搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于粒子群算法的有机半导体NPB传输特性辨识

刘瑞兰 王徐亮 唐超

引用本文:
Citation:

基于粒子群算法的有机半导体NPB传输特性辨识

刘瑞兰, 王徐亮, 唐超

Identification for hole transporting properties of NPB based on particle swarm optimization algorithm

Liu Rui-Lan, Wang Xu-Liang, Tang Chao
PDF
导出引用
  • 为了研究有机半导体材料的载流子传输特性,制备了单层器件ITO/NPB/Ag,建立了该器件的理论导纳模型. 利用正弦小信号频域测试法得到该器件在不同直流偏压下的频率特性样本. 定义了同时包含有机半导体阻抗实部和虚部的模型参数辨识问题的目标函数,采用粒子群算法对包括载流子迁移时间τdc,色散度参数M和α在内的模型参数进行辨识. 为了验证提出方法的有效性,建立了器件的等效电路模型,并用最小二乘算法辨识出等效电路的时间常数τc. 实验上对1000 nm和1200 nm的单层器件进行频域测试,经计算发现τdc和τc 之间具有相同的比例关系,通过对计算出的空穴迁移率μdc 进行指数拟合发现,两种厚度的NPB器件的空穴迁移率与电场强度呈指数增加,且满足著名的Poole-Frenkel 公式.
    In order to study the carrier transporting properties in organic semiconductors (OSCs), the samples of single layer structure ITO/NPB/Ag are prepared, and the corresponding admittance model in theory is built. Impedance samples of the structure under different DC bias voltages are obtained by small sinusoidal signal frequency test method. The particle swarm optimization (PSO) algorithm, in which fitness function includes both the real part and the imaginary part of OSC impedance, is used to identify the model parameter including dispersion coefficient M, α and charge-carrier transit time τdc. To validate the proposed method, an equivalent circuit model of the structure, whose time constant τc is identified by least squares method, is built. Two single-layer structures, whose NPB thickness values are respectively 1000 nm and 1200 nm, are tested. Test results show that the charge-carrier transit time τdc is proportional to the time constant τc and the two hole mobility μdc values both satisfy the famous Poole-Frenkel formula.
    • 基金项目: 国家自然科学基金(批准号:61203213,11202107)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61203213, 11202107).
    [1]

    Xue J, Uchida S, Rand B P, Forrest S R 2004 Appl. Phys. Lett. 84 3013

    [2]

    Angelis F D, Cipolloni S, Mariucci L, Fortunato G 2005 Appl. Phys. Lett. 86 3505

    [3]

    Haddock N J, Domercq B, KippelenB 2005 Electron. Lett. 41 444

    [4]

    Peng Y Q, Zhang F J, Song C A 2003 Chin. Phys. B 12 796

    [5]

    Li X S, Peng Y Q, Yang Q S, Xing H W, Lu F P 2007 Acta Phys. Sin. 56 5441 (in Chinese) [李训栓, 彭应全, 杨青森, 刑宏伟, 路飞平 2007 56 5441]

    [6]

    Niu L B, Guan Y X 2009 Acta Phys. Sin. 58 4931 (in Chinese) [牛连斌, 关云霞 2009 58 4931]

    [7]

    Chen Z Y, Ye T L, Ma D G 2009 Prog. Chem. 21 940

    [8]

    Cheung C H, Tsung K K, So S K 2008 Appl. Phys. Lett. 93 8

    [9]

    Tsang S W,Tong K L, Tse S C, So S K 2006 Org. Elec. 7 6

    [10]

    Wu C C, Liu T L,Hung W Y, Lin Y T, Wang K T, Chen R T, Chen Y M, Chen Y Y 2003 J. Am. Chem. Soc. 125 3710

    [11]

    Chen Z Y, Ye T L, Ma D G 2009 Prog. Chem. 21 940 (in Chinese) [陈振宇, 叶腾凌, 马东阁 2009 化学进展 21 940]

    [12]

    Martens H C F, Brom H B, Blom P W M 1999 Phys. Rev. B 60 8489

    [13]

    Berleb S, Brtting W 2002 Phys. Rev. Lett. 89 6601

    [14]

    Tsang S W, So S K, Xu J B 2006 J. Appl. Phys. 99 3706

    [15]

    Tripathi D C, Tripathi A K, Mohapatra Y N 2011 Appl. Phys. Lett. 98 3304

    [16]

    Böttger H, Bryksin V V 1985 Hopping Conduction in Solids (Berlin: Akademie-Verlag) p224

    [17]

    Kennedy J, Eberhart R C 1995 Proceedings of IEEE International Conference on Neural Networks Western Australia, 27 November–1 December, 1995 p1942

