Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Autler-Townes splitting of ultracold cesium Rydberg atoms

Xue Yong-Mei Hao Li-Ping Jiao Yue-Chun Han Xiao-Xuan Bai Su-Ying Zhao Jian-Ming Jia Suo-Tang

Citation:

Autler-Townes splitting of ultracold cesium Rydberg atoms

Xue Yong-Mei, Hao Li-Ping, Jiao Yue-Chun, Han Xiao-Xuan, Bai Su-Ying, Zhao Jian-Ming, Jia Suo-Tang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Autler-Townes (A-T) splitting, known as an AC Stark effect, shows a change of an absorption/emission spectral line of a probe beam when an oscillating field is tuned in resonance with the atomic or molecular transition. The A-T splitting is observed in different three-level atoms and widely investigated in a vapor cell and in a magneto-optical trap (MOT). The A-T splitting plays an important role in the atom-based microwave electric-field measurements where a cascade three-level system involving Rydberg state is adopted. In this work, an A-T splitting is observed in an ultracold cesium Rydberg gas, which is cooled down to about 100 pK and center density is about 1010 cm-3 in a conventional MOT by using the laser cooling technology. We present the A-T spectrum in a ladder three-level atomic system involving a 34D5/2 Rydberg state. The cesium ground state (6S1/2), excited state (6P3/2) and Rydberg state (34D5/2) constitute a Rydberg three-level system. A coupling laser, locked to the Rydberg transition by using a Rydberg electromagnetically induced transparency signal that is obtained from a cesium room-temperature vapor cell, couples 6P3/2 (F'=5) 34D5/2 Rydberg transition. A weak probe laser, stabilized to a ground-state transition by using a polarization spectroscopy, is swept, covering the transition 6S1/2 (F=4) 6P3/2 (F'=5) with a double-passed acousto-optic modulator. The probe and coupling lasers are counter-propagated through the MOT center. The power of probe light is 200 pW, corresponding Rabi frequency p=21.05 MHz. During the experiment, 50 s after turning off the trapping laser, both the coupling and probe beams are switched on and last 100 s. The A-T spectrum as a function of the probe detuning is detected with a single-photon counter module detector. We use Gaussian multiple peak fitting to obtain the positions of the A-T peaks and the A-T splitting. The measured A-T splitting is proportional to the Rabi frequency of the coupling light. We numerically solve the density matrix equations to obtain the A-T spectrum, and the calculations reproduce A-T spectra well. The measured A-T splitting shows good agreement with the theoretical calculation for Rabi frequency of the coupling light c29 MHz. The A-T splitting is less than the calculation for the case of c29 MHz, the deviation is mainly attributed to the increased dephasing rate induced by the strong interaction between Rydberg atoms, whose number increases with the coupling laser Rabi frequency. In this work, the adopted method for the cascade three-level system involving Rydberg state is also suitable for -and V-type cases.
    • Funds: Project supported by the National Key RD Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 11274209, 61475090, 61775124), the Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), the Key Program of the National Natural Science Foundation of China (Grant No. 11434007), and the Research Project Supported by Shanxi Scholarship Council of China (Grant No. 2014-009).
    [1]

    Autler S H, Townes C H 1955 Phys. Rev. 100 703

    [2]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp225-230

    [3]

    Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106

    [4]

    Picque J L, Pinard J 1976 J. Phys. B 9 L77

    [5]

    Cahuzac P, Vetter R 1976 Phys. Rev. A 14 270

    [6]

    Mitsunaga M, Imoto N 1999 Phys. Rev. A 59 4773

    [7]

    Liang Q, Yang B, Yang J, Zhang T, Wang J 2010 Chin. Phys. B 19 113207

    [8]

    Baur M, Filipp S, Bianchetti R, Fink J M, Gppl M, Steffen L, Leek P J, Blais A, Wallraff A 2009 Phys. Rev. Lett. 102 243602

    [9]

    Sillanp M A, Li J, Cicak K, Altomare F, Park J I, Simmonds R W 2009 Phys. Rev. Lett. 103 193601

    [10]

    Ahmed E, Hansson A, Qi P, Kirova T, Lazoudis A, Kotochigova S, Lyyra A M, Li L, Qi J, Magnier S 2006 J. Chem. Phys. 124 084308

    [11]

    Piotrowicz M J, Maccormick C, Kowalczyk A, Bergamini S, Beterov I I, Yakshina E A 2011 New J. Phys. 13 093012

    [12]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) pp38-49

    [13]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503

    [14]

    Feng Z G, Zhang H, Che J L, Zhang L J, Li C Y, Zhao J M, Jia S T 2011 Phys. Rev. A 83 042711

    [15]

    Teo B K, Feldbaum D, Cubel T, Guest J R, Berman P R, Raithel G 2003 Phys. Rev. A 68 053407

    [16]

    Zhang H, Wang L M, Chen J, Bao S X, Zhang L J, Zhao J M, Jia S T 2013 Phys. Rev. A 87 033835

