搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弱射频场中Rydberg原子的电磁感应透明

杨智伟 焦月春 韩小萱 赵建明 贾锁堂

引用本文:
Citation:

弱射频场中Rydberg原子的电磁感应透明

杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂

Electromagnetically induced transparency of a cesium Rydberg atom in weak radio-frequency field

Yang Zhi-Wei, Jiao Yue-Chun, Han Xiao-Xuan, Zhao Jian-Ming, Jia Suo-Tang
PDF
导出引用
  • 在铯原子室温蒸气池中研究了弱射频场中Rydberg原子阶梯型三能级系统的电磁感应透明(EIT)效应.铯原子基态6S1/2、第一激发态6P3/2和Rydberg 48D5/2态形成阶梯型三能级系统,探测光共振作用于6S1/2(F=4)6P3/2(F'=5)的跃迁,耦合光在Rydberg跃迁线6P3/2(F'=5)48D5/2附近扫描,形成Rydberg原子EIT.当对铯原子施加一个80 MHz的弱射频电场时,48D5/2 Rydberg原子的EIT光谱发生Stark频移和分裂,同时产生由射频场调制Rydberg能级的偶数级边带,测量结果与Floquet理论模拟的结果相符合.同时,改变弱射频电场的频率研究了铯Rydberg能级的自电离效应对Rydberg原子Stark谱的影响,据此,我们提出将电极板置于铯原子蒸气池内的方案以减少自电离效应的影响.在弱射频Stark谱中,mj=5/2的Stark谱与mj=1/2,3/2的二级边带形成多个能级交叉,这些能级交叉点提供了一种基于原子的精确校准射频电场的新方法.
    Rydberg atoms are highly excited atoms with large principal quantum number n, big sizes (~n2) and long lifetimes (~n3). Rydberg atoms are very sensitive to an external field due to the large polarizabilities of Rydberg atoms (~n7). Electromagnetically induced transparency (EIT) of Rydberg atom provides an ideal method to detect Rydberg atoms without destroying atoms, and can be used to measure the external direct current and radio frequency (RF) field. In this paper, we study the EIT effect of a cesium ladder-type three-level atom involving Rydberg state exposed to a weak RF field. The ground state (6S1/2), the excited state (6P3/2) and Rydberg state (48D5/2) constitute the Rydberg three-level system, in which the probe laser couples 6S1/2(F=4)6P3/2(F'=5) transition, whereas the coupling laser scans across the 6P3/248D5/2 Rydberg transition. The coupling laser (510 nm laser, propagating in the z-axis direction and linear polarization in the y-axis direction) and the probe laser (852 nm laser, linear polarization in the y-axis direction) counter-propagate through a 50-mm-long cesium vapor cell at room temperature, yielding Rydberg EIT spectra. Rydberg EIT signal is detected as a function of the detuning of the coupling laser. When a weak RF (80 MHz) electric field polarized in the x-axis direction is applied to a pair of electrode plates located on both sides of the cesium cell, the EIT spectrum of Rydberg 48D5/2 shows the Stark splitting and the even order harmonic sidebands. The experimental results are analyzed by using the Floquet theory. The simulation results accord well with the experimentally measured results. Furthermore, we also investigate the influence of the self-ionization effect of Rydberg atom on the Stark spectrum by changing the RF frequency. We put forward a proposal to avoid the effect of ionization by placing electrode plates in the cesium cell. In the weak RF-field domain, mj=5/2 Stark line crosses mj=1/2, 3/2 sidebands, these cross points provide an antenna-free method of accurately calibrating the RF electric field based on Rydberg atoms.
      通信作者: 赵建明, zhaojm@sxu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2012CB921603)、国家自然科学基金(批准号:11274209,61475090)和山西省留学基金(批准号:2014-009)资助的课题.
      Corresponding author: Zhao Jian-Ming, zhaojm@sxu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the National Natural Science Foundation of China (Grant Nos. 11274209, 61475090), and the Shanxi Scholarship Council of China (Grant No. 2014-009).
    [1]

