scholar

    [29]

    Zhang T, Mahdy M R C, Dewan S S, Hossain M N, Rivy H M, Masud N, Jony Z R 2018 arXiv: 1811.01874 [physics. optics]

    [30]

    Li Z J, Li S, Li H Y, Qu T, Shang Q C 2021 J. Opt. Soc. Am. A 38 616Google Scholar

    [31]

    Wang S L, Liu X, Mourdikoudis S, Chen J, Fu W W, Sofer Z, Zhang Y, Zhang S P, Zheng G C 2022 ACS Nano. 16 19789Google Scholar

    [32]

    马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚 2017 66 147802Google Scholar

    Ma X L, Li X, Guo Y H, Zhao Z Y, Luo X G 2017 Acta Phys. Sin. 66 147802Google Scholar

    [33]

    Rohrbach A, Stelzer E H K 2001 J. Opt. Soc. Am. A 18 839Google Scholar

    [34]

    史书姝, 肖姗, 许秀来 2022 71 067801Google Scholar

    Shi S S, Xiao S, Xu X L 2022 Acta Phys. Sin. 71 067801Google Scholar

    [35]

    王志全, 施卫 2022 71 188704Google Scholar

    Wang Z Q, Shi W 2022 Acta Phys. Sin. 71 188704Google Scholar

    [36]

    Habashi A, Ghobadi C, Nourinia J, R Naderali 2023 Opt. Commun. 547 129840Google Scholar

    [37]

    米利, 周宏伟, 孙祉伟, 刘丽霞, 徐升华 2013 62 134704Google Scholar

    Mi L, Zhou H W, Sun Z W, Liu L X, Xu S H 2013 Acta Phys. Sin. 62 134704Google Scholar

    [38]

    Worasawate D, Mautz J R, Arvas E 2003 IEEE Trans. Antennas Propag. 51 1077Google Scholar

    [39]

    Yuceer M, Mautz J R, Arvas E 2005 IEEE Trans. Antennas Propag. 53 1163Google Scholar

    [40]

    Demir V, Elsherbeni A Z, Arvas E 2005 IEEE Trans. Antennas Propag. 53 3374Google Scholar

    [41]

    Kuzu L, Demir V, Elsherbeni A Z, Arvas E 2007 Prog. Electromagn. Res. 67 1Google Scholar

    [42]

    Cooray M F R, Ciric I R 1993 J. Opt. Soc. Am. A 10 1197Google Scholar

    [43]

    Ermutlu M E, Sihvola A H 1994 Prog. Electromagn. Res. 9 87Google Scholar

    [44]

    Jaggard D L, Liu J C 1999 IEEE Trans. Antennas Propag. 47 1201Google Scholar

    [45]

    Yan B, Liu C H, Zhang H Y, Shi Y 2015 Opt. Commun. 338 261Google Scholar

    [46]

    Wang W J, Sun Y F, Zhang H Y 2017 Opt. Commun. 385 54Google Scholar

    [47]

    Gao X, Zhang H 2017 Optik 129 43Google Scholar

    [48]

    Zheng M, Zhang H Y, Sun Y F, Wang Z G 2015 J. Quant. Spectrosc. Ra. 151 192Google Scholar

    [49]

    Li L W, Dan Y, Leong M S, Kong J A 1999 Prog. Electromagn. Res. 23 239Google Scholar

    [50]

    Shang Q C, Wu Z S, Qu T, Li Z J, Bai L 2016 J. Quant. Spectrosc. Ra. 173 72Google Scholar

    [51]

    Qu T, Wu Z S, Shang Q C, Wu J, Bai L 2018 J. Quant. Spectrosc. Ra. 217 363Google Scholar

    [52]

    Bai J, Liu X, Ge C X, Li Z J, Xiao C, Wu Z S, Shang Q C 2024 Opt. Commun. 554 130136Google Scholar

    [53]

    Edmonds A R, Mendlowitz H 1958 Phys. Today 11 34Google Scholar

    [54]

