Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of inserted AlxGa1–xN layer on characteristic of double-channel n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN HEMT

Cai Jing Yao Ruo-He Geng Kui-Wei

Citation:

Effect of inserted AlxGa1–xN layer on characteristic of double-channel n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN HEMT

Cai Jing, Yao Ruo-He, Geng Kui-Wei
PDF
HTML
Get Citation
  • With the demand for high-temperature, high-frequency, and high-power microwave applications increasing, AlGaN/GaN high electron mobility transistors (HEMT) have attracted much attention in recent years. Two-dimensional electron gas (2DEG) induced by spontaneous polarization and piezoelectric polarization caused by the uneven charge distribution on Ga-N bond and the large tensile strain guarantees the high performance of AlGaN/GaN HEMT. Compared with single-channel devices, dual-channel AlGaN/GaN HEMT has great application prospects in enhancing the electronic confinement, current drive and alleviating the current collapse. In order to study the physical characteristics, the carrier state and transportation characterization of n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN multilayer structure are investigated. By calculating the one-dimensional self-consistent Poisson-Schrödinger, the energy band diagram, electric field and charge distribution in the devices are obtained. The 2DEG, alloy disorder and dislocation scattering mechanism in the device are also analyzed by analytical models in which the wave function in finite barriers and Fermi’s rule are used.With AlxGa1–xN layer thickness increasing from 0 nm to 30 nm and Al content rising from 0.1 to 0.2, the concentration of 2DEG localized in the heterointerface is diminished in the first channel. Simultaneously, mobility limited by alloy disorder scattering increases monotonically with the r composition occupation number and the AlxGa1–xN thickness proportion increasing. Besides, dislocation scattering on carriers is strengthened in the same quantum well, resulting in the lower mobility. In the second channel, 2DEG density gets growing when the variables mentioned above is enlarged. The mobility restricted by alloy disorder scattering shows a reverse trend with the variation of the AlxGa1–xN thickness and Al fraction, which more greatly affect the carriers in the parasitic channel due to the lower barrier height and high permeable carriers. Furthermore, the effect of dislocation scattering on channel electrons is gradually weakened, resulting in an increasing mobility. In general, The dislocation scattering effect in the second channel is intenser than that in the first channel.
      Corresponding author: Yao Ruo-He, phrhyao@scut.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB1802100) and the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2019B010143003).
    [1]

    Mishra U K, Parikh P, Wu Y F 2002 Proc. IEEE 90 1022Google Scholar

    [2]

    Mohammad S N, Salvador A A, Morkoc H 1995 Proc. IEEE 83 1306Google Scholar

    [3]

    Ibbetson J P, Fini P T, Ness K D, DenBaars S P, Speck J S, Mishrab U K 2000 Appl. Phys. Lett. 77 250Google Scholar

    [4]

    王现彬, 赵正平, 冯志红 2014 63 080202Google Scholar

    Wang X B, Zhao Z P, Feng Z H 2014 Acta Phys. Sin. 63 080202Google Scholar

    [5]

    张雪冰, 刘乃漳, 姚若河 2020 69 157303Google Scholar

    Zhang X B, Liu N Z, Yao R H 2020 Acta Phys. Sin. 69 157303Google Scholar

    [6]

    Kranti A, Haldar S, Gupta R S 2002 Solid-State Electron. 46 621Google Scholar

    [7]

    Kwon H K, Eiting C J, Lambert D J H, Shelton B S, Wong M M, Zhu T G, Dupuisa R D 1999 Appl. Phys. Lett. 75 2788Google Scholar

    [8]

    Chu R M, Zhou Y G, Zheng Y D, Han P, Shen B, Gu S 2001 Appl. Phys. Lett. 79 2270Google Scholar

    [9]

    Fan Z F, Lu C Z, Botchkarev A E, Tang H, Salvador A, Aktas O, Kim W, Morkog H 1997 Electron. Lett. 33 814Google Scholar

    [10]

    Gaska R, Shur M S, Fjeldly T A 1999 J. Appl. Phys. 85 3009Google Scholar

    [11]

    Chu R, Zhou Y, Jie L, Wang D, Chen K J, Lau K M 2005 IEEE Trans. Electron Devices 52 438Google Scholar

