Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent advances in acoustic one-way manipulation

Liang Bin Yuan Ying Cheng Jian-Chun

Citation:

Recent advances in acoustic one-way manipulation

Liang Bin, Yuan Ying, Cheng Jian-Chun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Realizations of one-way manipulations in various kinds of energy flux are always highly desirable. The most famous example should be the invention of electric diodes which marked the emergence of modern electronics and resulted in worldwide technology revolutions. Acoustic wave, albeit a classical wave with much longer reflearch history in comparison with the electricity, has long been thought to propagate easily along two opposite directions in any path. Hence it should be intriguing to realize the one-way transmission of acoustic waves by designing the acoustical analogy of electric diodes, which would have deep implications in all the acoustics-based applications and the field of acoustics in general. In this review, we briefly describe reflent advances in acoustic one-way manipulation which has become a new frontier of science and is of remarkable significance in both the physics and engineering communities. The emergence of the first “acoustic diode”, formed by coupling a phononic crystal (PC) with a nonlinear medium, offers the possibility of rectifying acoustic energy flux by breaking through the barrier of reciprocity principle via the introduction of nonlinearity. Despite of the efforts in enhancing the performances of nonlinear acoustic diodes by updating their structures, the inherent shortcomings in nonlinear systems such as low efficiency and narrow bandwidth still attract considerable attentions on the potential of linear structures, aiming at constructing a one-way manipulation on particular modes of an acoustic wave without breaking the reciprocity principle. A series of linear acoustic one-way devices have already been designed and fabricated with significantly improved performances. On the basis of asymmetric mode conversion, a linear one-way plate for Lamb waves is designed. High efficient one-way transmission for plane waves propagating along two opposite directions is realized by coupling a PC and a diffraction structure. Unidirectional waveguide is designed and fabricated which only allows for a plane wave incident from one of the two openings to pass. A unidirectional structure with a total thickness as thin as the wavelength is realized by reconstructing the otherwise plane wavefront with acoustic gratings. An acoustic gradient-index structure is proposed that can directly manipulate the wave trajectory asymmetrically and then yield asymmetric acoustic transmission within a considerably broad band. Acoustic metamaterials with near-zero indexes have also been employed to realize unidirectional transmission with a controllable transmitting angle and consistent wavefront. These advances are important steps towards the practical applications which generally require integration and minimization of devices having high efficiency and broad bandwidth. The reflently emerged “acoustic transistor” has been described as well, which can be regarded as the acoustical counterpart of an electric transistor and enables the amplification and switch of acoustic waves by an acoustic wave, or by exploiting the three-wave mixing effect. We also discuss the challenge and promise of the usage of acoustic one-way devices in controlling acoustic waves.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2010CB327803, 2012CB921504), and the National Natural Science Foundation of China (Grant Nos. 11174138, 11174139, 11222442, 81127901, 11274168).
    [1]

    Li B, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301

    [2]

    Chang C W, Okawa D, Majumdar A, Zettl A 2006 Science 314 1121

    [3]

    Kobayashi W, Teraoka Y, Terasaki I 2009 Appl. Phys. Lett. 95 171905

    [4]

    Nesterenko V F, Daraio C, Herbold E B, Jin S 2005 Phys. Rev. Lett. 95 158702

    [5]

    Liang B, Yuan B, Cheng J C 2009 Phys. Rev. Lett. 103 104301

    [6]

    Liang B, Guo X S, Tu J, Zhang D, Cheng J C 2010 Nature Mater. 9 989

    [7]

    Boechler N, Theocharis G, Daraio C 2011 Nature Mater. 10 665

    [8]

    Kan W W, Liang B, Zhu X F, Zou X Y, Yang J, Cheng J C 2013 J. Appl. Phys. 114 134508

    [9]

    Zhu X F, Zou X Y, Liang B, Cheng J C 2010 J. Appl. Phys. 108 124909

    [10]

    Li X F, Ni X J, Feng L, Lu M H, He C, Chen Y F 2011 Phys. Rev. Lett. 106 084301

    [11]

    Li Y, Tu J, Liang B, Guo X S, Zhang D, Cheng J C 2012 J. Appl. Phys. 112 064504

    [12]

    Yuan B, Liang B, Tao J C, Zou X Y, Cheng J C 2012 Appl. Phys. Lett. 101 043503

    [13]

    Li R Q, Liang B, Li Y, Kan W W, Zou X Y, Cheng J C 2012 Appl. Phys. Lett. 101 263502

    [14]

    Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Appl. Phys. Lett. 103 053505

    [15]

    Zou X Y, Liang B, Yuan Y, Zhu X F, Cheng J C 2013 J. Appl. Phys. 114 164504

    [16]

    Li C H, Ke M Z, Ye Y T, Xu S J, Qiu C Y, Liu Z Y 2014 Appl. Phys. Lett. 105 023511

    [17]

    Jia H, Ke M Z, Li C H, Qiu C Y, Liu Z Y 2013 Appl. Phys. Lett. 102 153508

    [18]

    Danworaphong S 2011 Appl. Phys. Lett. 99 201910

    [19]

    Yuan B, Liang B, Tao J C, Zou X Y, Cheng J C 2012 Appl. Phys. Lett. 101 043503

    [20]

    Li B W 2010 Nature Mater. 9 962

    [21]

    Liang B, Kan W W, Zou X Y, Yin L L, Cheng J C 2014 Appl. Phys. Lett. 105 083510

  • [1]

    Li B, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301

    [2]

    Chang C W, Okawa D, Majumdar A, Zettl A 2006 Science 314 1121

    [3]

    Kobayashi W, Teraoka Y, Terasaki I 2009 Appl. Phys. Lett. 95 171905

    [4]

    Nesterenko V F, Daraio C, Herbold E B, Jin S 2005 Phys. Rev. Lett. 95 158702

    [5]

    Liang B, Yuan B, Cheng J C 2009 Phys. Rev. Lett. 103 104301

    [6]

    Liang B, Guo X S, Tu J, Zhang D, Cheng J C 2010 Nature Mater. 9 989

    [7]

    Boechler N, Theocharis G, Daraio C 2011 Nature Mater. 10 665

    [8]

    Kan W W, Liang B, Zhu X F, Zou X Y, Yang J, Cheng J C 2013 J. Appl. Phys. 114 134508

    [9]

    Zhu X F, Zou X Y, Liang B, Cheng J C 2010 J. Appl. Phys. 108 124909

    [10]

    Li X F, Ni X J, Feng L, Lu M H, He C, Chen Y F 2011 Phys. Rev. Lett. 106 084301

    [11]

    Li Y, Tu J, Liang B, Guo X S, Zhang D, Cheng J C 2012 J. Appl. Phys. 112 064504

    [12]

    Yuan B, Liang B, Tao J C, Zou X Y, Cheng J C 2012 Appl. Phys. Lett. 101 043503

    [13]

    Li R Q, Liang B, Li Y, Kan W W, Zou X Y, Cheng J C 2012 Appl. Phys. Lett. 101 263502

    [14]

    Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Appl. Phys. Lett. 103 053505

    [15]

    Zou X Y, Liang B, Yuan Y, Zhu X F, Cheng J C 2013 J. Appl. Phys. 114 164504

    [16]

    Li C H, Ke M Z, Ye Y T, Xu S J, Qiu C Y, Liu Z Y 2014 Appl. Phys. Lett. 105 023511

    [17]

    Jia H, Ke M Z, Li C H, Qiu C Y, Liu Z Y 2013 Appl. Phys. Lett. 102 153508

    [18]

    Danworaphong S 2011 Appl. Phys. Lett. 99 201910

    [19]

    Yuan B, Liang B, Tao J C, Zou X Y, Cheng J C 2012 Appl. Phys. Lett. 101 043503

    [20]

    Li B W 2010 Nature Mater. 9 962

    [21]

