-
Rydberg atoms based quantum microwave measurement technology has significant advantages such as self-calibration, traceability, high sensitivity and stable uniformity of measurement. In this work, from the dimension of traditional electromagnetic theory, an electric field local enhancement technique for quantum microwave measurements is developed to improve the sensitivity of quantum microwave receiver. The theoretical basis of this method comes from the different mechanisms of realization of microwave reception in quantum microwave receivers and classical receiver. Classic receivers use antennas to collect microwave energy in space to signal reception; quantum microwave receivers measure the strength of the electric field in the path of a laser beam in an atomic gas chamber (the beam is about 100 µm in diameter) to realize the signal reception. Therefore, the sensitivity of quantum microwave receiver can be improved by increasing the electric field strength in the path of laser beam. The critical physical mechanism is the multi-beam interference at the open end and the short-circuited end of the structure. The results show that with the decrease of gap height of parallel plates, the enhancement factor of electric field strength increases rapidly and the power density compression capability is greatly improved. The |69D5/2
$\rangle $ experiments verify that the structure can achieve a 25 dB electric field enhancement at 2.1 GHz. This research is expected to be helpful in improving the sensitivity of measurement based on atomic measurement capabilities and in promoting the practical development of quantum microwave measurement technology.[1] Joshua A G, Christopher L H, Andrew S, Dave A A, Stephanie M, Nithiwadee T, Georg R 2014 Appl. Phys. Lett. 105 1683
Google Scholar
[2] 付云起, 林沂, 武博, 安强, 刘燚 2022 电波科学学报 37 279
Google Scholar
Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Journal of Radio Wave Science 37 279
Google Scholar
[3] Zhou Y L, Yan D, Li W 2022 Phys. Rev. A 105 053714
Google Scholar
[4] Christopher L H, Matt T S, Joshua A G, Andrew D, David A A, Georg R 2017 J. Appl. Phys. 121 717
Google Scholar
[5] Ansari R, Giraud-Héraud Y, Tran Thanh Van J 1996 Dark Matter in Cosmology Quantum Measurements Experimental Gravitation (Vol. 91) (Atlantica Séguier Frontières) p341
[6] Jonathon A S, Arne S, Harald K, Robert L, Tilman P, James P S 2012 Nat. Phys. 8 819
Google Scholar
[7] Cox K C, Meyer D H, Fatemi F K 2018 Phys. Rev. Lett. 121 110502
Google Scholar
[8] Kai Y, Sun Z S, Miao R Q, Lin Y, Liu Y, An Q, Fu Y Q 2022 Chin. Opt. Lett. 20 081203
Google Scholar
[9] Meyer D H, Cox K C, Fatemi F K 2018 Appl. Phys. Lett. 112 211108
Google Scholar
[10] Otto J S, Hunter M K, Kjærgaard N 2021 J. Appl. Phys. 129 154503
Google Scholar
[11] Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Anten. Propag. 69 2455
Google Scholar
[12] 吴逢川, 林沂, 武博, 付云起 2022 71 207402
Google Scholar
Wu F C, Lin Y, Wu B, Fu Y Q 2022 Acta Phys. Sin. 71 207402
Google Scholar
[13] Yao J W, An Q, Zhou Y L, Yang K, Wu F C, Fu Y Q 2022 Optics Lett. 47 5256
Google Scholar
[14] Christopher H, Mathew S, Abdulaziz H H, Joshua A G, David A A, Georg R, Steven V 2021 IEEE Anten. Propag. Magaz. 63 63
Google Scholar
[15] Mao R Q, Lin Y, Kai Y, An Q, Fu Y Q 2022 IEEE Anten. Wire. Propag Lett. 3212057
Google Scholar
[16] 林沂, 吴逢川, 毛瑞棋, 姚佳伟, 刘燚, 安强, 付云起 2022 71 170702
Google Scholar
Lin Y, Wu F C, Mao R Q, Yao J W, Liu Y, An Q, Fu Y Q 2022 Acta Phys. Sin. 71 170702
Google Scholar
[17] David H M, Christopher O B, Donald P F, Kevin C C, Paul D K 2021 Phys. Rev. A 104 043103
Google Scholar
[18] Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nature Physics. 16 911
Google Scholar