    [12]

    Quan S, Hao Y, Ma X, Zheng P, Xie Y 2010 J. Semicond. 31 044003Google Scholar

    [13]

    Zhang Y., Li Y., Wang J, Shen Y, Hao Y 2020 Nanoscale Res. Lett. 15 1Google Scholar

    [14]

    王冲, 赵梦荻, 裴九清 2016 65 038501Google Scholar

    Wang C, Zhao M D, Pei J Q 2016 Acta Phys. Sin. 65 038501Google Scholar

    [15]

    Lee Y J, Yao Y C, Huang C Y, Lin T Y, Cheng L L, Liu C Y, Wang M T Hwang J M 2014 Nanoscale Res. Lett. 9 433Google Scholar

    [16]

    Chakraborty A, Ghosh S, Mukhopadhyay P, Jana S K, Dinara S M, Bag A, Mahata M K, Kumar R, Das S, Das P, Biswas D 2016 Electron. Mater. Lett. 12 232Google Scholar

    [17]

    Chen C Q, Zhang J P 2003 Appl. Phys. Lett. 82 4593Google Scholar

    [18]

    Visalli D, Hove M V, Derluyn J, Cheng K, Degroote S, Leys M, Germain M, Borghs G 2009 Phys. Status Solidi C 6 S988

    [19]

    Yu H B, Lisesivdin S B, Bolukbas B, Kelekci O, Ozturk M K, Ozcelik S, Caliskan D, Ozturk M, Cakmak H, Demirel P, Ozbay E 2010 Phys. Status Solidi A 207 2593Google Scholar

    [20]

    Martins J L, Zunger A 1984 Phys. Rev. B 30 6217Google Scholar

    [21]

    Fang F F, Howard W E 1966 Phys. Rev. Lett. 16 797Google Scholar

    [22]

    Shur M S, Bykhovski A D, Gaska R 2000 Solid-State Electron. 44 205Google Scholar

    [23]

    Walukiewicz W, Ruda H E 1984 Phys. Rev. B 30 4571Google Scholar

    [24]

    Jena D, Gossard A C, Mishra U K 2000 Appl. Phys. Lett. 76 1707Google Scholar

    [25]

    Miyoshi M, Egawa T, Ishikawa H 2015 J. Vac. Sci. Technol. , B 23 1527

    [26]

    Leung K, Wright A F, Stechel E B 1999 Appl. Phys. Lett. 74 2495Google Scholar

  • 图 1  AlGaN/GaN HEMT的(a)基本结构和(b)能带图

    Figure 1.  (a) Schematic structure and (b) band diagram of AlGaN/GaN HEMT.

    图 2  n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN外延结构及极化电荷、电子分布

    Figure 2.  Polarization charge and electron distribution of n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN epitaxial structure.

    图 3  不同Al组分下n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN中的(a)能带图和(b)电子分布

    Figure 3.  (a) Band diagram and (b) electron concentration distribution in n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN with varying Al composition of the AlxGa1–xN layer.

    图 4  不同Al组分下n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN中电场的分布

    Figure 4.  Electric field distribution in n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN with varying Al composition of the AlxGa1–xN layer.

    图 5  n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN结构在不同背势垒厚度下的(a)势能和(b)电子分布

    Figure 5.  (a) Band diagram and (b) electron concentration distribution in n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN with varying thickness of AlxGa1–xN layer.

    图 6  不同背势垒厚度下n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN的电场分布

    Figure 6.  Electric field distribution in n-Al0.3Ga0.7N/GaN/i-AlxGa1–xN/GaN with varying thickness of AlxGa1–xN layer.

    图 7  2DEG密度与AlxGa1–xN厚度在不同Al组分下的关系曲线 (a) channel 1; (b) channel 2

    Figure 7.  The relationship between the AlxGa1–xN thickness and 2DEG concentration of (a) channel 1 and (b) channel 2 under different Al mole fraction.