    Liang B, Kan W W, Zou X Y, Yin L L, Cheng J C 2014 Appl. Phys. Lett. 105 083510

  • [1] Gao Hui-Fen, Zhou Xiao-Fang, Huang Xue-Qin. Zak phase induced interface states in two-dimensional phononic crystals. Acta Physica Sinica, 2022, 71(4): 044301. doi: 10.7498/aps.71.20211642
    [2] Han Dong-Hai, Zhang Guang-Jun, Zhao Jing-Bo, Yao Hong. Low-frequency bandgaps and sound isolation characteristics of a novel Helmholtz-type phononic crystal. Acta Physica Sinica, 2022, 71(11): 114301. doi: 10.7498/aps.71.20211932
    [3] Zak phase induces interface states in two-dimensional phononic crystals. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211642
    [4] Wang Sha, Lin Shu-Yu. Optimal design of large-sized sandwich transducer based on two-dimensional phononic crystal. Acta Physica Sinica, 2019, 68(2): 024303. doi: 10.7498/aps.68.20181955
    [5] Geng Zhi-Guo, Peng Yu-Gui, Shen Ya-Xi, Zhao De-Gang, Zhu Xue-Feng. Topological acoustic transports in chiral sonic crystals. Acta Physica Sinica, 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [6] Jia Ding, Ge Yong, Yuan Shou-Qi, Sun Hong-Xiang. Dual-band acoustic topological insulator based on honeycomb lattice sonic crystal. Acta Physica Sinica, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [7] Wang Jian, Wu Shi-Qiao, Mei Jun. Topological phase transitions caused by a simple rotational operation in two-dimensional acoustic crystals. Acta Physica Sinica, 2017, 66(22): 224301. doi: 10.7498/aps.66.224301
    [8] Chen Ze-Guo, Wu Ying. Multiple topological phases in phononic crystals. Acta Physica Sinica, 2017, 66(22): 227804. doi: 10.7498/aps.66.227804
    [9] Cao Hui-Xian, Mei Jun. Semi-Dirac points in two-dimensional phononic crystals. Acta Physica Sinica, 2015, 64(19): 194301. doi: 10.7498/aps.64.194301
    [10] Zhao Huan-Yu, He Cun-Fu, Wu Bin, Wang Yue-Sheng. Experimental investigation of two-dimensional multi-point defect phononic crystals with square lattice. Acta Physica Sinica, 2013, 62(13): 134301. doi: 10.7498/aps.62.134301
    [11] Chen Sheng-Bing, Han Xiao-Yun, Yu Dian-Long, Wen Ji-Hong. Influences of different types of piezoelectric shunting circuits on band gaps of phononic beam. Acta Physica Sinica, 2010, 59(1): 387-392. doi: 10.7498/aps.59.387
    [12] Gao Guo-Qin, Ma Shou-Lin, Jin Feng, Kim Tong-Beum, Lu Tian-Jian. Acoustic band gaps in finite-sized two-dimensional solid/fluid phononic crystals. Acta Physica Sinica, 2010, 59(1): 393-400. doi: 10.7498/aps.59.393
    [13] Li Xiao-Chun, Gao Jun-Li, Liu Shao-E, Zhou Ke-Chao, Huang Bo-Yun. Scattering channel in focus imaging of two-dimensional phononic crystal panel. Acta Physica Sinica, 2010, 59(1): 381-386. doi: 10.7498/aps.59.381
    [14] Li Xiao-Chun, Gao Jun-Li, Liu Shao-E, Zhou Ke-Chao, Huang Bo-Yun. Disorder effect on the focus image of phononic crystal panel with negative refraction. Acta Physica Sinica, 2010, 59(1): 376-380. doi: 10.7498/aps.59.376
    [15] Dong Hua-Feng, Wu Fu-Gen, Mu Zhong-Fei, Zhong Hui-Lin. Effect of basis configuration on acoustic band structure in two-dimensional complex phononic crystals. Acta Physica Sinica, 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
    [16] Wang Wen-Gang, Liu Zheng-You, Zhao De-Gang, Ke Man-Zhu. Resonant tunneling of acoustic waves in 1D phononic crystal. Acta Physica Sinica, 2006, 55(9): 4744-4747. doi: 10.7498/aps.55.4744
    [17] Cai Li, Han Xiao-Yun. Study of the band-structure and the uncoupled modes in two-dimensional phononic crystals with the multiple-scattering theory. Acta Physica Sinica, 2006, 55(11): 5866-5871. doi: 10.7498/aps.55.5866
    [18] Li Xiao-Chun, Yi Xiu-Ying, Xiao Qing-Wu, Liang Hong-Yu. Defect states in three-component phononic crystal. Acta Physica Sinica, 2006, 55(5): 2300-2305. doi: 10.7498/aps.55.2300
    [19] Zhao Fang, Yuan Li-Bo. Characteristics of the band structure in two-dimensional phononic crystals with complex lattices. Acta Physica Sinica, 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
    [20] Qi Gong-Jin, Yang Sheng-Liang, Bai Shu-Xin, Zhao Xun. A study of the band structure in two-dimensional phononic crystals based on plane-wave algorithm. Acta Physica Sinica, 2003, 52(3): 668-671. doi: 10.7498/aps.52.668
Metrics
  • Abstract views:  7763
  • PDF Downloads:  630
  • Cited By: 0
Publishing process
  • Received Date:  09 January 2015
  • Accepted Date:  28 January 2015
  • Published Online:  05 May 2015

/

返回文章
返回
Baidu
map