搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单轴应变对Sb2Se3空穴迁移率的影响

张冷 沈宇皓 汤朝阳 吴孔平 张鹏展 刘飞 侯纪伟

引用本文:
Citation:

单轴应变对Sb2Se3空穴迁移率的影响

张冷, 沈宇皓, 汤朝阳, 吴孔平, 张鹏展, 刘飞, 侯纪伟

Effect of uniaxial strain on Hole mobility of Sb2Se3

Zhang Leng, Shen Yu-Hao, Tang Chao-Yang, Wu Kong-Ping, Zhang Peng-Zhan, Liu Fei, Hou Ji-Wei
PDF
HTML
导出引用
  • 硒化锑(Sb2Se3)是一种物相简单、元素丰富、经济友好的太阳电池吸收层材料, 具有广阔的应用前景. 然而, Sb2Se3较弱的导电性成为了限制电池器件性能的重要因素. 迁移率是材料与器件的重要电学参数, 应变可以改变载流子迁移率, 因此, 研究应变对Sb2Se3的载流子迁移率特性影响具有实际意义. 本文通过密度泛函理论和形变势理论, 系统研究了单轴应变对Sb2Se3能带结构、禁带宽度、等能面、有效质量的影响, 分析了沿着x, y, z方向的三种单轴应变对载流子沿着x, y, z方向的迁移率μx, μy, μz的影响. 研究发现, 对于无应变的Sb2Se3, μx远大于μyμz, 实验上应该将x方向作为Sb2Se3的特定生长方向(即内建电场方向). 综合应变对带隙、等能面、分态密度及迁移率的影响, 本研究认为当应变沿着y轴方向, 且压应变为3%的时候, 能获得最佳性能的Sb2Se3太阳电池吸收层材料.
    Antimony selenide (Sb2Se3) is a simple-phase, element-rich, and economically friendly material for solar cell absorption layers, with broad application prospects. However, the weak conductivity of Sb2Se3 has become a significant factor limiting the performance of solar cell devices. Carrier mobility is an important electrical parameter for both materials and devices, and strain can change carrier mobility. Therefore, studying the effect of strain on the carrier mobility of Sb2Se3 is of practical significance. In this work, using density functional theory and deformation potential theory, we systematically investigate the influence of uniaxial strain on the band structure, bandgap width, iso-surface, and effective mass of Sb2Se3. We analyze the effects of three types of uniaxial strains along the x-, y-, and z-direction on the carrier mobilities along the x-, y-, and z-direction, which are denoted by μx, μy, and μz, respectively. It is found that under these strains, the valence band maximum (VBM) position of Sb2Se3 remains unchanged, and the bandgap decreases with the increase of strain along the y- and z-direction, while it increases along the x-direction. The variation in bandgap may be related to the coupling strength between the Sb-5p orbital and Se-4p orbital of the conduction band minimum (CBM). For fully relaxed Sb2Se3, its iso-surface exhibits a distorted cylindrical shape, with low dispersion along the z-axis and high dispersion along the x- and y-axis, where μx is greater than μy and μz, suggesting that the x-direction should be considered as the specific growth direction for Sb2Se3 experimentally. When the strain is applied along the x- and z-direction, μx gradually increases with strain increasing, while it decreases when the strain is applied along the y-direction. Taking into account the combined effects of strain on bandgap, iso-surface, density of states, and mobility, this study suggests that the optimal performance of Sb2Se3 solar cell absorber layer material can be realized when the strain is applied along the y-axis, with a compressive strain of 3%.
      通信作者: 侯纪伟, jwhou@njtech.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 61904071, 52002170)、江苏省研究生科技与实践创新计划 (批准号: KYCX23_1429)和江苏省高校青蓝工程资助的课题.
      Corresponding author: Hou Ji-Wei, jwhou@njtech.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61904071, 52002170), the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX23_1429), and the Qing Lan Project of Jiangsu Provincial University, China.
    [1]

    Green M A, Dunlop E D, Yoshita M 2023 Prog. Photovolt. Res. Appl. 31 651Google Scholar

    [2]