    图 8  不同Al组分下合金无序散射迁移率与AlxGa1–xN厚度的关系 (a) channel 1; (b) channel 2

    Figure 8.  The relationship between the AlxGa1–xN thickness and mobility limited by alloy disorder scattering of (a) channel 1 and (b) channel 2 under different Al mole fraction

    图 9  不同Al组分下位错散射迁移率与AlxGa1–xN厚度的关系 (a) channel 1; (b) channel 2

    Figure 9.  The relationship between the AlxGa1–xN thickness and mobility limited by dislocation scattering of (a) channel 1 and (b) channel 2 under different Al mole fraction

    图 10  不同Al组分下总迁移率与AlxGa1–xN厚度的关系 (a) channel 1; (b) channel 2

    Figure 10.  The relationship between the AlxGa1–xN thickness and the total mobility of (a) channel 1 and (b) channel 2 under different Al mole fraction

    图 11  不同Al组分下总迁移率和2DEG的乘积与AlxGa1–xN厚度的关系 (a) channel 1; (b) channel 2

    Figure 11.  The relationship between the AlxGa1–xN thickness and the product of mobility and 2DEG sheet density of (a) channel 1 and (b) channel 2 under different Al mole fraction

    表 1  AlN, GaN和AlxGa1–xN的各项结构参数(300 K)

    Table 1.  The key parameters of AlN, GaN and AlxGa1 – xN at temperature 300 K.

    参数AlNGaNAlxGa1–xN
    A/(10–10 nm)3.1123.189
    C13/GPa108103
    C33/GPa373405xPAlN + (1 – x) PGaN
    e31/(C·m–2)–0.6–0.49
    e33/(C·m–2)1.460.73
    PSP/(C·m–2)–0.081–0.029
    DownLoad: CSV

    表 2  沟道中2DEG在基态上的占比

    Table 2.  The proportion of 2DEG at the ground-state energy in channel 1 & channel 2.

    x = 0.1x = 0.15x = 0.2x = 0.25
    Nz–1 st在基态E0上的占比0.94510.96690.98720.9909
    Nz–2 nd在基态E0上的占比0.96510.97480.98500.9908
    DownLoad: CSV
    Baidu
  • [1]

    Mishra U K, Parikh P, Wu Y F 2002 Proc. IEEE 90 1022Google Scholar

    [2]

    Mohammad S N, Salvador A A, Morkoc H 1995 Proc. IEEE 83 1306Google Scholar

    [3]

    Ibbetson J P, Fini P T, Ness K D, DenBaars S P, Speck J S, Mishrab U K 2000 Appl. Phys. Lett. 77 250Google Scholar

    [4]

    王现彬, 赵正平, 冯志红 2014 63 080202Google Scholar

    Wang X B, Zhao Z P, Feng Z H 2014 Acta Phys. Sin. 63 080202Google Scholar

    [5]

    张雪冰, 刘乃漳, 姚若河 2020 69 157303Google Scholar

    Zhang X B, Liu N Z, Yao R H 2020 Acta Phys. Sin. 69 157303Google Scholar

    [6]

    Kranti A, Haldar S, Gupta R S 2002 Solid-State Electron. 46 621Google Scholar

    [7]

    Kwon H K, Eiting C J, Lambert D J H, Shelton B S, Wong M M, Zhu T G, Dupuisa R D 1999 Appl. Phys. Lett. 75 2788Google Scholar

    [8]

    Chu R M, Zhou Y G, Zheng Y D, Han P, Shen B, Gu S 2001 Appl. Phys. Lett. 79 2270Google Scholar

    [9]

    Fan Z F, Lu C Z, Botchkarev A E, Tang H, Salvador A, Aktas O, Kim W, Morkog H 1997 Electron. Lett. 33 814Google Scholar

    [10]

    Gaska R, Shur M S, Fjeldly T A 1999 J. Appl. Phys. 85 3009Google Scholar

    [11]

    Chu R, Zhou Y, Jie L, Wang D, Chen K J, Lau K M 2005 IEEE Trans. Electron Devices 52 438Google Scholar

    [12]

    Quan S, Hao Y, Ma X, Zheng P, Xie Y 2010 J. Semicond. 31 044003Google Scholar

    [13]

    Zhang Y., Li Y., Wang J, Shen Y, Hao Y 2020 Nanoscale Res. Lett. 15 1Google Scholar

    [14]