    Gouesbet G, Gréhan G 1999 J Opt. A-Pure. Appl. Opt. 1 706Google Scholar

    [55]

    Geng Y L, Wu X B, Li L W, Guan B R 2004 Phys. Rev. E 70 056609Google Scholar

    [56]

    Lock J A, Gouesbet G 1994 J. Opt. Soc. Am. A 11 2503Google Scholar

    [57]

    Gouesbet G, Gréhan G, Maheu B 1990 J. Opt. Soc. Am. A 7 998Google Scholar

    [58]

    Doicu A, Wriedt T 1997 Appl. Opt. 36 2971Google Scholar

    [59]

    Brown A J 2014 J. Opt. Soc. Am. A 31 2789Google Scholar

    [60]

    Edmonds A R 1957 Angular Momentum in Quantum Mechanics (Princeton: Princeton University Press) pp24−37

    [61]

    Lakhtakia A 1994 Beltrami Fields in Chiral Media (World Scientific Pub. Co. Inc. ) pp5−26

    [62]

    Sarkar D, Halas N J 1997 Phys. Rev. E 56 1102Google Scholar

    [63]

    Aden A L, Kerker M 1951 J. Appl. Phys. 22 1242Google Scholar

    [64]

    Shang Q C, Wu Z S, Qu T, Li Z J, Bai L 2013 Opt. Express 21 8677Google Scholar

  • 图 1  两束高斯波束照射多层手性粒子示意图

    Figure 1.  Structure plan of nonuniform chiral layered particles irradiated by DGBS

    图 2  具有相同偏振角的反向传播双高斯波束$zox$平面强度分布图 (a)${w_{01}}\ ( {w_{02}} ) = 1.7\lambda $; (b)${w_{01}} ({w_{02}}) = 1.8\lambda $; (c) ${w_{01}}({w_{02}}) = 1.9\lambda $

    Figure 2.  Intensity distribution of counter propagating DGBs in $zox$ plane with different $ {w_1},\; {w_2} $: (a) ${w_{01}}({w_{02}}) = 1.7\lambda $; (b) ${w_{01}}({w_{02}}) = 1.8\lambda $; (c) ${w_{01}}({w_{02}}) = 1.9\lambda $.

    图 3  图2相比具有不同偏振角的反向传播双高斯波束$zox$平面强度分布图 (a)${w_{01}}({w_{02}}) = 1.7\lambda $; (b)${w_{01}}({w_{02}}) = 1.8\lambda $; (c) ${w_{01}}({w_{02}}) = 1.9\lambda $

    Figure 3.  Intensity distribution of counter propagating DGBs in $zox$ plane with different ${\beta _1}$, ${\beta _2}$ compared with Fig. 2: (a) ${w_{01}}({w_{02}}) = 1.7\lambda $; (b) ${w_{01}}({w_{02}}) = 1.8\lambda $; (c) ${w_{01}}({w_{02}}) = 1.9\lambda $.

    图 4  图2相比具有不同入射角度的双高斯波束$zox$平面强度分布图 (a) ${w_{01}}({w_{02}}) = 1.7\lambda $; (b)${w_{01}}({w_{02}}) = 1.8\lambda $; (c)${w_{01}}({w_{02}}) = 1.9\lambda $

    Figure 4.  Intensity distribution of counter propagating DGBs in $zox$ plane with different ${\alpha _1},\; {\alpha _2}$ compared with Fig. 2: (a) ${w_{01}}({w_{02}}) = 1.7\lambda $; (b) ${w_{01}}({w_{02}}) = 1.8\lambda $; (c) ${w_{01}}({w_{02}}) = 1.9\lambda $.

    图 5  多层手性粒子对单高斯光束轴向辐射力与文献结果进行对比

    Figure 5.  Comparison of radiative force results for multilayer chiral spherical particles with a single Gaussian beam.

