-
新一代检测装备对高灵敏检测器提出了迫切需求。纵观半导体检测器件的发展现状,目前传统硅基检测器灵敏度及沟道尺寸已不满足未来所需,金刚石烯具有高载流子迁移率、宽带隙等优异性能,其优异的电子特性有望有效提升检测器的灵敏度性能,为下一代检测器发展提供新途径。但基于金刚石烯的检测机理还尚不明晰。基于上述问题,本文通过建立晶体管电流沟道理论模型,分析了检测器工作状态下电子流动机制,进一步结合沟道材料电子特性,建立一种基于沟道材料电子流动的晶体管电流理论模型,并开展金刚石烯基晶体管检测器的机理仿真验证、电子特性分析研究,证明了碳基二维材料——金刚石烯在超敏电子检测中的潜力,为新一代高性能检测器的研制提供技术基础。The new generation of detection equipment puts forward an urgent need for high sensitivity detectors. Looking at the development status of semiconductor detection devices, the sensitivity and channel size of traditional silicon-based detectors cannot meet the needs of the future. Diamondene has excellent performance such as high carrier mobility and wide band gap. Its excellent electronic characteristics are expected to effectively improve the sensitivity performance of the detector and provide a new way for the development of the next generation of detectors. However, the detection mechanism based on diamondene is still unclear. Based on the above problems, the analytical model and mechanism of the transistor channel are first studied. By analyzing the relationship between the surface potential distribution of the current channel and the effective channel size in the working state and the sensitive characteristics of the two-dimensional material electrons of the channel, a theoretical model of the transistor detector based on the electronic characteristics of the channel material is constructed, and the working characteristics of the detector are revealed. Based on the finite element simulation, the working mechanism, potential and electron distribution of the transistor detector are simulated. The simulation results show that the mobility level of the diamondene-based detector is 2.5 times that of the traditional silicon-based detector, which theoretically verifies the hypersensitivity detection characteristics of the diamondene-based detector. The research work in this paper is of great significance to the design and application of a new generation of carbon-based ultra-sensitive detection devices.
-
Keywords:
- High Sensitivity Detector /
- channel electronics /
- Sensitivity /
- Migration rate
-
[1] Jiang J F, Xu L, Qiu C G, Peng L-M 2023 Nature 616 470
[2] Dwivedi P, Soneja S, Dhanekar S 2018IEEE SENSORS
[3] Liu K L, Jin B, Han W, Zhao Y H, Yang S J, Duan J Y, Liu L X, Wang F K, Zhuge F W, Zhai T Y, Chen X, Gong P L, Huang L, Hu X Z 2021Nature electronics 4 906
[4] Grigorenko A N, Polini M, Novoselov K S 2012Nature Photonics 6 749
[5] Gui G, Li J, Zhong J X 2008Phys. Rev. B 78 1
[6] Lu G H, Yu K H, Wen Z H, Chen J H 2013Nanoscale 5 1353
[7] He Q, Su K, Zhang J F, Ren Z Y, Xing Y F, Zhang J C, Lei Y Q, Hao Y 2022IEEE Transactions on Electron Devices 691206
[8] Zhen J P, Huang Q S, Shen K, Dong H L, Zhang S H, Lv K H, Yang P, Zhang Y, Guo S L, Qiu J, Liu G J 2024PNAS 121 e2403726121
[9] Su K, Ren Z Y, Peng Y,Zhang J F, Zhang J C, Zhang Y C, He Q, Zhang C F, Hao Y 2020IEEE Access 8 20043
[10] Sasama Y, Kageura T, Imura M, Watanabe K, Taniguchi T, Uchihashi T, Takahide Y 2022Nature Electronics 5 37
[11] Zhang Q, Fang T, Xing H, Seabaugh A, Jena D 2008IEEE Electron. Device Lett. 29 1344
[12] Cheli M, Michetti P, Iannaccone G 2010IEEE Electron. Devices Trans 57 1936
[13] Liang G, Neophytou N, Lundstrom M S, Nikonov, D E 2008J. Comput. Electron 7 394
[14] Xing H L, Fang T, Konar A, Jena D 2007Appl. Phys. Lett. 91 092109
[15] Hanson G W 2007J. Appl. Phys. 103 064302
[16] Jabbarzadeh F, Heydari M, Sharif A H 2019Mater. Res. Express 6 086209
[17] Gusynin V P, Sharapov S G, Carbotte J P 2007J. Phys.: Condens. Matter 19 026222
[18] Xu W, Zhu Z H, Liu K, Zhang J F, Yuan X D, Lu Q S, Qin S Q 2015Opt. Express 23 5147
[19] Luo X G, Teng Q, Lu W B, Ni Z H 2013Materials Science and Engineering: R: Reports 74 351
[20] Hua L, Gan X T, Mao D, Zhao J L 2017Photonics Research 5 162
[21] Lima A W, Sombra A 2014Opt. Commun. 321 150
[22] Frank S 2010Nat. Nanotech. 5 487
[23] 季启政, 刘峻, 杨铭, 马贵蕾, 胡小锋, 刘尚合2023电子学报51 1486
[24] Ipsita C, Shuvajit R, Vivek D 2021Photonics and Nanostructures Fundamentals and Application 43 100865.
[25] Jabbarzadeh F, Habibzadeh S A 2019JOSA B 36 690
[26] Liu M, Yin X B, Erick U A, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011Nature 474 64
[27] Heidari M, Orouji A A, Bozorgi S A 2023J Mater Sci: Mater Electron 34 1708
[28] Santini T, Morand S, Fouladirad M, Phung L V, Miller F, Foucher B, Grall A, Allard B 2014Microelectronics Reliability 54 1718
[29] Sreevani A, Swarnakar S, Krishna S V 2022Silicon 14 9223
计量
- 文章访问数: 166
- PDF下载量: 3
- 被引次数: 0