搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对称和非对称十字微通道内液滴生成过程的数值模拟研究

李翔 李延 李滢艳 董志强 庄晓如 钟志刚 余鹏

引用本文:
Citation:

对称和非对称十字微通道内液滴生成过程的数值模拟研究

李翔, 李延, 李滢艳, 董志强, 庄晓如, 钟志刚, 余鹏

Numerical investigation on the droplet generation process in symmetric and asymmetric cross-junction microchannels

Li Xiang, Li Yan, Li Ying-Yan, Dong Zhi-Qiang, Zhuang Xiao-Ru, Zhong Zhi-Gang, Yu Peng
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 液滴微流控技术在化学分析、生物检测及材料制备等领域具有巨大的应用潜力,被动生成液滴方法主要依赖微通道几何特性与剪切流动就能够快速实现液滴生成。其中,十字微通道作为典型结构,其流体参数和对称性差异对液滴生成过程的影响尚未得到充分研究。因此,本文采用格子Boltzmann方法开展对称与非对称十字微通道内的液滴生成过程的数值模拟研究,系统分析了毛细数、粘度比及流道对称性的作用机制。本文首先通过平板剪切流动下液滴变形和理想固体表面静止液滴这两个经典算例验证了数值模型的计算可靠性,然后围绕对称十字微通道内水相流体“界面浸入-剪切断裂-液滴迁移和融合”三个流动阶段展开研究,分析了毛细数和两相粘度比的协同作用机制。在此基础上,进一步量化了流道对称性对十字微通道内液滴生成过程的影响。相关研究结果为微流道设计和液滴微流控的流体参数调控提供了理论依据,并进一步推动液滴微流控技术的应用和发展。
    Droplet microfluidics technology presents significant potential for applications in chemical analysis, biological detection, and material preparation. Passive droplet generation methods can rapidly achieve droplet formation by relying on the geometric characteristics of microchannels and shear flow. As a typical structure, the influence of fluid parameters and symmetry differences in cross microchannels on the droplet generation process has not been fully studied. Therefore, this paper uses the lattice Boltzmann method to conduct numerical simulation studies on droplet generation in symmetric and asymmetric cross microchannels, systematically analyzing the action mechanisms of capillary number, viscosity ratio, and microchannel symmetry. First, this study verifies the computational reliability of the numerical model through two classic cases, i.e., the droplet deformation under planar shear flow and stationary droplets on ideal solid surfaces. Then, this work focuses on the three flow stages in symmetric cross microchannels, i.e., the interface immersion stage, the shear-induced breakup stage, and the droplet migration and coalescence stage, analyzing the collaborative mechanism of capillary number and viscosity ratio. In the symmetric cross microchannel structure, the capillary number is the main factor determining the droplet size in the cross microchannel. With the increase of the capillary number, the surface tension gradually weakens, causing the liquid bridge at the droplet neck to break more easily and generate droplets. In contrast, the effect of the viscosity ratio on the droplet size is relatively small, but it can suppress the generation of sub-droplets and improve the uniformity of droplets by adjusting the viscous resistance of the continuous phase. On this basis, the study further quantifies the impact of microchannel symmetry on the droplet generation process in cross microchannels. In the asymmetric cross microchannel structure, the microchannel deviation breaks the flow symmetry and weakens the cooperative shearing effect of the oil-phase fluid on the immersion structure of the water-phase fluid. When the microchannel deviates within the centerline range of the water-phase microchannel, the droplet size increases significantly with the increase of the microchannel deviation. This is mainly because the oil-phase fluid on the side far from the deviation first squeezes the immersion structure of the water-phase fluid, and then the oil-phase fluid near the deviation side performs secondary squeezing on the immersion structure, resulting in the continuous elongation of the neck liquid bridge of the immersion structure and the offset of the shear position along the microchannel deviation direction. When the microchannel deviation exceeds the centerline position of the water-phase microchannel, the interface fracture of the water-phase immersion structure mainly relies on the double squeeze effect of the oil-phase fluid and the surface tension of water-phase fluid, and the droplet size tends to be stable. The relevant research results provide a theoretical basis for microchannel design and fluid parameter regulation in droplet microfluidics and further promote the application and development of droplet microfluidic technology.
  • [1]

    Zhu P, Wang L 2017 Lab Chip 17 34

    [2]

    Cybulski O, Garstecki P, Grzybowski B A 2019 Nat. Phys. 15 706

    [3]

    Chen P-C, Wu M-H, Wang Y-N 2014 Microfluidic. Nanofluidic. 17 275

    [4]

