-
本文主要研究了调制探测激光场中铯Rydberg 原子阶梯型三能级系统的电磁感应透明(EIT) 效应. 铯原子基态6S1/2, 第一激发态6P3/2 和Rydberg 态形成阶梯型三能级系统, 探测光作用于6S1/2 (F = 4)6P3/2(F' = 5) 的跃迁, 耦合光在Rydberg 跃迁线6P3/249S1/2 附近扫描, 形成Rydberg 原子EIT. 当对探测光频率施加一个几kHz 的调制时, 调制解调后的EIT 信号分裂为两个峰, 双峰间距与调制频率无关,而与调制幅度导致的失谐量大小(频率调制幅度) 成正比, 双峰间隔的一半等于探测光频率调制幅度的p/c = 1.67 倍. 实验结果与理论计算相一致. 本文的研究结果可应用于激光线型和频率抖动的实时监测.Rydberg atoms, with large principal quantum number n, have been widely investigated in recent years due to their peculiar properties, such as big sizes, long lifetimes and strong interactions with fields and other Rydberg atoms. Rydberg atoms are very sensitive to external fields due to their large polarizabilities scaling as n7.These make Rydberg atoms an ideal candidate for the quantum information, the many-body interaction, etc.In this work, we investigate the Rydberg atoms using electromagneticlly induced transparency (EIT) in a ladder three-level system. The EIT is a quantum interference effect between two excitation path-ways driven by two laser fields. The main idea is performed in a room temperature cesium vapor cell, where the probe laser frequency is modulated. The ground state (6P1/2), excited state (6P3/2), and Rydberg state (nS1/2) constitute a Rydberg three-level system, in which the probe laser is fixed to the 6S1/2 (F = 4)6P3/2 (F = 5) transition by saturated absorption spectrum technique, whereas the coupling laser is scanned across the 6P3/249S1/2 transition. We detect the demodulated EIT signal with the lock-in amplifier (SR830). The modulated EIT signal shows a two-peak structure. The measured spacing between two peaks increases with the frequency detuning, caused by the modulation amplitude, and half the spacing between the peak-to-peak is nearly 1.67 times the modulation amplitude of the probe laser; the measured result shows that the splitting is independent of the modulation frequency. The experimental results are in agreement with the theoretical calculations. The results in our work can be used for real-time monitoring of the laser-line profiles and the fluctuation of laser frequency.
[1] Harris S E 1997 Phys. Today 50 36
[2] Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594
[3] Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001 Phys. Rev. Lett. 86 783
[4] Lee H, Fleischhauer M, Scully M O 1998 Phys. Rev. A 58 2587
[5] Wilk T, Getan A, Evellin C, Wolters J, Miroshnychenko Y Grangier P, Browaeys A 2010 Phys. Rev. Lett. 104 010502
[6] Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503
[7] Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, Ct R, Eyler E E, Gould P L 2004 Phys. Rev. Lett. 93 063001
[8] Cubel Liebisch T, Reinhard A, Berman P R, Raithel G 2005 Phys. Rev. Lett. 95 253002
[9] Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003
[10] Mohapatra A K, Bason M G, Butscher B, Weatherill K J, Adams C S 2008 Nat. Phys. 4 890
[11] Dudin Y O, Kuzmich A 2012 Science 336 887889
[12] Peyronel T, Fisrtenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 488 11361
[13] Sedlacek J A, Schwettmann A, Kbler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001
[14] Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102
[15] Li J K, Yang W G, Song Z F, Zhang H, Zhang L J, Zhao J M, Jia S T 2015 Acta Phys. Sin. 64 163201 (in Chinese) [李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂 2015 64 163201]
-
[1] Harris S E 1997 Phys. Today 50 36
[2] Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594
[3] Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001 Phys. Rev. Lett. 86 783
[4] Lee H, Fleischhauer M, Scully M O 1998 Phys. Rev. A 58 2587
[5] Wilk T, Getan A, Evellin C, Wolters J, Miroshnychenko Y Grangier P, Browaeys A 2010 Phys. Rev. Lett. 104 010502
[6] Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503
[7] Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, Ct R, Eyler E E, Gould P L 2004 Phys. Rev. Lett. 93 063001
[8] Cubel Liebisch T, Reinhard A, Berman P R, Raithel G 2005 Phys. Rev. Lett. 95 253002
[9] Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003
[10] Mohapatra A K, Bason M G, Butscher B, Weatherill K J, Adams C S 2008 Nat. Phys. 4 890
[11] Dudin Y O, Kuzmich A 2012 Science 336 887889
[12] Peyronel T, Fisrtenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 488 11361
[13] Sedlacek J A, Schwettmann A, Kbler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001
[14] Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102
[15] Li J K, Yang W G, Song Z F, Zhang H, Zhang L J, Zhao J M, Jia S T 2015 Acta Phys. Sin. 64 163201 (in Chinese) [李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂 2015 64 163201]
计量
- 文章访问数: 7078
- PDF下载量: 252
- 被引次数: 0