-
The new generation of detection equipment urgently requires high-sensitivity detectors. Traditional silicon-based detectors cannot meet the requirements for sensitivity and channel size. Diamondene has excellent performance such as high carrier mobility and wide band gap. Its excellent electronic characteristics are expected to effectively improve the sensitivity of the detector and provide a new way for developing the next generation of detectors. However, the detection mechanism based on diamondene is still unclear. Based on the above problems, the analytical model and mechanism of the transistor channel are first studied. By analyzing the relationship between the surface potential distribution of the current channel and the effective channel size in the working state and the sensitive characteristics of the two-dimensional material electrons of the channel, a theoretical model of the transistor detector is constructed based on the electronic characteristics of the channel material, and the working characteristics of the detector are investigated. The finite element simulation of the working mechanism, potential and electron distribution of the transistor detector is carried out. The simulation results show that the mobility level of the diamondene-based detector is 2.5 times that of the traditional silicon-based detector, which theoretically verifies the hypersensitive detection characteristics of the diamondene-based detector. This study is of great significance in designing and applying a new generation of carbon-based ultra-sensitive detection devices.
-
Keywords:
- high-sensitivity detector /
- channel electronics /
- sensitivity /
- migration rate
-
表 1 金刚石烯与硅沟道材料仿真参数
Table 1. . Simulation parameters of diamondene and silicon channel materials.
材料 金刚石烯 硅 带隙/eV 2.7 1.12 电子迁移率/m–3 4500 1450 空穴迁移率/m–3 1000 500 电子亲和能/eV 3.64 4.05 -
[1] Jiang J F, Xu L, Qiu C G, Peng L M 2023 Nature 616 470
Google Scholar
[2] Dwivedi P, Soneja S, Dhanekar S 2018 IEEE Sensors New Delhi, India, October 28–31, 2018 doi: 10.1109/ICSENS.2018.8589929
[3] Liu K L, Jin B, Han W, Zhao Y H, Yang S J, Duan J Y, Liu L X, Wang F K, Zhuge F W, Zhai T Y, Chen X, Gong P L, Huang L, Hu X Z 2021 Nat. Electron. 4 906
Google Scholar
[4] Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749
Google Scholar
[5] Gui G, Li J, Zhong J X 2008 Phys. Rev. B 78 1
[6] Lu G H, Yu K H, Wen Z H, Chen J H 2013 Nanoscale 5 1353
Google Scholar
[7] He Q, Su K, Zhang J F, Ren Z Y, Xing Y F, Zhang J C, Lei Y Q, Hao Y 2022 IEEE T. Electron Dev. 69 1206
Google Scholar
[8] Zhen J P, Huang Q S, Shen K, Dong H L, Zhang S H, Lv K H, Yang P, Zhang Y, Guo S L, Qiu J, Liu G J 2024 PNAS 121 e2403726121
Google Scholar
[9] Su K, Ren Z Y, Peng Y, Zhang J F, Zhang J C, Zhang Y C, He Q, Zhang C F, Hao Y 2020 IEEE Access 8 20043
Google Scholar
[10] Sasama Y, Kageura T, Imura M, Watanabe K, Taniguchi T, Uchihashi T, Takahide Y 2022 Nature Electronics 5 37
[11] Zhang Q, Fang T, Xing H, Seabaugh A, Jena D 2008 IEEE Electron. Device Lett. 29 1344
Google Scholar
[12] Cheli M, Michetti P, Iannaccone G 2010 IEEE Electron. Devices Trans 57 1936
Google Scholar
[13] Liang G, Neophytou N, Lundstrom M S, Nikonov, D E 2008 J. Comput. Electron 7 394
Google Scholar
[14] Xing H L, Fang T, Konar A, Jena D 2007 Appl. Phys. Lett. 91 092109
Google Scholar
[15] Hanson G W 2007 J. Appl. Phys. 103 064302
[16] Jabbarzadeh F, Heydari M, Sharif A H 2019 Mater. Res. Express 6 086209
Google Scholar
[17] Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys. : Condens. Matter 19 026222
Google Scholar
[18] Xu W, Zhu Z H, Liu K, Zhang J F, Yuan X D, Lu Q S, Qin S Q 2015 Opt. Express 23 5147
Google Scholar
[19] Luo X G, Teng Q, Lu W B, Ni Z H 2013 Mater. Sci. Eng. R 74 351
Google Scholar
[20] Hua L, Gan X T, Mao D, Zhao J L 2017 Photonics Res. 5 162
Google Scholar
[21] Lima A W, Sombra A 2014 Opt. Commun. 321 150
Google Scholar
[22] Frank S 2010 Nat. Nanotech. 5 487
Google Scholar
[23] 季启政, 刘峻, 杨铭, 马贵蕾, 胡小锋, 刘尚合2023 电子学报 51 1486
Ji Q Z, Liu J, Yang M, Ma G L, Hu X F, Liu S H
[24] Ipsita C, Shuvajit R, Vivek D 2021 Photonics and Nanostructures Fundamentals and Application 43 100865
[25] Jabbarzadeh F, Habibzadeh S A 2019 JOSA B 36 690
Google Scholar
[26] Liu M, Yin X B, Erick U A, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64
Google Scholar
[27] Heidari M, Orouji A A, Bozorgi S A 2023 J Mater Sci: Mater Electron 34 1708
Google Scholar
[28] Santini T, Morand S, Fouladirad M, Phung L V, Miller F, Foucher B, Grall A, Allard B 2014 Microelectronics Reliability 54 1718
Google Scholar
[29] Sreevani A, Swarnakar S, Krishna S V 2022 Silicon 14 9223
Google Scholar
Metrics
- Abstract views: 374
- PDF Downloads: 8
- Cited By: 0