    Jiao Y C, Han X X, Yang Z W, Li J K, Raithel G, Zhao J M, Jia S T 2016 Phys. Rev. A 94 023832

    [2]

    Savukov I M, Seltzer S J, Romalis M V, Sauer K L 2005 Phys. Rev. Lett. 95 063004

    [3]

    Patton B, Versolato O O, Hovde D C, Corsini E, Higbie J M, Budker D 2012 Appl. Phys. Lett. 101 083502

    [4]

    Li J K, Yang W G, Song Z F, Zhang H, Zhang L J, Zhao J M, Jia S T 2015 Acta Phys. Sin. 64 163201 (in Chinese) [李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂 2015 64 163201]

    [5]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press)

    [6]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [7]

    Mohapatra A K, Bason M G, Butscher B, Weatherill K J, Adams C S 2008 Nat. Phys. 4 890

    [8]

    Holloway C, Gordon J, Jefferts S, Schwarzkopf A, Anderson D, Miller S, Thaicharoen N, Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169

    [9]

    Sedlacek J A, Schwettmann A, Kbler H, Lw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819

    [10]

    Fan H, Kumar S, Sedlacek J, Kbler H, Karimkashi S, Shaffer J P 2015 J. Phys. B 48 202001

    [11]

    Sedlacek J A, Schwettmann A, Kbler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001

    [12]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104

    [13]

    Barredo D, Kbler H, Daschner R, Lw R, Pfau T 2013 Phys. Rev. Lett. 110 123002

    [14]

    Grimmel J, Mack M, Karlewski F, Jessen F, Reinschmidt M, Sndor N, Fortgh J 2015 New J. Phys. 17 053005

    [15]

    Zimmerman M L, Littman M G, Kash M M, Kleppner D 1979 Phys. Rev. A 20 2251

    [16]

    Zhu X B, Zhang H, Feng Z G, Zhang L J, Li C Y, Zhao J M, Jia S T 2010 Acta Phys. Sin. 59 2401 (in Chinese) [朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂 2010 59 2401]

    [17]

    Miller S A, Anderson D A, Raithel G 2016 New J. Phys. 18 053017

  • [1]

    Jiao Y C, Han X X, Yang Z W, Li J K, Raithel G, Zhao J M, Jia S T 2016 Phys. Rev. A 94 023832

    [2]

    Savukov I M, Seltzer S J, Romalis M V, Sauer K L 2005 Phys. Rev. Lett. 95 063004

    [3]

    Patton B, Versolato O O, Hovde D C, Corsini E, Higbie J M, Budker D 2012 Appl. Phys. Lett. 101 083502

    [4]

    Li J K, Yang W G, Song Z F, Zhang H, Zhang L J, Zhao J M, Jia S T 2015 Acta Phys. Sin. 64 163201 (in Chinese) [李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂 2015 64 163201]

    [5]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press)

    [6]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [7]

    Mohapatra A K, Bason M G, Butscher B, Weatherill K J, Adams C S 2008 Nat. Phys. 4 890

    [8]

    Holloway C, Gordon J, Jefferts S, Schwarzkopf A, Anderson D, Miller S, Thaicharoen N, Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169

    [9]

    Sedlacek J A, Schwettmann A, Kbler H, Lw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819

    [10]

    Fan H, Kumar S, Sedlacek J, Kbler H, Karimkashi S, Shaffer J P 2015 J. Phys. B 48 202001

    [11]

    Sedlacek J A, Schwettmann A, Kbler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001

    [12]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104

    [13]

    Barredo D, Kbler H, Daschner R, Lw R, Pfau T 2013 Phys. Rev. Lett. 110 123002

    [14]

    Grimmel J, Mack M, Karlewski F, Jessen F, Reinschmidt M, Sndor N, Fortgh J 2015 New J. Phys. 17 053005

    [15]

    Zimmerman M L, Littman M G, Kash M M, Kleppner D 1979 Phys. Rev. A 20 2251

    [16]

