搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

射频电场缀饰下铯Rydberg原子的电磁感应透明光谱

韩玉龙 刘邦 张侃 孙金芳 孙辉 丁冬生

引用本文:
Citation:

射频电场缀饰下铯Rydberg原子的电磁感应透明光谱

韩玉龙, 刘邦, 张侃, 孙金芳, 孙辉, 丁冬生

Electromagnetically induced transparency spectra of cesium Rydberg atoms decorated by radio-frequency fields

Han Yu-Long, Liu Bang, Zhang Kan, Sun Jin-Fang, Sun Hui, Ding Dong-Sheng
PDF
HTML
导出引用
  • 采用全红外光激发Rydberg原子的方案, 选择探测光(852 nm)、缀饰光(1470 nm)和耦合光(780 nm), 利用三光子激发方式实现了Cs原子Rydberg态(49P3/2)的制备. 实验上, 观测到射频电场作用下|7S1/2$\rangle $ → |49P3/2$\rangle $ Rydberg 跃迁形成的电磁感应透明(EIT)效应, 实现对Rydberg 原子的光学探测, 根据EIT光谱的变化来探究射频电场的幅度和频率对光谱的影响. 研究表明, 随着射频电场幅度的增强, 观察到光谱现象从越发明显的ac Stark 能移逐步过渡到复杂混合态的多个调制边带, 并根据EIT主峰的频移进一步讨论频率对铯泡中电场屏蔽的影响. 采用将低频电场调制到射频电场的方式, 实现了基于Rydberg原子的50 Hz—1 kHz范围内电场解调, 并对解调信号的幅度和频率进行拟合, 保真度达到95%. 研究结果对Rydberg原子射频光谱探测和低频电场的可溯源测量等提供有价值的参考.
    The large electric dipole moment of the Rydberg atom allows for strong coupling with weak electric fields, and is widely used in electric field measurements because of its reproducibility, precision and stability. The combination of Rydberg atoms and electromagnetically induced transparency (EIT) technology has been used for detecting and characterizing radio-frequency (RF) electric fields. In this work, by selecting probe light (852 nm), dressed light (1470 nm), and coupled light (780 nm), the Rydberg state (49P3/2) of Cs atom is prepared by using a three-photon excitation scheme through using all-infrared light excitation of Rydberg atoms. We experimentally observe the EIT spectra of the Rydberg states decorated by radio-frequency electric fields, which optically detects Rydberg atoms. The effect of the amplitude and frequency of the RF electric field on the spectrum is explored in light of changes in the EIT spectrum. The results show that in the region of weak electric field, only the ac Stark energy shift and spectral broadening occur. As the electric field is further enhanced, the sideband phenomenon occurs in both the primary peak and secondary peak of the EIT. In the region of strong field, the Rydberg energy level produces a series of Floquet states with higher-order terms, as well as state shifting and mixing, resulting in asymmetry in the spectra of the EIT sideband peaks. The effect of frequency on the shielding effect of the Cs vapor cell is further discussed based on the shift of the main peak of the EIT.The demodulation of the electric field in a range of 50 Hz–1 kHz with a fidelity of 95% is achieved by modulating the low-frequency electric field to the RF electric field. The results can provide valuable references for spectral detection and traceable measurements of low-frequency electric fields.
      通信作者: 刘邦, lb2016wu@mail.ustc.edu.cn ; 丁冬生, dds@ustc.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1404002)、国家自然科学基金(批准号: U20A20218, 61525504, 61435011)、安徽省科技重大专项(批准号: 202203a13010001)和安徽省高等学校科研研究项目(批准号: 2022AH051888)资助的课题.
      Corresponding author: Liu Bang, lb2016wu@mail.ustc.edu.cn ; Ding Dong-Sheng, dds@ustc.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1404002), the National Natural Science Foundation of China (Grant Nos. U20A20218, 61525504, 61435011), the Major Science and Technology Projects in Anhui Province, China (Grant No. 202203a13010001), and the Natural Science Foundation of the Higher Education Institutions of Anhui Province, China (Grant No. 2022AH051888).
    [1]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press

    [2]