    王冲, 赵梦荻, 裴九清 2016 65 038501Google Scholar

    Wang C, Zhao M D, Pei J Q 2016 Acta Phys. Sin. 65 038501Google Scholar

    [15]

    Lee Y J, Yao Y C, Huang C Y, Lin T Y, Cheng L L, Liu C Y, Wang M T Hwang J M 2014 Nanoscale Res. Lett. 9 433Google Scholar

    [16]

    Chakraborty A, Ghosh S, Mukhopadhyay P, Jana S K, Dinara S M, Bag A, Mahata M K, Kumar R, Das S, Das P, Biswas D 2016 Electron. Mater. Lett. 12 232Google Scholar

    [17]

    Chen C Q, Zhang J P 2003 Appl. Phys. Lett. 82 4593Google Scholar

    [18]

    Visalli D, Hove M V, Derluyn J, Cheng K, Degroote S, Leys M, Germain M, Borghs G 2009 Phys. Status Solidi C 6 S988

    [19]

    Yu H B, Lisesivdin S B, Bolukbas B, Kelekci O, Ozturk M K, Ozcelik S, Caliskan D, Ozturk M, Cakmak H, Demirel P, Ozbay E 2010 Phys. Status Solidi A 207 2593Google Scholar

    [20]

    Martins J L, Zunger A 1984 Phys. Rev. B 30 6217Google Scholar

    [21]

    Fang F F, Howard W E 1966 Phys. Rev. Lett. 16 797Google Scholar

    [22]

    Shur M S, Bykhovski A D, Gaska R 2000 Solid-State Electron. 44 205Google Scholar

    [23]

    Walukiewicz W, Ruda H E 1984 Phys. Rev. B 30 4571Google Scholar

    [24]

    Jena D, Gossard A C, Mishra U K 2000 Appl. Phys. Lett. 76 1707Google Scholar

    [25]

    Miyoshi M, Egawa T, Ishikawa H 2015 J. Vac. Sci. Technol. , B 23 1527

    [26]