    Chen C, Li K H, Tang J 2022 Sol. RRL 6 2200094Google Scholar

    [3]

    Zhang X, Li C, Sun K, Zhou J, Zhang Z 2021 Adv. Energy Mater. 11 2002614Google Scholar

    [4]

    薛丁江, 石杭杰, 唐江 2015 64 038406Google Scholar

    Xue D J, Shi H J, Tang J 2015 Acta Phys. Sin. 64 038406Google Scholar

    [5]

    Zhao Y Q, Wang S Y, Li C, Che B, Chen X L, Chen H Y, Tang R F, Wang X M, Chen G L, Wang T, Gong J B, Chen T, Xiao X D, Li J M 2022 Energy Environ. Sci. 15 5118Google Scholar

    [6]

    Li Z Q, Liang X Y, Li G, Liu H X, Zhang H Y, Guo J X, Chen J W, Shen K, San X Y, Yu W Y, Schropp R, Mai Y H 2019 Nat. Commun. 10 125Google Scholar

    [7]

    Takagi S, Hoyt J L, Welser J J, Gibbons J F 1996 J. Appl. Phys. 80 1567Google Scholar

    [8]

    Welser J, Hoyt J L, Gibbons J F 1992 International Technical Digest on Electron Devices Meeting, San Francisco, CA, USA 1992, December 13–16, 1992 p1000

    [9]

    宋建军, 张鹤鸣, 胡辉勇, 宣荣喜, 戴显英 2010 59 579Google Scholar

    Song J J, Zhang H M, Hu H Y, Xuan R X, Dai X Y 2010 Acta Phys. Sin. 59 579Google Scholar

    [10]

    Jia W L, He Y, Cao Y L, Wang X M, Lin Z, Li W T, Xu M, Li E L 2022 Micro Nanostructures 168 207300Google Scholar

    [11]

    Datye I M, Daus A, Grady R W, Brenner K, Vaziri S, Pop E 2022 Nano Lett. 22 8052Google Scholar

    [12]

    Ge G X, Zhang Y W, Yan H X, Yang J M, Zhou L, Sui X J 2021 Appl. Surf. Sci. 538 148009Google Scholar

    [13]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [14]

    Vadapoo R, Krishnan S, Yilmaz H, Marin C 2011 Phys. Status Solidi B 248 700Google Scholar

    [15]

    Bardekn J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [16]

    Xi J Y, Long M Q, Tang L, Wang D, Shuai Z G 2012 Nanoscale 4 4348Google Scholar

    [17]

    El-Sayad E A, Moustafa A M, Marzouk S Y 2009 Physica B 404 1119Google Scholar

    [18]

    Kumar A, Ahluwalia P K 2013 Physica B 419 66Google Scholar

    [19]

    Peng X H, Ganti S, Alizadeh A, Sharma P, Kumar S K, and Nayak S K 2006 Phys. Rev. B 74 035339Google Scholar

    [20]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033Google Scholar

    [21]

    Kawamura M 2019 Comput. Phys. Commun. 239 197Google Scholar

    [22]

    Wang X W, Li Z Z, Kavanagh S R, Ganose A M, Walsh A 2022 Phys. Chem. Chem. Phys. 24 7195Google Scholar

    [23]

    Effective Mass Calculator for Semiconductors, Fonari A, Sutton Chttps://github.com/afonari/emc [2013-3-18]

    [24]

    Zhang B Y, Qian X F 2022 ACS Appl. Energy Mater. 5 492Google Scholar

    [25]

    Zhou Y, Wang L, Chen S Y, Qin S K, Liu X S, Chen Jie, Xue D J, Luo M, Cao Y Z, Cheng Y B, Sargent E H, Tang J 2015 Nat. Photonics 9 409Google Scholar

    [26]

    Chen C, Bobela D C, Yang Ye, Lu S C, Zeng K, Ge C, Yang B, Gao L, Zhao Y, Beard M C, Tang J 2017 Front. Optoelectron. 10 18Google Scholar

  • 图 1  Sb2Se3的晶胞, 棕色球体代表阳离子锑, 绿色球体代表阴离子硒

    Fig. 1.  Crystal structure of Sb2Se3 computational model, brown spheres represent cation antimony, and green spheres represent anion selenium.