[19] Cai M H, Xu Z S, You S H, Liu H P 2022 Photonics. 9 250
Google Scholar
[20] Quantum-Apertures DARPA https://www.darpa.mil/program/quantum-apertures [2021-05-20]
[21] Anderson D A, Paradis E G, Raithel G 2018 Appl. Phys. Lett. 113 073501
Google Scholar
[22] Anderson D A, Raithel G A, Paradis E G 2019 US Patent 10823775 B2 [2019-06-20]
[23] Holloway C L, Prajapati N, Artusio-Glimpse A, Samuel B, Matthew T S, Yoshiaki K, Andrea A, Richard W Z 2022 Appl. Phys. Lett. 120 204001
Google Scholar
[24] Wu B, Lin Y, Liao D, Liu Y, An Q, Fu Y Q 2022 Elec. Lett. 58 914
Google Scholar
[25] Ida N 2000 Engineering Electromagnetics (Berlin: Springer) p20
[26] 郭艳芳 2009 硕士学位论文 (北京: 中国科学院电子学研究所)
Guo Y F 2009 M. S. Thesis (Beijing: Institute of Electrics, Chinese Academy of Sciences) (in Chinese)
-
-
[1] Joshua A G, Christopher L H, Andrew S, Dave A A, Stephanie M, Nithiwadee T, Georg R 2014 Appl. Phys. Lett. 105 1683
Google Scholar
[2] 付云起, 林沂, 武博, 安强, 刘燚 2022 电波科学学报 37 279
Google Scholar
Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Journal of Radio Wave Science 37 279
Google Scholar
[3] Zhou Y L, Yan D, Li W 2022 Phys. Rev. A 105 053714
Google Scholar
[4] Christopher L H, Matt T S, Joshua A G, Andrew D, David A A, Georg R 2017 J. Appl. Phys. 121 717
Google Scholar
[5] Ansari R, Giraud-Héraud Y, Tran Thanh Van J 1996 Dark Matter in Cosmology Quantum Measurements Experimental Gravitation (Vol. 91) (Atlantica Séguier Frontières) p341
[6] Jonathon A S, Arne S, Harald K, Robert L, Tilman P, James P S 2012 Nat. Phys. 8 819
Google Scholar
[7] Cox K C, Meyer D H, Fatemi F K 2018 Phys. Rev. Lett. 121 110502
Google Scholar
[8] Kai Y, Sun Z S, Miao R Q, Lin Y, Liu Y, An Q, Fu Y Q 2022 Chin. Opt. Lett. 20 081203
Google Scholar
[9] Meyer D H, Cox K C, Fatemi F K 2018 Appl. Phys. Lett. 112 211108
Google Scholar
[10] Otto J S, Hunter M K, Kjærgaard N 2021 J. Appl. Phys. 129 154503
Google Scholar
[11] Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Anten. Propag. 69 2455
Google Scholar
[12] 吴逢川, 林沂, 武博, 付云起 2022 71 207402
Google Scholar
Wu F C, Lin Y, Wu B, Fu Y Q 2022 Acta Phys. Sin. 71 207402
Google Scholar
[13] Yao J W, An Q, Zhou Y L, Yang K, Wu F C, Fu Y Q 2022 Optics Lett. 47 5256
Google Scholar
[14] Christopher H, Mathew S, Abdulaziz H H, Joshua A G, David A A, Georg R, Steven V 2021 IEEE Anten. Propag. Magaz. 63 63
Google Scholar
[15] Mao R Q, Lin Y, Kai Y, An Q, Fu Y Q 2022 IEEE Anten. Wire. Propag Lett. 3212057
Google Scholar
[16] 林沂, 吴逢川, 毛瑞棋, 姚佳伟, 刘燚, 安强, 付云起 2022 71 170702
Google Scholar
Lin Y, Wu F C, Mao R Q, Yao J W, Liu Y, An Q, Fu Y Q 2022 Acta Phys. Sin. 71 170702
Google Scholar
[17] David H M, Christopher O B, Donald P F, Kevin C C, Paul D K 2021 Phys. Rev. A 104 043103
Google Scholar
[18] Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nature Physics. 16 911
Google Scholar
[19] Cai M H, Xu Z S, You S H, Liu H P 2022 Photonics. 9 250
Google Scholar
[20] Quantum-Apertures DARPA https://www.darpa.mil/program/quantum-apertures [2021-05-20]
[21] Anderson D A, Paradis E G, Raithel G 2018 Appl. Phys. Lett. 113 073501
Google Scholar
[22] Anderson D A, Raithel G A, Paradis E G 2019 US Patent 10823775 B2 [2019-06-20]
[23] Holloway C L, Prajapati N, Artusio-Glimpse A, Samuel B, Matthew T S, Yoshiaki K, Andrea A, Richard W Z 2022 Appl. Phys. Lett. 120 204001
Google Scholar
[24] Wu B, Lin Y, Liao D, Liu Y, An Q, Fu Y Q 2022 Elec. Lett. 58 914
Google Scholar
[25] Ida N 2000 Engineering Electromagnetics (Berlin: Springer) p20
[26] 郭艳芳 2009 硕士学位论文 (北京: 中国科学院电子学研究所)
Guo Y F 2009 M. S. Thesis (Beijing: Institute of Electrics, Chinese Academy of Sciences) (in Chinese)
Catalog
Metrics
- Abstract views: 4880
- PDF Downloads: 131
- Cited By: 0