    Leung K, Wright A F, Stechel E B 1999 Appl. Phys. Lett. 74 2495Google Scholar

  • [1] Zhang Lei, Chen Qi-Hang, Cao Shuo, Qian Ping. First-principles calculations of carrier mobility in monolayer IrSCl and IrSI. Acta Physica Sinica, 2024, 73(21): 217201. doi: 10.7498/aps.73.20241044
    [2] Zhang Leng, Shen Yu-Hao, Tang Chao-Yang, Wu Kong-Ping, Zhang Peng-Zhan, Liu Fei, Hou Ji-Wei. Effect of uniaxial strain on Hole mobility of Sb2Se3. Acta Physica Sinica, 2024, 73(11): 117101. doi: 10.7498/aps.73.20240175
    [3] Zhang Leng, Zhang Peng-Zhan, Liu Fei, Li Fang-Zheng, Luo Yi, Hou Ji-Wei, Wu Kong-Ping. Carrier mobility in doped Sb2Se3 based on deformation potential theory. Acta Physica Sinica, 2024, 73(4): 047101. doi: 10.7498/aps.73.20231406
    [4] Zhou Zhan-Hui, Li Qun, He Xiao-Min. Electron transport mechanism in AlN/β-Ga2O3 heterostructures. Acta Physica Sinica, 2023, 72(2): 028501. doi: 10.7498/aps.72.20221545
    [5] Di Lin-Jia, Dai Xian-Ying, Song Jian-Jun, Miao Dong-Ming, Zhao Tian-Long, Wu Shu-Jing, Hao Yue. Calculations of energy band structure and mobility in critical bandgap strained Ge1-xSnx based on Sn component and biaxial tensile stress modulation. Acta Physica Sinica, 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [6] Bai Min, Xuan Rong-Xi, Song Jian-Jun, Zhang He-Ming, Hu Hui-Yong, Shu Bin. Hole scattering and mobility in compressively strained Ge/(001)Si1-xGex. Acta Physica Sinica, 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [7] Tang Xin-Yue, Gao Hong, Pan Si-Ming, Sun Jian-Bo, Yao Xiu-Wei, Zhang Xi-Tian. Electrical characteristics of individual In-doped ZnO nanobelt field effect transistor. Acta Physica Sinica, 2014, 63(19): 197302. doi: 10.7498/aps.63.197302
    [8] Liu Rui-Lan, Wang Xu-Liang, Tang Chao. Identification for hole transporting properties of NPB based on particle swarm optimization algorithm. Acta Physica Sinica, 2014, 63(2): 028105. doi: 10.7498/aps.63.028105
    [9] Liu Bin-Li, Tang Yong, Luo Yi-Fei, Liu De-Zhi, Wang Rui-Tian, Wang Bo. Investigation of the prediction model of IGBT junction temperature based on the rate of voltage change. Acta Physica Sinica, 2014, 63(17): 177201. doi: 10.7498/aps.63.177201
    [10] Wang Hong-Pei, Wang Guang-Long, Yu Ying, Xu Ying-Qiang, Ni Hai-Qiao, Niu Zhi-Chuan, Gao Feng-Qi. Properties of δ doped GaAs/AlxGa1-xAs 2DEG with embedded InAs quantum dots. Acta Physica Sinica, 2013, 62(20): 207303. doi: 10.7498/aps.62.207303
    [11] Dong Hai-Ming. Investigation on mobility of single-layer MoS2 at low temperature. Acta Physica Sinica, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [12] Zheng Xin, Jiang Tian, Cheng Xiang-Ai, Jiang Hou-Man, Lu Qi-Sheng. A new phenomenon of photoconductive InSb detector under the irradiation of out-band laser. Acta Physica Sinica, 2012, 61(4): 047302. doi: 10.7498/aps.61.047302
    [13] Yu Huang-Zhong. Measurement of the hole mobility in the blend system by space charge limited current. Acta Physica Sinica, 2012, 61(8): 087204. doi: 10.7498/aps.61.087204
    [14] Luo Yang, Duan Yu, Chen Ping, Zang Chun-Liang, Xie Yue, Zhao Yi, Liu Shi-Yong. Preliminary investigation on the method of determining electron mobility of tris (8-hydroxyquinolinato) aluminum by space charge limited current. Acta Physica Sinica, 2012, 61(14): 147801. doi: 10.7498/aps.61.147801
    [15] Zhang Jin-Feng, Wang Ping-Ya, Xue Jun-Shuai, Zhou Yong-Bo, Zhang Jin-Cheng, Hao Yue. High electron mobility lattice-matched InAlN/GaN materials. Acta Physica Sinica, 2011, 60(11): 117305. doi: 10.7498/aps.60.117305
    [16] Dai Yue-Hua, Chen Jun-Ning, Ke Dao-Ming, Sun Jia-E, Hu Yuan. An analytical model of mobility in nano-scaled n-MOSFETs. Acta Physica Sinica, 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
    [17] Xu Jing-Ping, Li Chun-Xia, Wu Hai-Ping. Analyses on high-temperature electrical properties of 4H-SiC n-MOSFET. Acta Physica Sinica, 2005, 54(6): 2918-2923. doi: 10.7498/aps.54.2918
    [18] Yang Jing, Li Jing-Zhen, Sun Xiu-Quan, Gong Xiang-Dong. Simulation of step response of silane low-temperature pasma(1). Acta Physica Sinica, 2005, 54(7): 3251-3256. doi: 10.7498/aps.54.3251
    [19] Xu Xue-Mei, Peng Jing-Cui, Li Hong-Jian, Qu Shu, Luo Xiao-Hua. . Acta Physica Sinica, 2002, 51(10): 2380-2385. doi: 10.7498/aps.51.2380
    [20] LI ZHI-FENG, LU WEI, YE HONG-JUAN, YUAN XIAN-ZHANG, SHEN XUE-CHU, G.Li, S.J.Chua. OPTICAL SPECTROSCOPY STUDY ON CARRIER CONCENTRATION AND MOBILITY IN GaN. Acta Physica Sinica, 2000, 49(8): 1614-1619. doi: 10.7498/aps.49.1614
Metrics
  • Abstract views:  4091
  • PDF Downloads:  128
  • Cited By: 0
Publishing process
  • Received Date:  07 March 2022
  • Accepted Date:  18 April 2022
  • Available Online:  03 August 2022
  • Published Online:  20 August 2022

/

返回文章
返回
Baidu
map