    Adams C S, Pritchard J D, Shaffer J P 2020 J. Phys. B: At. Mol. Opt. Phys. 53 012002Google Scholar

    [3]

    Liu B, Zhang L, Liu Z, Deng Z, Ding D, Shi B, Guo G 2023 Electromagn. Sci. 1 1Google Scholar

    [4]

    Yuan J, Yang W, Jing M, Zhang H, Jiao Y, Li W, Zhang L, Xiao L, Jia S 2023 Rep. Prog. Phys. 86 106001Google Scholar

    [5]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003Google Scholar

    [6]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [7]

    Kumar S, Fan H, Kübler H, Sheng J, Shaffer J P 2017 Sci. Rep. 7 42981Google Scholar

    [8]

    Tanasittikosol M, Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Potvliege R M, Adams C S 2011 J. Phys. B: At. Mol. Opt. Phys. 44 184020Google Scholar

    [9]

    Gordon J A, Simons M T, Haddab A H, Holloway C L 2019 AIP Adv. 9 045030Google Scholar

    [10]

    Sedlacek J A, Schwettmann A, Kübler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001Google Scholar

    [11]

    Simons M T, Haddab A H, Gordon J A, Novotny D, Holloway C L 2019 IEEE Access 7 164975Google Scholar

    [12]

    Jing M, Hu Y, Ma J, Zhang H, Zhang L, Xiao L, Jia S 2020 Nat. Phys. 16 911Google Scholar

    [13]

    Artusio-Glimpse A, Simons M T, Prajapati N, Holloway C L 2022 IEEE Microwave Mag. 23 44Google Scholar

    [14]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104Google Scholar

    [15]

    Holloway C L, Simons M T, Kautz M D, Haddab A H, Gordon J A, Crowley T P 2018 Appl. Phys. Lett. 113 094101Google Scholar

    [16]

    Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014053Google Scholar

    [17]

    Zhang L H, Liu Z K, Liu B, Zhang Z Y, Guo G C, Ding D S, Shi B S 2022 Phys. Rev. Appl. 18 014033Google Scholar

    [18]

    Song Z, Liu H, Liu X, Zhang W, Zou H, Zhang J, Qu J 2019 Opt. Express 27 8848Google Scholar

    [19]

    Otto J S, Hunter M K, Kjærgaard N, Deb A B 2021 J. Appl. Phys. 129 154503Google Scholar

    [20]

    Shaffer J, Kübler H 2018 A Read-out Enhancement for Microwave Electric Field Sensing with Rydberg Atoms (Vol. 10674) (SPIE

    [21]

    Ripka F, Amarloo H, Erskine J, Liu C, Ramirez-Serrano J, Keaveney J, Gillet G, Kübler H, Shaffer J 2021 Application-driven Problems in Rydberg Atom Electrometry (Vol. 11700) (SPIE

    [22]

    Liu B, Zhang L H, Liu Z K, Zhang Z Y, Zhu Z H, Gao W, Guo G C, Ding D S, Shi B S 2022 Phys. Rev. Appl. 18 014045Google Scholar

    [23]

    Hu J, Li H, Song R, Bai J, Jiao Y, Zhao J, Jia S 2022 Appl. Phys. Lett. 121 014002Google Scholar

    [24]

    Carr C, Tanasittikosol M, Sargsyan A, Sarkisyan D, Adams C S, Weatherill K J 2012 Opt. Lett. 37 3858Google Scholar

    [25]

    Xu J H, Gozzini A, Mango F, Alzetta G, Bernheim R A 1996 Phys. Rev. A 54 3146Google Scholar

    [26]

    Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G 2002 J. Phys. B: At. Mol. Opt. Phys. 35 5141Google Scholar

    [27]

    Robertson E J, Šibalić N, Potvliege R M, Jones M P A 2021 Comput. Phys. Commun. 261 107814Google Scholar

    [28]

    Anderson D A, Schwarzkopf A, Miller S A, Thaicharoen N, Raithel G, Gordon J A, Holloway C L 2014 Phys. Rev. A 90 043419Google Scholar

    [29]

    Anderson D A, Miller S A, Raithel G, Gordon J A, Butler M L, Holloway C L 2016 Phys. Rev. Appl. 5 034003Google Scholar

    [30]