    Li X, Li D, Liu X, Chang H 2016 Sensor. Actuat. B-Chem. 229 466

    [5]

    Theberge A B, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck W T S 2010 Angew. Chem. Int. Edit. 49 5846

    [6]

    Teo A J T, Tan S H, Nguyen N-T 2020 Anal. Chem. 92 1147

    [7]

    Zhang Q, Li H, Zhu C, Fu T, Ma Y, Li H Z 2018 Colloid. Surface. A 537 572

    [8]

    Jin S, Wei X, Liu Z, Ren J, Jiang Z, Abell C, Yu Z 2019 Sensor. Actuat. B-Chem. 291 1

    [9]

    Zhang H, Palit P, Liu Y, Vaziri S, Sun Y 2020 ACS Appl. Mater. Interfaces 12 26936

    [10]

    Thorsen T, Roberts R W, Arnold F H, Quake S R 2001 Phys. Rev. Lett. 86 4163

    [11]

    Zhang Y Y, Xia H M, Wu J W, Zhang J, Wang Z P 2019 Appl. Phys. Lett. 114 073701

    [12]

    Zhang Y Y, Xia H M 2022 Sensor. Actuat. B-Chem. 368 132183

    [13]

    Dreyfus R, Tabeling P, Willaime H 2003 Phys. Rev. Lett. 90 144505

    [14]

    Tan Y-C, Cristini V, Lee A P 2006 Sensor. Actuat. B-Chem. 114 350

    [15]

    Chae S-K, Lee C-H, Lee S H, Kim T-S, Kang J Y 2009 Lab Chip 9 1957

    [16]

    Nisisako T, Hatsuzawa T 2010 Microfluidic. Nanofluidic. 9 427

    [17]

    Liu H, Zhang Y 2011 Commun. Comput. Phys. 9 1235

    [18]

    Rostami B, Morini G L 2019 Exp. Therm. Fluid Sci. 103 191

    [19]

    Yu W, Liu X, Zhao Y, Chen Y 2019 Chem. Eng. Sci. 203 259

    [20]

    Nozaki Y, Yoon D H, Furuya M, Fujita H, Sekiguchi T, Shoji S 2021 Sensor. Actuat. A-Phys. 331 112917

    [21]

    Liu Z, Ma Y, Wang X, Pang Y, Ren Y, Li D 2022 Exp. Therm. Fluid Sci. 139 110739

    [22]

    Umbanhowar P B, Prasad V, Weitz D A 2000 Langmuir 16 347

    [23]

    Utada A S, Lorenceau E, Link D R, Kaplan P D, Stone H A, Weitz D A 2005 Science 308 537

    [24]

    Garstecki P, Fuerstman M J, Whitesides G M 2005 Phys. Rev. Lett. 94 234502

    [25]

    Deng C, Wang H, Huang W, Cheng S 2017 Colloid. Surface. A 533 1

    [26]

    Liu H-T, Liu M-B, Chang J-Z, Su T-X 2013 Acta Phys. Sin.-Ch Ed 62 064705

    [27]

    Liang H, Chai Z-H, Shi B-C 2016 Acta Phys. Sin.-Ch Ed 65 204701

    [28]

    Zhang X-L, Huang J-J 2023 Acta Phys. Sin.-Ch Ed 72 024701

    [29]

    Wang W, Liu Z, Jin Y, Cheng Y 2011 Chem. Eng. J. 173 828

    [30]

    Ngo I-L, Dang T-D, Byon C, Joo S W 2015 Biomicrofluidics 9 024107

    [31]

    Liu H, Zhang Y 2011 Phys. Fluids 23 082101

    [32]

    Boruah M P, Sarker A, Randive P R, Pati S, Sahu K C 2021 Phys. Fluids 33 122101

    [33]

    Wang H, Yuan X, Liang H, Chai Z, Shi B 2019 Capillarity 2 32

    [34]

    Niu X-D, Li Y, Ma Y-R, Chen M-F, Li X, Li Q-Z 2018 Phys. Fluids 30 013302

    [35]

    Li X, Dong Z-Q, Li Y, Wang L-P, Niu X-D, Yamaguchi H, Li D-C, Yu P 2022 Int. J. Multiphas. Flow 149 103982

    [36]

    Li X, Yu P, Niu X-D, Li D-C, Yamaguchi H 2021 Appl. Math. and Comput. 393 125769

    [37]

    Qian Y H, Humières D D, Lallemand P 1992 Europhysics Letters 17 479

    [38]

    van der Graaf S, Nisisako T, Schroën C G P H, van der Sman R G M, Boom R M 2006 Langmuir 22 4144