    [18]

    Wang X F, Xue H J, Si S K, YaoY T 2009 Atca Phys. Sin. 58 3729 (in Chinese) [王校锋, 薛红军, 司守奎, 姚跃亭 2009 58 3729]

    [19]

    Long W, Jiao J J, Long Z Q 2011 Atca Phys. Sin. 60 110506 (in Chinese) [龙文, 焦建军, 龙祖强 2011 60 110506]

    [20]

    Liu C H,Zhang Y J, Zhang J, Wu J H 2011 Atca Phys. Sin. 60 019501 (in Chinese) [刘朝华, 张英杰, 章兢, 吴建辉 2011 60 019501]

    [21]

    Pedersen M E H, Chipperfield A J 2010 Appl. Soft Comput. 10 618

    [22]

    Sedighizadeh D, Masehian E 2009 Int. J. Comput. Theor. Engineer. 1 1

    [23]

    Shi Y, Eberhart R C 1998 Evolutionary Programming VⅡ, Springer, Lecture Notes in Computer Science 1447 p591

  • [1]

    Xue J, Uchida S, Rand B P, Forrest S R 2004 Appl. Phys. Lett. 84 3013

    [2]

    Angelis F D, Cipolloni S, Mariucci L, Fortunato G 2005 Appl. Phys. Lett. 86 3505

    [3]

    Haddock N J, Domercq B, KippelenB 2005 Electron. Lett. 41 444

    [4]

    Peng Y Q, Zhang F J, Song C A 2003 Chin. Phys. B 12 796

    [5]

    Li X S, Peng Y Q, Yang Q S, Xing H W, Lu F P 2007 Acta Phys. Sin. 56 5441 (in Chinese) [李训栓, 彭应全, 杨青森, 刑宏伟, 路飞平 2007 56 5441]

    [6]

    Niu L B, Guan Y X 2009 Acta Phys. Sin. 58 4931 (in Chinese) [牛连斌, 关云霞 2009 58 4931]

    [7]

    Chen Z Y, Ye T L, Ma D G 2009 Prog. Chem. 21 940

    [8]

    Cheung C H, Tsung K K, So S K 2008 Appl. Phys. Lett. 93 8

    [9]

    Tsang S W,Tong K L, Tse S C, So S K 2006 Org. Elec. 7 6

    [10]

    Wu C C, Liu T L,Hung W Y, Lin Y T, Wang K T, Chen R T, Chen Y M, Chen Y Y 2003 J. Am. Chem. Soc. 125 3710

    [11]

    Chen Z Y, Ye T L, Ma D G 2009 Prog. Chem. 21 940 (in Chinese) [陈振宇, 叶腾凌, 马东阁 2009 化学进展 21 940]

    [12]

    Martens H C F, Brom H B, Blom P W M 1999 Phys. Rev. B 60 8489

    [13]

    Berleb S, Brtting W 2002 Phys. Rev. Lett. 89 6601

    [14]

    Tsang S W, So S K, Xu J B 2006 J. Appl. Phys. 99 3706

    [15]

    Tripathi D C, Tripathi A K, Mohapatra Y N 2011 Appl. Phys. Lett. 98 3304

    [16]

    Böttger H, Bryksin V V 1985 Hopping Conduction in Solids (Berlin: Akademie-Verlag) p224

    [17]

    Kennedy J, Eberhart R C 1995 Proceedings of IEEE International Conference on Neural Networks Western Australia, 27 November–1 December, 1995 p1942

    [18]

    Wang X F, Xue H J, Si S K, YaoY T 2009 Atca Phys. Sin. 58 3729 (in Chinese) [王校锋, 薛红军, 司守奎, 姚跃亭 2009 58 3729]

    [19]

    Long W, Jiao J J, Long Z Q 2011 Atca Phys. Sin. 60 110506 (in Chinese) [龙文, 焦建军, 龙祖强 2011 60 110506]

    [20]

    Liu C H,Zhang Y J, Zhang J, Wu J H 2011 Atca Phys. Sin. 60 019501 (in Chinese) [刘朝华, 张英杰, 章兢, 吴建辉 2011 60 019501]

    [21]

    Pedersen M E H, Chipperfield A J 2010 Appl. Soft Comput. 10 618

    [22]

    Sedighizadeh D, Masehian E 2009 Int. J. Comput. Theor. Engineer. 1 1

    [23]

    Shi Y, Eberhart R C 1998 Evolutionary Programming VⅡ, Springer, Lecture Notes in Computer Science 1447 p591