    Daschner R, Ritter R, Kübler H, Frühauf N, Kurz E, Löw R, Pfau T 2012 Opt. Lett. 37 2271Google Scholar

    [31]

    Yoshida S, Reinhold C O, Burgdörfer J, Ye S, Dunning F B 2012 Phys. Rev. A 86 043415Google Scholar

    [32]

    Jau Y Y, Carter T 2020 Phys. Rev. Appl. 13 054034Google Scholar

  • 图 1  (a) Cs原子阶梯型四能级示意图; (b) 实验装置示意图, 其中DM为二向色镜, PD为光电探测器

    Fig. 1.  (a) Ladder-type four-level energy diagram of Cs atom; (b) schematic diagram of experimental apparatus, where DM is dichroic mirror, PD is photodiode detector.

    图 2  不同强度的射频电场作用下Rydberg原子的EIT光谱 (a) E = 0 V/cm; (b) E = 25 V/cm; (c) E = 50 V/cm; (d) E = 100 V/cm; (e) E = 200 V/cm

    Fig. 2.  EIT spectra of Rydberg atoms under different intensity RF electric fields: (a) E = 0 V/cm; (b) E = 25 V/cm; (c) E = 50 V/cm; (d) E = 100 V/cm; (e) E = 200 V/cm.

    图 3  不同正弦射频电场情况下测量的EIT谱线随电场强度的变化 (a) ωRF = 30 MHz; (b) ωRF = 40 MHz; (c) ωRF = 50 MHz; (d) ωRF = 60 MHz

    Fig. 3.  The variation of EIT spectral lines measured with the electric field intensity under different sinusoidal radio-frequency electric fields: (a) ωRF = 30 MHz; (b) ωRF = 40 MHz; (c) ωRF = 50 MHz; (d) ωRF = 60 MHz.

    图 4  EIT主峰的能移与射频电场频率的关系

    Fig. 4.  Relationship between frequency shift of EIT main peak and frequency of RF electric field.

    图 5  不同频率电场作用下的EIT透射信号 (a) 50 Hz; (b) 100 Hz; (c) 500 Hz; (d) 1 kHz

    Fig. 5.  EIT transmission signals under different frequency electric fields: (a) 50 Hz; (b) 100 Hz; (c) 500 Hz; (d) 1 kHz.

    表 1  ARC软件包计算Cs原子直流极化率

    Table 1.  Theoretical calculation of dc polarizabilities for Cs by Alkali Rydberg Calculator Python package.

    Cs原子直流极化率α/(Hz·V–2·m–2)
    Rydberg 态49P1/2, |mj|=1/249P3/2, |mj|=1/249P3/2, |mj|=3/2
    极化率 α: dc74979.842107095.68789150.196
    下载: 导出CSV

    表 2  拟合正弦函数得到的振幅、频率等参数

    Table 2.  The parameters of amplitude and frequency are obtained by fitting the sinusoidal function.

    拟合参数 频率
    50 Hz 100 Hz 500 Hz 1000 Hz
    振幅/V 0.0153 ± 0.0001 0.0182 ± 0.0001 0.0188 ± 0.0002 0.0173 ± 0.0001
    频率/Hz 49.78 ± 0.09 100.18 ± 0.08 500.01 ± 0.09 1000.02 ± 0.07
    R 2 (COD) 0.94356 0.95435 0.93143 0.9554
    下载: 导出CSV
    Baidu
  • [1]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press

    [2]

    Adams C S, Pritchard J D, Shaffer J P 2020 J. Phys. B: At. Mol. Opt. Phys. 53 012002Google Scholar

    [3]

    Liu B, Zhang L, Liu Z, Deng Z, Ding D, Shi B, Guo G 2023 Electromagn. Sci. 1 1Google Scholar

    [4]

    Yuan J, Yang W, Jing M, Zhang H, Jiao Y, Li W, Zhang L, Xiao L, Jia S 2023 Rep. Prog. Phys. 86 106001Google Scholar

    [5]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003Google Scholar

    [6]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [7]

    Kumar S, Fan H, Kübler H, Sheng J, Shaffer J P 2017 Sci. Rep. 7 42981Google Scholar

    [8]