    [39]

    Ding H, Spelt P D M, Shu C 2007 J. Comput. Phys. 226 2078

    [40]

    Liang H, Liu H, Chai Z, Shi B 2019 Phys. Rev. E 99 063306

    [41]

    Shi Y, Tang G H, Xia H H 2014 Comput. Fluids 90 155

    [42]

    Yue P, Feng J J, Liu C, Shen J 2004 J. Fluid Mech. 515 293

    [43]

    Roths T, Friedrich C, Marth M, Honerkamp J 2002 Rheol. Acta 41 211

    [44]

    Wang Y, Shu C, Huang H B, Teo C J 2015 J. Comput. Phys. 280 404

    [45]

    Li X, Dong Z-Q, Wang L-P, Niu X-D, Yamaguchi H, Li D-C, Yu P 2023 Appl. Math. Model. 117 219

  • [1] 隋鹏翔. 颗粒尺寸对纳米流体自然对流模式影响的格子Boltzmann方法模拟.  , doi: 10.7498/aps.73.20241332
    [2] 冯晶森, 闵敬春. 直通道内两相流动的格子玻尔兹曼方法模拟.  , doi: 10.7498/aps.72.20222421
    [3] 张贝豪, 郑林. 倾斜多孔介质方腔内纳米流体自然对流的格子Boltzmann方法模拟.  , doi: 10.7498/aps.69.20200308
    [4] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟.  , doi: 10.7498/aps.68.20181665
    [5] 许昊, 王聪, 陆宏志, 黄文虎. 水下超声速气体射流诱导尾空泡实验研究.  , doi: 10.7498/aps.67.20171617
    [6] 杨秀峰, 刘谋斌. 瑞利-泰勒不稳定问题的光滑粒子法模拟研究.  , doi: 10.7498/aps.66.164701
    [7] 吴晓笛, 刘华坪, 陈浮. 基于浸入边界-多松弛时间格子玻尔兹曼通量求解法的流固耦合算法研究.  , doi: 10.7498/aps.66.224702
    [8] 冯黛丽, 冯妍卉, 石珺. 介孔复合材料声子输运的格子玻尔兹曼模拟.  , doi: 10.7498/aps.65.244401
    [9] 孙鹏楠, 李云波, 明付仁. 自由上浮气泡运动特性的光滑粒子流体动力学模拟.  , doi: 10.7498/aps.64.174701
    [10] 宋保维, 任峰, 胡海豹, 郭云鹤. 表面张力对疏水微结构表面减阻的影响.  , doi: 10.7498/aps.63.054708
    [11] 胡杰, 邓霄, 桑胜波, 李朋伟, 李刚, 张文栋. 微流控技术制备ZnO纳米线阵列及其气敏特性.  , doi: 10.7498/aps.63.207102
    [12] 刘汉涛, 刘谋斌, 常建忠, 苏铁熊. 介观尺度通道内多相流动的耗散粒子动力学模拟.  , doi: 10.7498/aps.62.064705
    [13] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流.  , doi: 10.7498/aps.62.144704
    [14] 陈海楠, 孙东科, 戴挺, 朱鸣芳. 凝固前沿和气泡相互作用的大密度比格子玻尔兹曼方法模拟.  , doi: 10.7498/aps.62.120502
    [15] 强洪夫, 石超, 陈福振, 韩亚伟. 基于大密度差多相流SPH方法的二维液滴碰撞数值模拟.  , doi: 10.7498/aps.62.214701
    [16] 孙东科, 项楠, 陈科, 倪中华. 格子玻尔兹曼方法模拟弯流道中粒子的惯性迁移行为.  , doi: 10.7498/aps.62.024703
    [17] 吴伟, 孙东科, 戴挺, 朱鸣芳. 枝晶生长和气泡形成的数值模拟.  , doi: 10.7498/aps.61.150501
    [18] 周丰茂, 孙东科, 朱鸣芳. 偏晶合金液-液相分离的格子玻尔兹曼方法模拟.  , doi: 10.7498/aps.59.3394
    [19] 孙东科, 朱鸣芳, 杨朝蓉, 潘诗琰, 戴挺. 强制对流和自然对流作用下枝晶生长的数值模拟.  , doi: 10.7498/aps.58.285
    [20] 常建忠, 刘谋斌, 刘汉涛. 微液滴动力学特性的耗散粒子动力学模拟.  , doi: 10.7498/aps.57.3954
计量
  • 文章访问数:  94
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-29

/

返回文章
返回
Baidu
map