-
主要研究超冷铯Rydberg原子阶梯型三能级系统的Autler-Townes(A-T)分裂.铯原子基态6S1/2、第一激发态6P3/2和Rydberg态形成阶梯型三能级系统,强耦合光共振作用于6P3/2(F'=5)34D5/2的跃迁,探测光由偏振光谱锁定在6S1/2(F=4)6P3/2(F'=5)的跃迁,并由双通的声光调制器在其共振跃迁附近扫描,形成的Rydberg原子A-T分裂谱由单光子计数器探测.A-T光谱的双峰间距与耦合光的拉比频率成正比,实验结果与理论计算在耦合光拉比频率c29 MHz时符合得很好,在拉比频率c29 MHz时,测量的A-T分裂比理论计算值小13%.产生偏差的主要原因是由于较大的耦合光拉比频率c增加了激发的Rydberg原子数,Rydberg原子间的相互作用产生了较大的退相干率所致.
-
关键词:
- Rydberg原子 /
- Autler-Townes分裂 /
- 阶梯型三能级系统
Autler-Townes (A-T) splitting, known as an AC Stark effect, shows a change of an absorption/emission spectral line of a probe beam when an oscillating field is tuned in resonance with the atomic or molecular transition. The A-T splitting is observed in different three-level atoms and widely investigated in a vapor cell and in a magneto-optical trap (MOT). The A-T splitting plays an important role in the atom-based microwave electric-field measurements where a cascade three-level system involving Rydberg state is adopted. In this work, an A-T splitting is observed in an ultracold cesium Rydberg gas, which is cooled down to about 100 pK and center density is about 1010 cm-3 in a conventional MOT by using the laser cooling technology. We present the A-T spectrum in a ladder three-level atomic system involving a 34D5/2 Rydberg state. The cesium ground state (6S1/2), excited state (6P3/2) and Rydberg state (34D5/2) constitute a Rydberg three-level system. A coupling laser, locked to the Rydberg transition by using a Rydberg electromagnetically induced transparency signal that is obtained from a cesium room-temperature vapor cell, couples 6P3/2 (F'=5) 34D5/2 Rydberg transition. A weak probe laser, stabilized to a ground-state transition by using a polarization spectroscopy, is swept, covering the transition 6S1/2 (F=4) 6P3/2 (F'=5) with a double-passed acousto-optic modulator. The probe and coupling lasers are counter-propagated through the MOT center. The power of probe light is 200 pW, corresponding Rabi frequency p=21.05 MHz. During the experiment, 50 s after turning off the trapping laser, both the coupling and probe beams are switched on and last 100 s. The A-T spectrum as a function of the probe detuning is detected with a single-photon counter module detector. We use Gaussian multiple peak fitting to obtain the positions of the A-T peaks and the A-T splitting. The measured A-T splitting is proportional to the Rabi frequency of the coupling light. We numerically solve the density matrix equations to obtain the A-T spectrum, and the calculations reproduce A-T spectra well. The measured A-T splitting shows good agreement with the theoretical calculation for Rabi frequency of the coupling light c29 MHz. The A-T splitting is less than the calculation for the case of c29 MHz, the deviation is mainly attributed to the increased dephasing rate induced by the strong interaction between Rydberg atoms, whose number increases with the coupling laser Rabi frequency. In this work, the adopted method for the cascade three-level system involving Rydberg state is also suitable for -and V-type cases.-
Keywords:
- Rydberg atom /
- Autler-Townes splitting /
- ladder three-level system
[1] Autler S H, Townes C H 1955 Phys. Rev. 100 703
[2] Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp225-230
[3] Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106
[4] Picque J L, Pinard J 1976 J. Phys. B 9 L77
[5] Cahuzac P, Vetter R 1976 Phys. Rev. A 14 270
[6] Mitsunaga M, Imoto N 1999 Phys. Rev. A 59 4773
[7] Liang Q, Yang B, Yang J, Zhang T, Wang J 2010 Chin. Phys. B 19 113207
[8] Baur M, Filipp S, Bianchetti R, Fink J M, Gppl M, Steffen L, Leek P J, Blais A, Wallraff A 2009 Phys. Rev. Lett. 102 243602