    图 6  双高斯波束对各向同性介质球的轴向辐射力

    Figure 6.  Axial radiation force of DGBS on isotropic particle.

    图 7  不同束腰半径下, 双高斯波束入射双层手性球的辐射力随轴(横)向位置的变化曲线 (a)沿z轴辐射力${F_z}$;(b)沿x轴辐射力${F_x}$; (c)沿y轴辐射力${F_y}$

    Figure 7.  Radiative force of DGBS in different girdle radii on double-layer chiral sphere: (a) z-axis radiative force ${F_z}$; (b) x-axis radiative force ${F_x}$; (c) y-axis radiative force ${F_y}$.

    图 8  不同偏振角下, 双高斯波束入射双层手性球的辐射力随轴(横)向位置的变化曲线 (a)沿z轴辐射力${F_z}$;(b)沿x轴辐射力${F_x}$; (c)沿y轴辐射力${F_y}$

    Figure 8.  Radiative force of DGBS in different polarization angles on double-layer chiral sphere; (a) Radiative force along the z-axis ${F_z}$; (b) radiative force along the x-axis ${F_x}$; (c) radiative force along the y-axis ${F_y}$.

    图 9  不同内层手性下, 双高斯波束入射双层手性球的辐射力随轴(横)向位置的变化曲线 (a)沿z轴辐射力${F_z}$; (b)沿x轴辐射力${F_x}$; (c)沿y轴辐射力${F_y}$; (d)双高斯波束对双层手性球远场散射RCS

    Figure 9.  Radiative force of DGBS in different inner layer chiral on double-layer chiral sphere: (a) z-axis radiative force ${F_z}$; (b) x-axis radiative force ${F_x}$; (c) y-axis radiative force ${F_y}$; (d) the RCS of dual Gaussian beams scattering double-layer chiral sphere.

    图 10  不同外层手性下, 双高斯波束入射双层手性球的辐射力随轴(横)向位置的变化曲线 (a)沿z轴辐射力${F_z}$; (b)沿x轴辐射力${F_x}$; (c)沿y轴辐射力${F_y}$

    Figure 10.  Radiative force of DGBS in different outer layer chiral on double-layer chiral sphere: (a) z-axis radiative force ${F_z}$; (b) x-axis radiative force ${F_x}$; (c) y-axis radiative force ${F_y}$.

    图 11  不同球内层半径下, 双高斯波束入射双层手性球的辐射力随轴(横)向位置的变化曲线 (a)沿z轴辐射力${F_z}$; (b)沿x轴辐射力${F_x}$; (c)沿y轴辐射力${F_y}$

    Figure 11.  Radiative force of DGBS in different radii of the inner layers on double-layer chiral sphere: (a) z-axis radiative force ${F_z}$; (b) x-axis radiative force ${F_x}$; (c) y-axis radiative force ${F_y}$.

    图 12  不同球外层半径下, 双高斯波束入射双层手性球的辐射力随轴(横)向位置的变化曲线 (a)沿z轴辐射力${F_z}$; (b)沿x轴辐射力${F_x}$; (c)沿y轴辐射力${F_y}$

    Figure 12.  Radiative force of DGBS in different radii of the outer layers on double-layer chiral sphere: (a) z-axis radiative force ${F_z}$; (b) x-axis radiative force ${F_x}$; (c) y-axis radiative force ${F_y}$.

    图 13  不同偏振状态下, 双高斯波束入射双层手性球的辐射力随轴(横)向位置的变化曲线 (a)沿z轴辐射力${F_z}$; (b)沿x轴辐射力${F_x}$; (c)沿y轴辐射力${F_y}$

    Figure 13.  Radiative force of DGBS in different polarization states on double-layer chiral sphere: (a) z-axis radiative force ${F_z}$; (b) x-axis radiative force ${F_x}$; (c) y-axis radiative force ${F_y}$.

    图 14  折射率由内向外逐层减小时, 辐射力随轴向位置变化曲线

    Figure 14.  Curves of radiative force when refractive index decreases layer by layer from inside to outside.