    Zhu X B, Zhang H, Feng Z G, Zhang L J, Li C Y, Zhao J M, Jia S T 2010 Acta Phys. Sin. 59 2401 (in Chinese) [朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂 2010 59 2401]

    [17]

    Miller S A, Anderson D A, Raithel G 2016 New J. Phys. 18 053017

  • [1] 夏刚, 张亚鹏, 汤婧雯, 李春燕, 吴春旺, 张杰, 周艳丽. 电磁感应透明条件下里德伯原子系统的亚稳动力学.  , 2024, 73(10): 104203. doi: 10.7498/aps.73.20240233
    [2] 韩玉龙, 刘邦, 张侃, 孙金芳, 孙辉, 丁冬生. 射频电场缀饰下铯Rydberg原子的电磁感应透明光谱.  , 2024, 73(11): 113201. doi: 10.7498/aps.73.20240355
    [3] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量.  , 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [4] 薛咏梅, 郝丽萍, 樊佳蓓, 焦月春, 赵建明. Rydberg原子nS1/2→(n + 1)S1/2双光子激发EIT-AT光谱.  , 2022, 71(4): 043202. doi: 10.7498/aps.71.20211458
    [5] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收.  , 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [6] 刘强, 何军, 王军民. 室温铯原子气室窄线宽相干布居振荡光谱.  , 2021, 70(16): 163202. doi: 10.7498/aps.70.20210405
    [7] 薛咏梅, 郝丽萍, 樊佳蓓, 焦月春, 赵建明. Rydberg原子nS1/2→(n+1)S1/2双光子激发EIT-AT光谱.  , 2021, (): . doi: 10.7498/aps.70.20211458
    [8] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位.  , 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [9] 焦月春, 赵建明, 贾锁堂. 基于Rydberg原子的超宽频带射频传感器.  , 2018, 67(7): 073201. doi: 10.7498/aps.67.20172636
    [10] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 调制激光场中Rydberg原子的电磁感应透明.  , 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [11] 白金海, 芦小刚, 缪兴绪, 裴丽娅, 王梦, 高艳磊, 王如泉, 吴令安, 傅盘铭, 左战春. Rb87冷原子电磁感应透明吸收曲线不对称性的分析.  , 2015, 64(3): 034206. doi: 10.7498/aps.64.034206
    [12] 王梦, 白金海, 裴丽娅, 芦小刚, 高艳磊, 王如泉, 吴令安, 杨世平, 庞兆广, 傅盘铭, 左战春. 铷原子耦合光频率近共振时的电磁感应透明.  , 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [13] 王丽梅, 张好, 李昌勇, 赵建明, 贾锁堂. 铯Rydberg原子Stark态的避免交叉.  , 2013, 62(1): 013201. doi: 10.7498/aps.62.013201
    [14] 邱田会, 杨国建. 微波射频场调制下Λ型三能级原子系统的电磁感应光栅.  , 2012, 61(1): 014205. doi: 10.7498/aps.61.014205
    [15] 佘彦超, 张蔚曦, 王登龙. 电磁感应透明介质中非线性法拉第偏转.  , 2011, 60(6): 064205. doi: 10.7498/aps.60.064205
    [16] 朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂. Cs 39D态Rydberg原子Stark光谱的实验研究.  , 2010, 59(4): 2401-2405. doi: 10.7498/aps.59.2401
    [17] 庄 飞, 沈建其, 叶 军. 调控电磁感应透明气体折射率实现可控光子带隙结构.  , 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [18] 孟慧艳, 康 帅, 史庭云, 詹明生. 平行电磁场中的Rydberg锂原子吸收谱的模型势计算.  , 2007, 56(6): 3198-3204. doi: 10.7498/aps.56.3198
    [19] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究.  , 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [20] 刘正东, 武 强. 被三个耦合场驱动的四能级原子的电磁感应透明.  , 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
计量
  • 文章访问数:  7602
  • PDF下载量:  266
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-14
  • 修回日期:  2017-02-04
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map