    图 2  不同能带结构随εx的变化, 正号表示拉应变, 负号表示压应变, VBM与CBM均用红圈标注

    Fig. 2.  The variation of energy band structure under different εx strains. Positive sign indicates tensile strain, and negative sign indicates compressive strain. The VBM and the CBM are marked with red circles.

    图 3  费米能级、VBM、CBM及带隙随应变的变化 (a)应变沿x方向; (b)应变沿y方向; (c)应变沿z方向

    Fig. 3.  Variation of Fermi level, VBM, CBM and band gap with strain: (a) Strain along x direction; (b) strain along y direction; (c) strain along z direction.

    图 4  Sb2Se3价带顶下100 meV处的等能面的变化. 应变沿着x方向上 (a) εx = 0, (b) εx = –4.5%, (c) εx = +4.5%; 应变沿y方向上 (d) εy = –4.5%, (e) εy = +4.5%; 应变沿z方向上 (f) εz = –4.5%, (g) εz = +4.5%

    Fig. 4.  Variation of the isosurface at 100 meV below VBM. The strain is applied along x direction: (a) εx = 0, (b) εx = –4.5%, and (c) εx = +4.5%. The strain is applied along y direction: (d) εy = –4.5% and (e) εy = +4.5%. The strain is applied along z direction: (f) εz = –4.5% and (g) εz = +4.5%.

    图 5  Sb2Se3分态密度图. 应变沿着x方向上 (a) εx = 0, (b) εx = –4.5%, (c) εx = +4.5%; 应变沿y方向上 (d) εy = –4.5%, (e) εy = +4.5%; 应变沿z方向上 (f) εz = –4.5%, (g) εz = +4.5%

    Fig. 5.  Partial density of states of Sb2Se3. The strain is applied along x direction: (a) εx = 0, (b) εx = –4.5%, and (c) εx = +4.5%. The strain is applied along y direction: (d) εy = –4.5% and (e) εy = +4.5%. The strain is applied along z direction: (f) εz = –4.5% and (g) εz = +4.5%.

    图 6  迁移率随应变的变化 (a)应变沿x方向; (b)应变沿y方向; (c)应变沿z方向

    Fig. 6.  Mobility variation with strain: (a) Strain along the x direction; (b) strain along the y direction; (c) strain along the z direction.

    表 1  不同应变方向及应变量下, 沿x, y, z方向的有效质量

    Table 1.  Effective mass along x, y, z directions under different strain directions and strain amounts.

    应变方向ε/%$ {m}_{x}^{{\mathrm{*}}} $/m0$ {m}_{y}^{{\mathrm{*}}} $/m0$ {m}_{z}^{{\mathrm{*}}} $/m0



    x方向
    –4.50.580.730.77
    –3.00.510.780.86
    –1.50.460.850.96
    00.440.941.12
    1.50.421.081.32
    3.00.411.321.59
    4.50.401.821.97



    y方向
    –4.50.355.281.37
    –3.00.374.241.29
    –1.50.401.511.20
    00.440.941.12
    1.50.480.701.03
    3.00.530.590.95
    4.50.600.530.88



    z方向
    –4.50.550.941.62
    –3.00.500.941.27
    –1.50.460.931.15
    00.440.941.12
    1.50.421.021.11
    3.00.401.351.12
    4.50.403.831.13
    下载: 导出CSV
    Baidu
  • [1]

    Green M A, Dunlop E D, Yoshita M 2023 Prog. Photovolt. Res. Appl. 31 651Google Scholar

    [2]

    Chen C, Li K H, Tang J 2022 Sol. RRL 6 2200094Google Scholar

    [3]

    Zhang X, Li C, Sun K, Zhou J, Zhang Z 2021 Adv. Energy Mater. 11 2002614Google Scholar

    [4]

    薛丁江, 石杭杰, 唐江 2015 64 038406Google Scholar

    Xue D J, Shi H J, Tang J 2015 Acta Phys. Sin. 64 038406Google Scholar

    [5]