    Tanasittikosol M, Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Potvliege R M, Adams C S 2011 J. Phys. B: At. Mol. Opt. Phys. 44 184020Google Scholar

    [9]

    Gordon J A, Simons M T, Haddab A H, Holloway C L 2019 AIP Adv. 9 045030Google Scholar

    [10]

    Sedlacek J A, Schwettmann A, Kübler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001Google Scholar

    [11]

    Simons M T, Haddab A H, Gordon J A, Novotny D, Holloway C L 2019 IEEE Access 7 164975Google Scholar

    [12]

    Jing M, Hu Y, Ma J, Zhang H, Zhang L, Xiao L, Jia S 2020 Nat. Phys. 16 911Google Scholar

    [13]

    Artusio-Glimpse A, Simons M T, Prajapati N, Holloway C L 2022 IEEE Microwave Mag. 23 44Google Scholar

    [14]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104Google Scholar

    [15]

    Holloway C L, Simons M T, Kautz M D, Haddab A H, Gordon J A, Crowley T P 2018 Appl. Phys. Lett. 113 094101Google Scholar

    [16]

    Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014053Google Scholar

    [17]

    Zhang L H, Liu Z K, Liu B, Zhang Z Y, Guo G C, Ding D S, Shi B S 2022 Phys. Rev. Appl. 18 014033Google Scholar

    [18]

    Song Z, Liu H, Liu X, Zhang W, Zou H, Zhang J, Qu J 2019 Opt. Express 27 8848Google Scholar

    [19]

    Otto J S, Hunter M K, Kjærgaard N, Deb A B 2021 J. Appl. Phys. 129 154503Google Scholar

    [20]

    Shaffer J, Kübler H 2018 A Read-out Enhancement for Microwave Electric Field Sensing with Rydberg Atoms (Vol. 10674) (SPIE

    [21]

    Ripka F, Amarloo H, Erskine J, Liu C, Ramirez-Serrano J, Keaveney J, Gillet G, Kübler H, Shaffer J 2021 Application-driven Problems in Rydberg Atom Electrometry (Vol. 11700) (SPIE

    [22]

    Liu B, Zhang L H, Liu Z K, Zhang Z Y, Zhu Z H, Gao W, Guo G C, Ding D S, Shi B S 2022 Phys. Rev. Appl. 18 014045Google Scholar

    [23]

    Hu J, Li H, Song R, Bai J, Jiao Y, Zhao J, Jia S 2022 Appl. Phys. Lett. 121 014002Google Scholar

    [24]

    Carr C, Tanasittikosol M, Sargsyan A, Sarkisyan D, Adams C S, Weatherill K J 2012 Opt. Lett. 37 3858Google Scholar

    [25]

    Xu J H, Gozzini A, Mango F, Alzetta G, Bernheim R A 1996 Phys. Rev. A 54 3146Google Scholar

    [26]

    Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G 2002 J. Phys. B: At. Mol. Opt. Phys. 35 5141Google Scholar

    [27]

    Robertson E J, Šibalić N, Potvliege R M, Jones M P A 2021 Comput. Phys. Commun. 261 107814Google Scholar

    [28]

    Anderson D A, Schwarzkopf A, Miller S A, Thaicharoen N, Raithel G, Gordon J A, Holloway C L 2014 Phys. Rev. A 90 043419Google Scholar

    [29]

    Anderson D A, Miller S A, Raithel G, Gordon J A, Butler M L, Holloway C L 2016 Phys. Rev. Appl. 5 034003Google Scholar

    [30]

    Daschner R, Ritter R, Kübler H, Frühauf N, Kurz E, Löw R, Pfau T 2012 Opt. Lett. 37 2271Google Scholar

    [31]

    Yoshida S, Reinhold C O, Burgdörfer J, Ye S, Dunning F B 2012 Phys. Rev. A 86 043415Google Scholar

    [32]