    图 15  折射率由内向外逐层增大时, 辐射力随轴向位置变化曲线

    Figure 15.  Curves of radiative force when refractive index increases layer by layer from inside to outside.

    Baidu
  • [1]

    Ashkin A 1970 Phys. Rev. Lett. 24 156Google Scholar

    [2]

    Ashkin A 1980 Science 210 1081Google Scholar

    [3]

    Leach J, Howard D, Roberts S, Gibson G, Gothard D, Cooper J, Buttery L 2009 J. Mod. Optic. 56 448Google Scholar

    [4]

    Molloy J E, Dholakia K, Padgett M J 2003 J. Mod. Optic. 50 1501Google Scholar

    [5]

    Parlatan U, Başar G, Başar G 2019 J. Mod. Optic. 66 228Google Scholar

    [6]

    Jordan P, Clare H, Flendrig L, Leach J, Cooper J, Padgett M 2004 J. Mod. Optic. 51 627Google Scholar

    [7]

    Tang Q, Liu P Z, Tang S 2022 Chin. Phys. B 31 044301Google Scholar

    [8]

    Barton J P, Alexander D R, Schaub S A 1989 J. Appl. Phys. 66 4594Google Scholar

    [9]

    Yang A H, Moore S D, Schmidt B S, Klug M, Lipson M, Erickson D 2009 Nature 457 71Google Scholar

    [10]

    Padgett M, Bowman R 2011 Nat. Photon. 5 343Google Scholar

    [11]

    Wang Z L, Yin J P 2008 Chin. Phys. B 17 2466Google Scholar

    [12]

    Kiselev A D, Plutenko D O 2016 Phys. Rev. A 94 013804Google Scholar

    [13]

    Zang Y C, Lin W J, Su C, Wu P F 2021 Chin. Phys. B 30 044301Google Scholar

    [14]

    Dong F B, Chang C H, Jun F H, Yi W 2009 Chin. Phys. B 18 2853Google Scholar

    [15]

    Ng J, Lin Z F, Chan C T 2010 Phys. Rev. Lett. 104 103601Google Scholar

    [16]

    Liu X Y, Sun C, Deng D M 2021 Chin. Phys. B 30 024202Google Scholar

    [17]

    王焱, 彭妙, 程伟, 彭政, 成浩, 臧圣寅, 刘浩, 任孝东, 帅雨贝, 黄承志, 吴加贵, 杨俊波 2023 72 027801Google Scholar

    Wang Y, Peng M, Cheng W, Peng Z, Cheng H, Zang S Y, Liu H, Ren X D, Shuai Y B, Huang C Z, Wu J G, Yang J B 2023 Acta Phys. Sin. 72 027801Google Scholar

    [18]

    殷杰, 陶超, 刘晓峻 2015 64 098102Google Scholar

    Yin J, Tao C, Liu X J 2015 Acta Phys. Sin. 64 098102Google Scholar

    [19]

    Ashkin A, Dziedzic J M 1971 Appl. Phys. Lett. 19 283Google Scholar

    [20]

    Zemánek P, Jonáš A, Šrámek L, Liška M 1998 Opt. Commun. 151 273Google Scholar

    [21]

    Zemánek P, Jonáš A, Liška M 2002 J. Opt. Soc. Am. A 19 1025Google Scholar

    [22]

    Gauthier R C, Frangioudakis A 2000 Appl. Opt. 39 26Google Scholar

    [23]

    Ren K F, Greha G, Gouesbet G 1994 Opt. Commun. 108 343Google Scholar

    [24]

    Gouesbet G, Lock J A 1994 J. Opt. Soc. Am. A 11 2516Google Scholar

    [25]

    Zemánek P, Jonáš A, Jákl P, Šerý M, Liška M 2003 Opt. Commun. 220 401Google Scholar

    [26]