[9] Sillanp M A, Li J, Cicak K, Altomare F, Park J I, Simmonds R W 2009 Phys. Rev. Lett. 103 193601
[10] Ahmed E, Hansson A, Qi P, Kirova T, Lazoudis A, Kotochigova S, Lyyra A M, Li L, Qi J, Magnier S 2006 J. Chem. Phys. 124 084308
[11] Piotrowicz M J, Maccormick C, Kowalczyk A, Bergamini S, Beterov I I, Yakshina E A 2011 New J. Phys. 13 093012
[12] Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) pp38-49
[13] Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503
[14] Feng Z G, Zhang H, Che J L, Zhang L J, Li C Y, Zhao J M, Jia S T 2011 Phys. Rev. A 83 042711
[15] Teo B K, Feldbaum D, Cubel T, Guest J R, Berman P R, Raithel G 2003 Phys. Rev. A 68 053407
[16] Zhang H, Wang L M, Chen J, Bao S X, Zhang L J, Zhao J M, Jia S T 2013 Phys. Rev. A 87 033835
[17] DeSalvo B J, Aman J A, Gaul C, Pohl T, Yoshida S, Burgdrfer J, Hazzard K R A, Dunning F B, Killian T C 2016 Phys. Rev. A 93 022709
[18] Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003
[19] Gorniaczyk H, Tresp C, Schmidt J, Fedder H, Hofferberth S 2014 Phys. Rev. Lett. 113 053601
[20] Viscor D, Li W, Lesanovsky I 2015 New J. Phys. 17 033007
[21] Sedlacek J, Schwettmann A, Kubler H, Lw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819
[22] Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G 2002 J. Phys. B 35 5141
[23] Jiao Y C, Li J K, Wang L M, Zhang H, Zhang L J, Zhao J M, Jia S T 2016 Chin. Phys. B 25 053201
[24] Zhang H, Zhang L J, Wang L M, Bao S X, Zhao J M, Jia S T 2014 Phys. Rev. A 90 043849
-
[1] Autler S H, Townes C H 1955 Phys. Rev. 100 703
[2] Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp225-230
[3] Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106
[4] Picque J L, Pinard J 1976 J. Phys. B 9 L77
[5] Cahuzac P, Vetter R 1976 Phys. Rev. A 14 270
[6] Mitsunaga M, Imoto N 1999 Phys. Rev. A 59 4773
[7] Liang Q, Yang B, Yang J, Zhang T, Wang J 2010 Chin. Phys. B 19 113207
[8] Baur M, Filipp S, Bianchetti R, Fink J M, Gppl M, Steffen L, Leek P J, Blais A, Wallraff A 2009 Phys. Rev. Lett. 102 243602
[9] Sillanp M A, Li J, Cicak K, Altomare F, Park J I, Simmonds R W 2009 Phys. Rev. Lett. 103 193601
[10] Ahmed E, Hansson A, Qi P, Kirova T, Lazoudis A, Kotochigova S, Lyyra A M, Li L, Qi J, Magnier S 2006 J. Chem. Phys. 124 084308
[11] Piotrowicz M J, Maccormick C, Kowalczyk A, Bergamini S, Beterov I I, Yakshina E A 2011 New J. Phys. 13 093012
[12] Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) pp38-49
[13] Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503
[14] Feng Z G, Zhang H, Che J L, Zhang L J, Li C Y, Zhao J M, Jia S T 2011 Phys. Rev. A 83 042711
[15] Teo B K, Feldbaum D, Cubel T, Guest J R, Berman P R, Raithel G 2003 Phys. Rev. A 68 053407
[16] Zhang H, Wang L M, Chen J, Bao S X, Zhang L J, Zhao J M, Jia S T 2013 Phys. Rev. A 87 033835
[17] DeSalvo B J, Aman J A, Gaul C, Pohl T, Yoshida S, Burgdrfer J, Hazzard K R A, Dunning F B, Killian T C 2016 Phys. Rev. A 93 022709
[18] Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003
[19] Gorniaczyk H, Tresp C, Schmidt J, Fedder H, Hofferberth S 2014 Phys. Rev. Lett. 113 053601
[20] Viscor D, Li W, Lesanovsky I 2015 New J. Phys. 17 033007
[21] Sedlacek J, Schwettmann A, Kubler H, Lw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819
[22] Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G 2002 J. Phys. B 35 5141
[23] Jiao Y C, Li J K, Wang L M, Zhang H, Zhang L J, Zhao J M, Jia S T 2016 Chin. Phys. B 25 053201
[24] Zhang H, Zhang L J, Wang L M, Bao S X, Zhao J M, Jia S T 2014 Phys. Rev. A 90 043849
计量
- 文章访问数: 7828
- PDF下载量: 334
- 被引次数: 0