    [17]

    DeSalvo B J, Aman J A, Gaul C, Pohl T, Yoshida S, Burgdrfer J, Hazzard K R A, Dunning F B, Killian T C 2016 Phys. Rev. A 93 022709

    [18]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [19]

    Gorniaczyk H, Tresp C, Schmidt J, Fedder H, Hofferberth S 2014 Phys. Rev. Lett. 113 053601

    [20]

    Viscor D, Li W, Lesanovsky I 2015 New J. Phys. 17 033007

    [21]

    Sedlacek J, Schwettmann A, Kubler H, Lw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819

    [22]

    Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G 2002 J. Phys. B 35 5141

    [23]

    Jiao Y C, Li J K, Wang L M, Zhang H, Zhang L J, Zhao J M, Jia S T 2016 Chin. Phys. B 25 053201

    [24]

    Zhang H, Zhang L J, Wang L M, Bao S X, Zhao J M, Jia S T 2014 Phys. Rev. A 90 043849

  • [1]

    Autler S H, Townes C H 1955 Phys. Rev. 100 703

    [2]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp225-230

    [3]

    Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106

    [4]

    Picque J L, Pinard J 1976 J. Phys. B 9 L77

    [5]

    Cahuzac P, Vetter R 1976 Phys. Rev. A 14 270

    [6]

    Mitsunaga M, Imoto N 1999 Phys. Rev. A 59 4773

    [7]

    Liang Q, Yang B, Yang J, Zhang T, Wang J 2010 Chin. Phys. B 19 113207

    [8]

    Baur M, Filipp S, Bianchetti R, Fink J M, Gppl M, Steffen L, Leek P J, Blais A, Wallraff A 2009 Phys. Rev. Lett. 102 243602

    [9]

    Sillanp M A, Li J, Cicak K, Altomare F, Park J I, Simmonds R W 2009 Phys. Rev. Lett. 103 193601

    [10]

    Ahmed E, Hansson A, Qi P, Kirova T, Lazoudis A, Kotochigova S, Lyyra A M, Li L, Qi J, Magnier S 2006 J. Chem. Phys. 124 084308

    [11]

    Piotrowicz M J, Maccormick C, Kowalczyk A, Bergamini S, Beterov I I, Yakshina E A 2011 New J. Phys. 13 093012

    [12]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) pp38-49

    [13]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503

    [14]

    Feng Z G, Zhang H, Che J L, Zhang L J, Li C Y, Zhao J M, Jia S T 2011 Phys. Rev. A 83 042711

    [15]

    Teo B K, Feldbaum D, Cubel T, Guest J R, Berman P R, Raithel G 2003 Phys. Rev. A 68 053407

    [16]

    Zhang H, Wang L M, Chen J, Bao S X, Zhang L J, Zhao J M, Jia S T 2013 Phys. Rev. A 87 033835

    [17]

    DeSalvo B J, Aman J A, Gaul C, Pohl T, Yoshida S, Burgdrfer J, Hazzard K R A, Dunning F B, Killian T C 2016 Phys. Rev. A 93 022709

    [18]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [19]

    Gorniaczyk H, Tresp C, Schmidt J, Fedder H, Hofferberth S 2014 Phys. Rev. Lett. 113 053601

    [20]

    Viscor D, Li W, Lesanovsky I 2015 New J. Phys. 17 033007

    [21]

    Sedlacek J, Schwettmann A, Kubler H, Lw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819

    [22]

    Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G 2002 J. Phys. B 35 5141

    [23]

    Jiao Y C, Li J K, Wang L M, Zhang H, Zhang L J, Zhao J M, Jia S T 2016 Chin. Phys. B 25 053201

    [24]

    Zhang H, Zhang L J, Wang L M, Bao S X, Zhao J M, Jia S T 2014 Phys. Rev. A 90 043849