    Cizmar T, Garces-Chavez V, Dholakia K, Zemanek P 2004 Opt. Trap. Micro. 5514 643Google Scholar

    [27]

    Van der Horst A, van Oostrum P D J, Moroz A, van Blaaderen A, Dogterom M 2008 Appl. Opt. 47 3196Google Scholar

    [28]

    Zhao L, Li Y, Qi J, Xu J, Sun Q 2010 Opt. Express 18 5724Google Scholar

    [29]

    Zhang T, Mahdy M R C, Dewan S S, Hossain M N, Rivy H M, Masud N, Jony Z R 2018 arXiv: 1811.01874 [physics. optics]

    [30]

    Li Z J, Li S, Li H Y, Qu T, Shang Q C 2021 J. Opt. Soc. Am. A 38 616Google Scholar

    [31]

    Wang S L, Liu X, Mourdikoudis S, Chen J, Fu W W, Sofer Z, Zhang Y, Zhang S P, Zheng G C 2022 ACS Nano. 16 19789Google Scholar

    [32]

    马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚 2017 66 147802Google Scholar

    Ma X L, Li X, Guo Y H, Zhao Z Y, Luo X G 2017 Acta Phys. Sin. 66 147802Google Scholar

    [33]

    Rohrbach A, Stelzer E H K 2001 J. Opt. Soc. Am. A 18 839Google Scholar

    [34]

    史书姝, 肖姗, 许秀来 2022 71 067801Google Scholar

    Shi S S, Xiao S, Xu X L 2022 Acta Phys. Sin. 71 067801Google Scholar

    [35]

    王志全, 施卫 2022 71 188704Google Scholar

    Wang Z Q, Shi W 2022 Acta Phys. Sin. 71 188704Google Scholar

    [36]

    Habashi A, Ghobadi C, Nourinia J, R Naderali 2023 Opt. Commun. 547 129840Google Scholar

    [37]

    米利, 周宏伟, 孙祉伟, 刘丽霞, 徐升华 2013 62 134704Google Scholar

    Mi L, Zhou H W, Sun Z W, Liu L X, Xu S H 2013 Acta Phys. Sin. 62 134704Google Scholar

    [38]

    Worasawate D, Mautz J R, Arvas E 2003 IEEE Trans. Antennas Propag. 51 1077Google Scholar

    [39]

    Yuceer M, Mautz J R, Arvas E 2005 IEEE Trans. Antennas Propag. 53 1163Google Scholar

    [40]

    Demir V, Elsherbeni A Z, Arvas E 2005 IEEE Trans. Antennas Propag. 53 3374Google Scholar

    [41]

    Kuzu L, Demir V, Elsherbeni A Z, Arvas E 2007 Prog. Electromagn. Res. 67 1Google Scholar

    [42]

    Cooray M F R, Ciric I R 1993 J. Opt. Soc. Am. A 10 1197Google Scholar

    [43]

    Ermutlu M E, Sihvola A H 1994 Prog. Electromagn. Res. 9 87Google Scholar

    [44]

    Jaggard D L, Liu J C 1999 IEEE Trans. Antennas Propag. 47 1201Google Scholar

    [45]

    Yan B, Liu C H, Zhang H Y, Shi Y 2015 Opt. Commun. 338 261Google Scholar

    [46]

    Wang W J, Sun Y F, Zhang H Y 2017 Opt. Commun. 385 54Google Scholar

    [47]

    Gao X, Zhang H 2017 Optik 129 43Google Scholar

    [48]

    Zheng M, Zhang H Y, Sun Y F, Wang Z G 2015 J. Quant. Spectrosc. Ra. 151 192Google Scholar

    [49]

    Li L W, Dan Y, Leong M S, Kong J A 1999 Prog. Electromagn. Res. 23 239Google Scholar

    [50]

    Shang Q C, Wu Z S, Qu T, Li Z J, Bai L 2016 J. Quant. Spectrosc. Ra. 173 72Google Scholar