    Jau Y Y, Carter T 2020 Phys. Rev. Appl. 13 054034Google Scholar

  • [1] 刘智慧, 刘逍娜, 何军, 刘瑶, 苏楠, 蔡婷, 杜艺杰, 王杰英, 裴栋梁, 王军民. 里德伯原子幻零波长.  , 2024, 73(13): 130701. doi: 10.7498/aps.73.20240397
    [2] 张学超, 乔佳慧, 刘瑶, 苏楠, 刘智慧, 蔡婷, 何军, 赵延霆, 王军民. 基于里德伯原子天线的低频电场波形测量.  , 2024, 73(7): 070201. doi: 10.7498/aps.73.20231778
    [3] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量.  , 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [4] 武博, 林沂, 吴逢川, 陈孝樟, 安强, 刘燚, 付云起. 基于平行板谐振器的量子微波电场测量技术.  , 2023, 72(3): 034204. doi: 10.7498/aps.72.20221582
    [5] 薛咏梅, 郝丽萍, 樊佳蓓, 焦月春, 赵建明. Rydberg原子nS1/2→(n + 1)S1/2双光子激发EIT-AT光谱.  , 2022, 71(4): 043202. doi: 10.7498/aps.71.20211458
    [6] 樊佳蓓, 郝丽萍, 白景旭, 焦月春, 赵建明, 贾锁堂. 基于Rydberg原子的高灵敏微波探测与通信.  , 2021, 70(6): 063201. doi: 10.7498/aps.70.20201401
    [7] 陈志文, 佘圳跃, 廖开宇, 黄巍, 颜辉, 朱诗亮. 基于Rydberg原子天线的太赫兹测量.  , 2021, 70(6): 060702. doi: 10.7498/aps.70.20201870
    [8] 刘强, 何军, 王军民. 室温铯原子气室窄线宽相干布居振荡光谱.  , 2021, 70(16): 163202. doi: 10.7498/aps.70.20210405
    [9] 薛咏梅, 郝丽萍, 樊佳蓓, 焦月春, 赵建明. Rydberg原子nS1/2→(n+1)S1/2双光子激发EIT-AT光谱.  , 2021, (): . doi: 10.7498/aps.70.20211458
    [10] 樊佳蓓, 焦月春, 郝丽萍, 薛咏梅, 赵建明, 贾锁堂. Rydberg原子的微波电磁感应透明-Autler-Townes光谱.  , 2018, 67(9): 093201. doi: 10.7498/aps.67.20172645
    [11] 焦月春, 赵建明, 贾锁堂. 基于Rydberg原子的超宽频带射频传感器.  , 2018, 67(7): 073201. doi: 10.7498/aps.67.20172636
    [12] 薛咏梅, 郝丽萍, 焦月春, 韩小萱, 白素英, 赵建明, 贾锁堂. 超冷铯Rydberg原子的Autler-Townes分裂.  , 2017, 66(21): 213201. doi: 10.7498/aps.66.213201
    [13] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 弱射频场中Rydberg原子的电磁感应透明.  , 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [14] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 调制激光场中Rydberg原子的电磁感应透明.  , 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [15] 王勇, 张好, 陈杰, 王丽梅, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷nS Rydberg原子的态转移.  , 2013, 62(9): 093201. doi: 10.7498/aps.62.093201
    [16] 王丽梅, 张好, 李昌勇, 赵建明, 贾锁堂. 铯Rydberg原子Stark态的避免交叉.  , 2013, 62(1): 013201. doi: 10.7498/aps.62.013201
    [17] 车俊岭, 张好, 冯志刚, 张临杰, 赵建明, 贾锁堂. 70S超冷Cs Rydberg原子的动力学演化.  , 2012, 61(4): 043205. doi: 10.7498/aps.61.043205
    [18] 冯志刚, 张好, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷铯Rydberg原子寿命的测量.  , 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [19] 朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂. Cs 39D态Rydberg原子Stark光谱的实验研究.  , 2010, 59(4): 2401-2405. doi: 10.7498/aps.59.2401
    [20] 孟慧艳, 康 帅, 史庭云, 詹明生. 平行电磁场中的Rydberg锂原子吸收谱的模型势计算.  , 2007, 56(6): 3198-3204. doi: 10.7498/aps.56.3198
计量
  • 文章访问数:  2039
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-13
  • 修回日期:  2024-04-11
  • 上网日期:  2024-04-16
  • 刊出日期:  2024-06-05

/

返回文章
返回
Baidu
map