-
在铯原子室温蒸气池中研究了弱射频场中Rydberg原子阶梯型三能级系统的电磁感应透明(EIT)效应.铯原子基态6S1/2、第一激发态6P3/2和Rydberg 48D5/2态形成阶梯型三能级系统,探测光共振作用于6S1/2(F=4)6P3/2(F'=5)的跃迁,耦合光在Rydberg跃迁线6P3/2(F'=5)48D5/2附近扫描,形成Rydberg原子EIT.当对铯原子施加一个80 MHz的弱射频电场时,48D5/2 Rydberg原子的EIT光谱发生Stark频移和分裂,同时产生由射频场调制Rydberg能级的偶数级边带,测量结果与Floquet理论模拟的结果相符合.同时,改变弱射频电场的频率研究了铯Rydberg能级的自电离效应对Rydberg原子Stark谱的影响,据此,我们提出将电极板置于铯原子蒸气池内的方案以减少自电离效应的影响.在弱射频Stark谱中,mj=5/2的Stark谱与mj=1/2,3/2的二级边带形成多个能级交叉,这些能级交叉点提供了一种基于原子的精确校准射频电场的新方法.Rydberg atoms are highly excited atoms with large principal quantum number n, big sizes (~n2) and long lifetimes (~n3). Rydberg atoms are very sensitive to an external field due to the large polarizabilities of Rydberg atoms (~n7). Electromagnetically induced transparency (EIT) of Rydberg atom provides an ideal method to detect Rydberg atoms without destroying atoms, and can be used to measure the external direct current and radio frequency (RF) field. In this paper, we study the EIT effect of a cesium ladder-type three-level atom involving Rydberg state exposed to a weak RF field. The ground state (6S1/2), the excited state (6P3/2) and Rydberg state (48D5/2) constitute the Rydberg three-level system, in which the probe laser couples 6S1/2(F=4)6P3/2(F'=5) transition, whereas the coupling laser scans across the 6P3/248D5/2 Rydberg transition. The coupling laser (510 nm laser, propagating in the z-axis direction and linear polarization in the y-axis direction) and the probe laser (852 nm laser, linear polarization in the y-axis direction) counter-propagate through a 50-mm-long cesium vapor cell at room temperature, yielding Rydberg EIT spectra. Rydberg EIT signal is detected as a function of the detuning of the coupling laser. When a weak RF (80 MHz) electric field polarized in the x-axis direction is applied to a pair of electrode plates located on both sides of the cesium cell, the EIT spectrum of Rydberg 48D5/2 shows the Stark splitting and the even order harmonic sidebands. The experimental results are analyzed by using the Floquet theory. The simulation results accord well with the experimentally measured results. Furthermore, we also investigate the influence of the self-ionization effect of Rydberg atom on the Stark spectrum by changing the RF frequency. We put forward a proposal to avoid the effect of ionization by placing electrode plates in the cesium cell. In the weak RF-field domain, mj=5/2 Stark line crosses mj=1/2, 3/2 sidebands, these cross points provide an antenna-free method of accurately calibrating the RF electric field based on Rydberg atoms.
[1] Jiao Y C, Han X X, Yang Z W, Li J K, Raithel G, Zhao J M, Jia S T 2016 Phys. Rev. A 94 023832
[2] Savukov I M, Seltzer S J, Romalis M V, Sauer K L 2005 Phys. Rev. Lett. 95 063004
[3] Patton B, Versolato O O, Hovde D C, Corsini E, Higbie J M, Budker D 2012 Appl. Phys. Lett. 101 083502
[4] Li J K, Yang W G, Song Z F, Zhang H, Zhang L J, Zhao J M, Jia S T 2015 Acta Phys. Sin. 64 163201 (in Chinese) [李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂 2015 64 163201]
[5] Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press)
[6] Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003
[7] Mohapatra A K, Bason M G, Butscher B, Weatherill K J, Adams C S 2008 Nat. Phys. 4 890
[8] Holloway C, Gordon J, Jefferts S, Schwarzkopf A, Anderson D, Miller S, Thaicharoen N, Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169
[9] Sedlacek J A, Schwettmann A, Kbler H, Lw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819
[10] Fan H, Kumar S, Sedlacek J, Kbler H, Karimkashi S, Shaffer J P 2015 J. Phys. B 48 202001
[11] Sedlacek J A, Schwettmann A, Kbler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001
[12] Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104
[13] Barredo D, Kbler H, Daschner R, Lw R, Pfau T 2013 Phys. Rev. Lett. 110 123002
[14] Grimmel J, Mack M, Karlewski F, Jessen F, Reinschmidt M, Sndor N, Fortgh J 2015 New J. Phys. 17 053005
[15] Zimmerman M L, Littman M G, Kash M M, Kleppner D 1979 Phys. Rev. A 20 2251
[16] Zhu X B, Zhang H, Feng Z G, Zhang L J, Li C Y, Zhao J M, Jia S T 2010 Acta Phys. Sin. 59 2401 (in Chinese) [朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂 2010 59 2401]
[17] Miller S A, Anderson D A, Raithel G 2016 New J. Phys. 18 053017
-
[1] Jiao Y C, Han X X, Yang Z W, Li J K, Raithel G, Zhao J M, Jia S T 2016 Phys. Rev. A 94 023832
[2] Savukov I M, Seltzer S J, Romalis M V, Sauer K L 2005 Phys. Rev. Lett. 95 063004
[3] Patton B, Versolato O O, Hovde D C, Corsini E, Higbie J M, Budker D 2012 Appl. Phys. Lett. 101 083502
[4] Li J K, Yang W G, Song Z F, Zhang H, Zhang L J, Zhao J M, Jia S T 2015 Acta Phys. Sin. 64 163201 (in Chinese) [李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂 2015 64 163201]
[5] Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press)
[6] Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003
[7] Mohapatra A K, Bason M G, Butscher B, Weatherill K J, Adams C S 2008 Nat. Phys. 4 890
[8] Holloway C, Gordon J, Jefferts S, Schwarzkopf A, Anderson D, Miller S, Thaicharoen N, Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169
[9] Sedlacek J A, Schwettmann A, Kbler H, Lw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819
[10] Fan H, Kumar S, Sedlacek J, Kbler H, Karimkashi S, Shaffer J P 2015 J. Phys. B 48 202001
[11] Sedlacek J A, Schwettmann A, Kbler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001
[12] Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104
[13] Barredo D, Kbler H, Daschner R, Lw R, Pfau T 2013 Phys. Rev. Lett. 110 123002
[14] Grimmel J, Mack M, Karlewski F, Jessen F, Reinschmidt M, Sndor N, Fortgh J 2015 New J. Phys. 17 053005
[15] Zimmerman M L, Littman M G, Kash M M, Kleppner D 1979 Phys. Rev. A 20 2251
[16] Zhu X B, Zhang H, Feng Z G, Zhang L J, Li C Y, Zhao J M, Jia S T 2010 Acta Phys. Sin. 59 2401 (in Chinese) [朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂 2010 59 2401]
[17] Miller S A, Anderson D A, Raithel G 2016 New J. Phys. 18 053017
计量
- 文章访问数: 7602
- PDF下载量: 266
- 被引次数: 0