    [51]

    Qu T, Wu Z S, Shang Q C, Wu J, Bai L 2018 J. Quant. Spectrosc. Ra. 217 363Google Scholar

    [52]

    Bai J, Liu X, Ge C X, Li Z J, Xiao C, Wu Z S, Shang Q C 2024 Opt. Commun. 554 130136Google Scholar

    [53]

    Edmonds A R, Mendlowitz H 1958 Phys. Today 11 34Google Scholar

    [54]

    Gouesbet G, Gréhan G 1999 J Opt. A-Pure. Appl. Opt. 1 706Google Scholar

    [55]

    Geng Y L, Wu X B, Li L W, Guan B R 2004 Phys. Rev. E 70 056609Google Scholar

    [56]

    Lock J A, Gouesbet G 1994 J. Opt. Soc. Am. A 11 2503Google Scholar

    [57]

    Gouesbet G, Gréhan G, Maheu B 1990 J. Opt. Soc. Am. A 7 998Google Scholar

    [58]

    Doicu A, Wriedt T 1997 Appl. Opt. 36 2971Google Scholar

    [59]

    Brown A J 2014 J. Opt. Soc. Am. A 31 2789Google Scholar

    [60]

    Edmonds A R 1957 Angular Momentum in Quantum Mechanics (Princeton: Princeton University Press) pp24−37

    [61]

    Lakhtakia A 1994 Beltrami Fields in Chiral Media (World Scientific Pub. Co. Inc. ) pp5−26

    [62]

    Sarkar D, Halas N J 1997 Phys. Rev. E 56 1102Google Scholar

    [63]

    Aden A L, Kerker M 1951 J. Appl. Phys. 22 1242Google Scholar

    [64]