  • [1] 张冷, 沈宇皓, 汤朝阳, 吴孔平, 张鹏展, 刘飞, 侯纪伟. 单轴应变对Sb2Se3空穴迁移率的影响.  , 2024, 73(11): 117101. doi: 10.7498/aps.73.20240175
    [2] 张冷, 张鹏展, 刘飞, 李方政, 罗毅, 侯纪伟, 吴孔平. 基于形变势理论的掺杂计算Sb2Se3空穴迁移率.  , 2024, 73(4): 047101. doi: 10.7498/aps.73.20231406
    [3] 李鑫鹏, 曹睿杰, 李铭, 郭各朴, 李禹志, 马青玉. 基于粒子群算法的超振荡超分辨聚焦声场设计.  , 2022, 71(20): 204304. doi: 10.7498/aps.71.20220898
    [4] 陶聪, 王敬民, 牛美玲, 朱琳, 彭其明, 王建浦. 非磁性发光材料的磁场效应: 从有机半导体到卤化物钙钛矿.  , 2022, 71(6): 068502. doi: 10.7498/aps.71.20211872
    [5] 李智浩, 曹亮, 郭玉献. 苝四甲酸二酐薄膜电子结构的同步辐射共振光电子能谱研究.  , 2017, 66(22): 224101. doi: 10.7498/aps.66.224101
    [6] 白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇, 舒斌. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型.  , 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [7] 陈颖, 王文跃, 于娜. 粒子群算法优化异质结构光子晶体环形腔滤波特性.  , 2014, 63(3): 034205. doi: 10.7498/aps.63.034205
    [8] 董海明. 低温下二硫化钼电子迁移率研究.  , 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [9] 刘暾东, 陈俊仁, 洪武鹏, 邵桂芳, 王婷娜, 郑骥文, 文玉华. 基于粒子群算法的Pt-Pd合金纳米粒子的稳定结构研究.  , 2013, 62(19): 193601. doi: 10.7498/aps.62.193601
    [10] 陈东阁, 唐新桂, 贾振华, 伍君博, 熊惠芳. Al2O3-Y2O3-ZrO2三相复合陶瓷的介电谱研究.  , 2011, 60(12): 127701. doi: 10.7498/aps.60.127701
    [11] 张金风, 王平亚, 薛军帅, 周勇波, 张进成, 郝跃. 高电子迁移率晶格匹配InAlN/GaN材料研究.  , 2011, 60(11): 117305. doi: 10.7498/aps.60.117305
    [12] 罗晓婧, 杨昌平, 宋学平, 徐玲芳. 巨介电常数氧化物CaCu3Ti4O12的介电和阻抗特性.  , 2010, 59(5): 3516-3522. doi: 10.7498/aps.59.3516
    [13] 王校锋, 薛红军, 司守奎, 姚跃亭. 基于粒子群算法和OGY方法的混沌系统混合控制.  , 2009, 58(6): 3729-3733. doi: 10.7498/aps.58.3729
    [14] 赵知劲, 徐世宇, 郑仕链, 杨小牛. 基于二进制粒子群算法的认知无线电决策引擎.  , 2009, 58(7): 5118-5125. doi: 10.7498/aps.58.5118
    [15] 汪润生, 孟卫民, 彭应全, 马朝柱, 李荣华, 谢宏伟, 王颖, 赵明, 袁建挺. 有机半导体的物理掺杂理论.  , 2009, 58(11): 7897-7903. doi: 10.7498/aps.58.7897
    [16] 李训栓, 彭应全, 杨青森, 刑宏伟, 路飞平. 有机半导体异质界面电荷传输解析模型研究.  , 2007, 56(9): 5441-5445. doi: 10.7498/aps.56.5441
    [17] 任俊峰, 张玉滨, 解士杰. 铁磁/有机半导体/铁磁系统的电流自旋极化性质研究.  , 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [18] 代月花, 陈军宁, 柯导明, 孙家讹, 胡 媛. 纳米MOSFET迁移率解析模型.  , 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
    [19] 许雪梅, 彭景翠, 李宏建, 瞿述, 罗小华. 载流子迁移率对单层有机发光二极管复合效率的影响.  , 2002, 51(10): 2380-2385. doi: 10.7498/aps.51.2380
    [20] 李志锋, 陆 卫, 叶红娟, 袁先璋, 沈学础, G.Li, S.J.Chua. GaN载流子浓度和迁移率的光谱研究.  , 2000, 49(8): 1614-1619. doi: 10.7498/aps.49.1614
计量
  • 文章访问数:  6332
  • PDF下载量:  431
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-21
  • 修回日期:  2013-09-30
  • 刊出日期:  2014-01-05

/

返回文章
返回
Baidu
map