  • [1] Han Yu-Long, Liu Bang, Zhang Kan, Sun Jin-Fang, Sun Hui, Ding Dong-Sheng. Electromagnetically induced transparency spectra of cesium Rydberg atoms decorated by radio-frequency fields. Acta Physica Sinica, 2024, 73(11): 113201. doi: 10.7498/aps.73.20240355
    [2] Wu Bo, Lin Yi, Wu Feng-Chuan, Chen Xiao-Zhang, An Qiang, Liu Yi, Fu Yun-Qi. Quantum microwave electric field measurement technology based on enhancement electric filed resonator. Acta Physica Sinica, 2023, 72(3): 034204. doi: 10.7498/aps.72.20221582
    [3] Xue Yong-Mei, Hao Li-Ping, Fan Jia-Bei, Jiao Yue-Chun, Zhao Jian-Ming. nS1/2→(n+1)S1/2 two-photon excitation EIT-AT spectrum of Rydberg atom. Acta Physica Sinica, 2022, 71(4): 043202. doi: 10.7498/aps.71.20211458
    [4] Wang Dan, Guo Rui-Xiang, Dai Yu-Peng, Zhou Hai-Tao. Degenerate four-wave mixing-based double-channel optical gain spectrum with two frequency bands. Acta Physica Sinica, 2021, 70(10): 104204. doi: 10.7498/aps.70.20201778
    [5] Liu Qiang, He Jun, Wang Jun-Min. Narrow-linewidth coherent population oscillation spectroscopy of room-temperature cesium atomic ensemble. Acta Physica Sinica, 2021, 70(16): 163202. doi: 10.7498/aps.70.20210405
    [6] Fan Jia-Bei, Hao Li-Ping, Bai Jing-Xu, Jiao Yue-Chun, Zhao Jian-Ming, Jia Suo-Tang. High-sensitive microwave sensor and communication based on Rydberg atoms. Acta Physica Sinica, 2021, 70(6): 063201. doi: 10.7498/aps.70.20201401
    [7] nS1/2→(n+1)S1/2 two-photon excitation EIT-AT spectrum of Rydberg atom. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211458
    [8] Chen Zhi-Wen, She Zhen-Yue, Liao Kai-Yu, Huang Wei, Yan Hui, Zhu Shi-Liang. Terahertz measurement based on Rydberg atomic antenna. Acta Physica Sinica, 2021, 70(6): 060702. doi: 10.7498/aps.70.20201870
    [9] Zhao Jia-Dong, Zhang Hao, Yang Wen-Guang, Zhao Jing-Hua, Jing Ming-Yong, Zhang Lin-Jie. Deceleration of optical pulses based on electromagnetically induced transparency of Rydberg atoms. Acta Physica Sinica, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [10] Jiao Yue-Chun, Zhao Jian-Ming, Jia Suo-Tang. Broadband Rydberg atom-based radio-frequency field sensor. Acta Physica Sinica, 2018, 67(7): 073201. doi: 10.7498/aps.67.20172636
    [11] Fan Jia-Bei, Jiao Yue-Chun, Hao Li-Ping, Xue Yong-Mei, Zhao Jian-Ming, Jia Suo-Tang. Microwave electromagnetically induced transparency and Aulter-Townes spectrum of cesium Rydberg atom. Acta Physica Sinica, 2018, 67(9): 093201. doi: 10.7498/aps.67.20172645
    [12] Yang Zhi-Wei, Jiao Yue-Chun, Han Xiao-Xuan, Zhao Jian-Ming, Jia Suo-Tang. Electromagnetically induced transparency of a cesium Rydberg atom in weak radio-frequency field. Acta Physica Sinica, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [13] Yang Zhi-Wei, Jiao Yue-Chun, Han Xiao-Xuan, Zhao Jian-Ming, Jia Suo-Tang. Electromagnetically induced transparency of Rydberg atoms in modulated laser fields. Acta Physica Sinica, 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [14] Wang Li-Mei, Zhang Hao, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. Observation of the avoided crossing of Cs Rydberg Stark states. Acta Physica Sinica, 2013, 62(1): 013201. doi: 10.7498/aps.62.013201
    [15] Wang Yong, Zhang Hao, Chen Jie, Wang Li-Mei, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. State transfer of ultracold nS Rydberg atoms. Acta Physica Sinica, 2013, 62(9): 093201. doi: 10.7498/aps.62.093201
    [16] Che Jun-Ling, Zhang Hao, Feng Zhi-Gang, Zhang Lin-Jie, Zhao Jian-Ming, Jia Suo-Tang. Evolution of ultracold 70S Cs Rydberg atom. Acta Physica Sinica, 2012, 61(4): 043205. doi: 10.7498/aps.61.043205
    [17] Feng Zhi-Gang, Zhang Hao, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. Measurement of lifetime of ultracold cesium Rydberg states. Acta Physica Sinica, 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [18] Zhu Xing-Bo, Zhang Hao, Feng Zhi-Gang, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. Experimental investigation of Stark effect of ultra-cold 39D cesium Rydberg atoms. Acta Physica Sinica, 2010, 59(4): 2401-2405. doi: 10.7498/aps.59.2401
    [19] Meng Hui-Yan, Kang Shuai, Shi Ting-Yun, Zhan Ming-Sheng. Model potential calculations of oscillator strength spectra of lithium atoms in parallel electric and magnetic fields. Acta Physica Sinica, 2007, 56(6): 3198-3204. doi: 10.7498/aps.56.3198
    [20] TANG JIAN-ZHI, XU XIANG-YUAN, HUANC WEN, ZHAO WEN-ZHENG. EVEL STRUCTURES OF RYDBERG STATES OF Ru ATOM. Acta Physica Sinica, 1990, 39(10): 1531-1535. doi: 10.7498/aps.39.1531
Metrics
  • Abstract views:  7855
  • PDF Downloads:  334
  • Cited By: 0
Publishing process
  • Received Date:  08 June 2017
  • Accepted Date:  27 July 2017
  • Published Online:  05 November 2017

/

返回文章
返回
Baidu
map