    Shang Q C, Wu Z S, Qu T, Li Z J, Bai L 2013 Opt. Express 21 8677Google Scholar

  • [1] Pan Rui-Qi, Li Fan, Du Zhi-Wei, Hu Jing, Mo Run-Yang, Wang Cheng-Hui. Acoustic radiation force of elastic spherical shell with eccentric droplet in plane wave acoustic field. Acta Physica Sinica, 2023, 72(5): 054302. doi: 10.7498/aps.72.20222155
    [2] Zhu Xue-Song, Liu Xing-Yu, Zhang Yan. Nonreciprocal transmission of vortex beam in double Laguerre-Gaussian rotational cavity system. Acta Physica Sinica, 2022, 71(15): 150701. doi: 10.7498/aps.71.20220191
    [3] Zang Yu-Chen, Su Chang, Wu Peng-Fei, Lin Wei-Jun. Born approximation of acoustic radiation force and torque for an arbitrary particle in a zero-order standing Bessel beam. Acta Physica Sinica, 2022, 71(10): 104302. doi: 10.7498/aps.71.20212251
    [4] Bai Jing, Ge Cheng-Xian, He Lang, Liu Xuan, Wu Zhen-Sen. Analysis of trapping force exerted on multi-layered chiral sphere induced by laser sheet. Acta Physica Sinica, 2022, 71(10): 104208. doi: 10.7498/aps.71.20212284
    [5] Zang Yu-Chen, Lin Wei-Jun, Su Chang, Wu Peng-Fei. Acoustic radiation torque on an off-axis elliptical cylinder in Gauss beams. Acta Physica Sinica, 2021, 70(8): 084301. doi: 10.7498/aps.70.20201635
    [6] Yang Ju-Tao, Li Qing-Liang, Wang Jian-Guo, Hao Shu-Ji, Pan Wei-Yan. Theory of very low frequency/extra low frequency radiation by dual-beam beat wave heating ionosphere. Acta Physica Sinica, 2017, 66(1): 019401. doi: 10.7498/aps.66.019401
    [7] Jin Xiao-Qin, Xu Yong, Zhang Hui-Qing. The reliability of logical operation in a one-dimensional bistable system induced by non-Gaussian noise. Acta Physica Sinica, 2013, 62(19): 190510. doi: 10.7498/aps.62.190510
    [8] Lai Xiao-Lei. Ray optics calculation of axial force exerted by a highly focused Gaussian beam on a left-handed material sphere. Acta Physica Sinica, 2013, 62(18): 184201. doi: 10.7498/aps.62.184201
    [9] Cheng Ke, Zhong Xian-Qiong, Xiang An-Ping. Optical trapping of metallic Rayleigh particles by using coherently and incoherently combined beams. Acta Physica Sinica, 2012, 61(7): 074202. doi: 10.7498/aps.61.074202
    [10] Han Guo-Xia, Han Yi-Ping. Scattering of bi-sphere arbitrarily illuminated by a single beam and a dual beam. Acta Physica Sinica, 2010, 59(4): 2434-2442. doi: 10.7498/aps.59.2434
    [11] Jiang Yun-Feng, Lu Xuan-Hui, Zhao Cheng-Liang. Radiation force of highly focused cosine-Gaussian beam on a particle in the Rayleigh scattering regime. Acta Physica Sinica, 2010, 59(6): 3959-3964. doi: 10.7498/aps.59.3959
    [12] Guo Pei-Rong, Xu Wei, Liu Di. Time dependence of entropy flux and entropy production for a stochastic system with double singularities driven by non-Gaussian noise. Acta Physica Sinica, 2009, 58(8): 5179-5185. doi: 10.7498/aps.58.5179
    [13] Han Guo-Xia, Han Yi-Ping. Radiation force of a sphere with an eccentric inclusion illuminated by a laser beam. Acta Physica Sinica, 2009, 58(9): 6167-6173. doi: 10.7498/aps.58.6167
    [14] Li Hai-Ying, Wu Zhen-Sen. Electromagnetic scattering by multi-layered spheres in a 2-D Gaussian beam. Acta Physica Sinica, 2008, 57(2): 833-838. doi: 10.7498/aps.57.833
    [15] Han Yi-Ping, Du Yun-Gang, Zhang Hua-Yong. Radiation trapping forces acting on a two-layered spherical particle in a Gaussian beam. Acta Physica Sinica, 2006, 55(9): 4557-4562. doi: 10.7498/aps.55.4557
    [16] Bai Lu, Wu Zhen-Sen, Chen Hui, Guo Li-Xin. Scattering of fundamental Gaussian beam from on-axis cluster spheres. Acta Physica Sinica, 2005, 54(5): 2025-2029. doi: 10.7498/aps.54.2025
    [17] Wu Peng, Han Yi-Ping, Liu De-Fang. Computation of Gaussian beam scattering for larger particle. Acta Physica Sinica, 2005, 54(6): 2676-2679. doi: 10.7498/aps.54.2676
    [18] Li Wei, Zhao Tong-Jun, Guo Hong-Yong, Ji Qing, Zhan Yong. A nonuniform ratchet model with Gausstransition rates for Brownian motor. Acta Physica Sinica, 2004, 53(11): 3684-3689. doi: 10.7498/aps.53.3684
    [19] Liang Zi-Chang, Jin Ya-Qiu. Iterative layering approach to multiple scattering and emission from inhomogenou s random scatter media. Acta Physica Sinica, 2003, 52(6): 1319-1325. doi: 10.7498/aps.52.1319
    [20] LI FANG-YU, TANG MENG-XI. NARROW WAVE BEAM-TYPE GRAVITATIONAL RADIATION OF SPACE ARRAYS. Acta Physica Sinica, 1987, 36(12): 1570-1582. doi: 10.7498/aps.36.1570
Metrics
  • Abstract views:  769
  • PDF Downloads:  20
  • Cited By: 0
Publishing process
  • Received Date:  05 July 2024
  • Accepted Date:  29 July 2024
  • Available Online:  20 August 2024
  • Published Online:  20 September 2024

/

返回文章
返回
Baidu
map