    Zhao Y Q, Wang S Y, Li C, Che B, Chen X L, Chen H Y, Tang R F, Wang X M, Chen G L, Wang T, Gong J B, Chen T, Xiao X D, Li J M 2022 Energy Environ. Sci. 15 5118Google Scholar

    [6]

    Li Z Q, Liang X Y, Li G, Liu H X, Zhang H Y, Guo J X, Chen J W, Shen K, San X Y, Yu W Y, Schropp R, Mai Y H 2019 Nat. Commun. 10 125Google Scholar

    [7]

    Takagi S, Hoyt J L, Welser J J, Gibbons J F 1996 J. Appl. Phys. 80 1567Google Scholar

    [8]

    Welser J, Hoyt J L, Gibbons J F 1992 International Technical Digest on Electron Devices Meeting, San Francisco, CA, USA 1992, December 13–16, 1992 p1000

    [9]

    宋建军, 张鹤鸣, 胡辉勇, 宣荣喜, 戴显英 2010 59 579Google Scholar

    Song J J, Zhang H M, Hu H Y, Xuan R X, Dai X Y 2010 Acta Phys. Sin. 59 579Google Scholar

    [10]

    Jia W L, He Y, Cao Y L, Wang X M, Lin Z, Li W T, Xu M, Li E L 2022 Micro Nanostructures 168 207300Google Scholar

    [11]

    Datye I M, Daus A, Grady R W, Brenner K, Vaziri S, Pop E 2022 Nano Lett. 22 8052Google Scholar

    [12]

    Ge G X, Zhang Y W, Yan H X, Yang J M, Zhou L, Sui X J 2021 Appl. Surf. Sci. 538 148009Google Scholar

    [13]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [14]

    Vadapoo R, Krishnan S, Yilmaz H, Marin C 2011 Phys. Status Solidi B 248 700Google Scholar

    [15]

    Bardekn J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [16]

    Xi J Y, Long M Q, Tang L, Wang D, Shuai Z G 2012 Nanoscale 4 4348Google Scholar

    [17]

    El-Sayad E A, Moustafa A M, Marzouk S Y 2009 Physica B 404 1119Google Scholar

    [18]

    Kumar A, Ahluwalia P K 2013 Physica B 419 66Google Scholar

    [19]

    Peng X H, Ganti S, Alizadeh A, Sharma P, Kumar S K, and Nayak S K 2006 Phys. Rev. B 74 035339Google Scholar

    [20]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033Google Scholar

    [21]

    Kawamura M 2019 Comput. Phys. Commun. 239 197Google Scholar

    [22]

    Wang X W, Li Z Z, Kavanagh S R, Ganose A M, Walsh A 2022 Phys. Chem. Chem. Phys. 24 7195Google Scholar

    [23]

    Effective Mass Calculator for Semiconductors, Fonari A, Sutton Chttps://github.com/afonari/emc [2013-3-18]

    [24]

    Zhang B Y, Qian X F 2022 ACS Appl. Energy Mater. 5 492Google Scholar

    [25]

    Zhou Y, Wang L, Chen S Y, Qin S K, Liu X S, Chen Jie, Xue D J, Luo M, Cao Y Z, Cheng Y B, Sargent E H, Tang J 2015 Nat. Photonics 9 409Google Scholar

    [26]

    Chen C, Bobela D C, Yang Ye, Lu S C, Zeng K, Ge C, Yang B, Gao L, Zhao Y, Beard M C, Tang J 2017 Front. Optoelectron. 10 18Google Scholar

  • [1] 张磊, 陈起航, 曹硕, 钱萍. 基于第一性原理计算单层IrSCl和IrSI的载流子迁移率.  , 2024, 73(21): 217201. doi: 10.7498/aps.73.20241044
    [2] 马泽成, 刘增霖, 程斌, 梁世军, 缪峰. 范德瓦耳斯材料的原位应变工程与应用.  , 2024, 73(11): 110701. doi: 10.7498/aps.73.20240353
    [3] 熊祥杰, 钟防, 张资文, 陈芳, 罗婧澜, 赵宇清, 朱慧平, 蒋绍龙. 二维范德瓦耳斯异质结Cs3X2I9/InSe (X = Bi, Sb)的光电性能.  , 2024, 73(13): 137101. doi: 10.7498/aps.73.20240434
    [4] 张冷, 张鹏展, 刘飞, 李方政, 罗毅, 侯纪伟, 吴孔平. 基于形变势理论的掺杂计算Sb2Se3空穴迁移率.  , 2024, 73(4): 047101. doi: 10.7498/aps.73.20231406
    [5] 周展辉, 李群, 贺小敏. AlN/β-Ga2O3异质结电子输运机制.  , 2023, 72(2): 028501. doi: 10.7498/aps.72.20221545
    [6] 黄昊, 牛奔, 陶婷婷, 罗世平, 王颖, 赵晓辉, 王凯, 李志强, 党伟. Sb2Se3薄膜表面和界面超快载流子动力学的瞬态反射光谱分析.  , 2022, 71(6): 066402. doi: 10.7498/aps.71.20211714
    [7] 底琳佳, 戴显英, 宋建军, 苗东铭, 赵天龙, 吴淑静, 郝跃. 基于锡组分和双轴张应力调控的临界带隙应变Ge1-xSnx能带特性与迁移率计算.  , 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [8] 吕懿, 张鹤鸣, 胡辉勇, 杨晋勇, 殷树娟, 周春宇. 单轴应变SiNMOSFET源漏电流特性模型.  , 2015, 64(19): 197301. doi: 10.7498/aps.64.197301
    [9] 白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇, 舒斌. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型.  , 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [10] 刘宾礼, 唐勇, 罗毅飞, 刘德志, 王瑞田, 汪波. 基于电压变化率的IGBT结温预测模型研究.  , 2014, 63(17): 177201. doi: 10.7498/aps.63.177201
    [11] 董海明. 低温下二硫化钼电子迁移率研究.  , 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [12] 宋建军, 张鹤鸣, 胡辉勇, 王晓艳, 王冠宇. 四方晶系应变Si空穴散射机制.  , 2012, 61(5): 057304. doi: 10.7498/aps.61.057304
    [13] 於黄忠. 空间电荷限制电流法测量共混体系中空穴的迁移率.  , 2012, 61(8): 087204. doi: 10.7498/aps.61.087204
    [14] 骆杨, 段羽, 陈平, 臧春亮, 谢月, 赵毅, 刘式墉. 利用空间电荷限制电流方法确定三(8-羟基喹啉)铝的电子迁移率特性初步研究.  , 2012, 61(14): 147801. doi: 10.7498/aps.61.147801
    [15] 张金风, 王平亚, 薛军帅, 周勇波, 张进成, 郝跃. 高电子迁移率晶格匹配InAlN/GaN材料研究.  , 2011, 60(11): 117305. doi: 10.7498/aps.60.117305
    [16] 刘玉敏, 俞重远, 任晓敏. 隔离层厚度和盖层厚度对InAs/GaAs量子点应变分布和发射波长的影响.  , 2009, 58(1): 66-72. doi: 10.7498/aps.58.66
    [17] 代月花, 陈军宁, 柯导明, 孙家讹, 胡 媛. 纳米MOSFET迁移率解析模型.  , 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
    [18] 许雪梅, 彭景翠, 李宏建, 瞿述, 罗小华. 载流子迁移率对单层有机发光二极管复合效率的影响.  , 2002, 51(10): 2380-2385. doi: 10.7498/aps.51.2380
    [19] 袁德荣, 乔灵芝. 带有非对称双阱势的氢键链中的扭结孤子激发.  , 2001, 50(3): 394-397. doi: 10.7498/aps.50.394
    [20] 李志锋, 陆 卫, 叶红娟, 袁先璋, 沈学础, G.Li, S.J.Chua. GaN载流子浓度和迁移率的光谱研究.  , 2000, 49(8): 1614-1619. doi: 10.7498/aps.49.1614
计量
  • 文章访问数:  2045
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-26
  • 修回日期:  2024-02-28
  • 上网日期:  2024-04-09
  • 刊出日期:  2024-06-05

/

返回文章
返回
Baidu
map