Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Carrier mobility in doped Sb2Se3 based on deformation potential theory

Zhang Leng Zhang Peng-Zhan Liu Fei Li Fang-Zheng Luo Yi Hou Ji-Wei Wu Kong-Ping

Citation:

Carrier mobility in doped Sb2Se3 based on deformation potential theory

Zhang Leng, Zhang Peng-Zhan, Liu Fei, Li Fang-Zheng, Luo Yi, Hou Ji-Wei, Wu Kong-Ping
PDF
HTML
Get Citation
  • Antimony selenide (Sb2Se3) is an element-rich, cost-effective, and non-toxic material used as an absorber layer in solar cells. The performance of solar cells is significantly influenced by the transport characteristics of charge carriers. However, these characteristics in Sb2Se3 have not been well understood. In this work, through density functional theory and deformation potential theory, we investigate the hole transport properties of pure Sb2Se3 and As-, Bi-doped Sb2Se3. The incorporation of as element and Bi element does not introduce additional impurity levels within the band gap. However, the band gaps are reduced in both As-Sb2Se3 and Bi-Sb2Se3 due to the band shifts of energy levels. This phenomenon is primarily attributed to the interactions between the unoccupied 4p and 6p states of the doping atoms and the unoccupied 4p states of Se atoms, as well as the unoccupied 5p states of Sb atoms. In this study, we calculate and analyze three key parameters affecting mobility: effective mass, deformation potential, and elastic constants. The results indicate that effective mass has the greatest influence on mobility, with Bi-Sb2Se3 exhibiting the highest average mobility. The average effective mass is highest in As-Sb2Se3 and lowest in Bi-Sb2Se3. The elastic constants of the As- and Bi-doped Sb2Se3 structures show minimal differences compared with that of the intrinsic Sb2Se3 structure. By comparing the intrinsic, As-doped, and Bi-doped Sb2Se3, it is evident that doping has a minor influence on deformation potential energy along various directions. The study reveals that the hole mobility in Sb2Se3 displays significant anisotropy, with higher mobilities observed in the x-direction and the y-direction than in the z-direction. This discrepancy is attributed to stronger covalent bonding primarily in the x- and y-direction, while in the z-direction weaker van der Waals forces is dominant. The directions with enhanced charge carrier transport capability contribute to efficient transfer and collection of photo-generated charge carriers. Therefore, our research theoretically underscores the significance of controlling the growth of antimony selenide along specific directions.
      Corresponding author: Wu Kong-Ping, kpwu@jit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61904071, 52002170), the Qing Lan Project of Jiangsu Provincial University of China, and the Jinling Institute of Technology High-level Talent Research Startup Fund (Grant No. jit-rcyj-202001).
    [1]

    Chen C, Li K H, Tang J 2022 Sol. RRL 6 2200094Google Scholar

    [2]

    Zhang X, Li C, Sun K, Zhou J, Zhang Z 2021 Adv. Energy Mater. 11 2002614Google Scholar

    [3]

    薛丁江, 石杭杰, 唐江 2015 64 038406Google Scholar

    Xue D J, Shi H J, Tang J 2015 Acta Phys. Sin. 64 038406Google Scholar

    [4]

    Zhao Y, Wang S, Li C, Che B, Chen X, Chen H, Tang R, Wang X, Chen G, Wang T, Gong J, Chen T, Xiao X 2022 Energy Environ. Sci. 15 5118Google Scholar

    [5]

    Li Z, Liang X, Li G, Liu H, Zhang H, Guo J, Chen J, Shen K, San X, Yu W, Schropp R, Mai Y 2019 Nat. Commun. 10 125Google Scholar

    [6]

    Wang X, Ganose A M, Kavanagh S R, Walsh A 2022 ACS Energy Lett. 7 2954Google Scholar

    [7]

    Spaggiari G, Bersani D, Calestani D, Gilioli E, Gombia E, Mezzadri F, Casappa M, Pattini F, Trevisi G, Rampino S 2022 Int. J. Mol. Sci. 23 15529Google Scholar

    [8]

    Huang M, Lu S, Li K, Lu Y, Chen C, Tang J, Chen S 2022 Sol. RRL 6 2100730Google Scholar

    [9]

    Liang G, Chen X, Ren D, Jiang X, Tang R, Zheng Z, Su Z, Fan P, Zhang X, Zhang Y, Chen S 2021 J. Materiomics 7 1324Google Scholar

    [10]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [11]

    Vadapoo R, Krishnan S, Yilmaz H, Marin C 2011 Phys. Status Solidi B 248 700Google Scholar

    [12]

    Bardekn J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [13]

    Xi J, Long M, Tang L, Wang D, Shuai Z 2012 Nanoscale 4 4348Google Scholar

    [14]

    El-Sayad E A, Moustafa A M, Marzouk S Y 2009 Physica B 404 1119Google Scholar

    [15]

    Zheng X, Xie Y, Zhu L, Jiang X, Jia Y, Song W, Sun Y 2002 Inorg. Chem. 41 455Google Scholar

    [16]

    Effective Mass Calculator for Semiconductors, Fonari A, Sutton C https://github.com/afonari/emc [2013-3-18

    [17]

    Zhang B, Qian X 2022 ACS Appl. Energy Mater. 5 492Google Scholar

    [18]

    Wang X, Li Z, Kavanagh S R, Ganose A M, Walsh A 2022 Phys. Chem. Chem. Phys. 24 7195Google Scholar

    [19]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033Google Scholar

    [20]

    Silva E Lora da, Skelton J M, Rodríguez-Hernández P, Muõz A, Santo M C, Martínez-García D, Vilaplana R, Manjón F J 2022 J. Mater. Chem. C 10 15061Google Scholar

    [21]

    Zhou Y, Leng M, Xia Z, Zhong J, Song H, Liu X, Yang B, Zhang J, Chen J, Zhou K 2014 Adv. Energy Mater. 4 1301846Google Scholar

    [22]

    Madelung O 1996 Semiconductor: Data Handbook (2rd Ed.) (New York: Springer-Verlag Berlin Heidelbergy) p204

    [23]

    Black J, Conwell E, Seigle L, Spencer C 1957 J. Phys. Chem. Solids 2 240Google Scholar

    [24]

    Cheng L, Liu Y 2018 J. Am. Chem. Soc. 140 17895Google Scholar

  • 图 1  Sb2Se3的晶胞

    Figure 1.  Crystal structure of Sb2Se3 computational model.

    图 2  纯Sb2Se3 (a), As-Sb2Se3 (b), Bi-Sb2Se3 (c)的能带结构及分态密度图. 虚线处是费米能级, 蓝圈处是价带顶(VBM)

    Figure 2.  Band structures and partial density of states of pure Sb2Se3 (a), As-Sb2Se3 (b), and Bi-Sb2Se3 (c). Dashed line represents the Fermi level and the blue circle represents the valence band maximum (VBM).

    图 3  (a)本征Sb2Se3总能量与形变的抛物线拟合, 其决定了弹性常数; (b)不同结构的弹性常数

    Figure 3.  (a) Parabolic fitting of the intrinsic Sb2Se3 total energy and deformations, determining the elastic constants; (b) calculated elastic constants of different structures.

    图 4  (a)本征Sb2Se3在3个不同方向应变下的价带边缘位置, 实线是线性拟合, 其决定了形变势; (b)不同结构的形变势能

    Figure 4.  (a) Valence band edge positions of intrinsic Sb2Se3 under strain along three different directions, solid lines represent linear fitting, determining the deformation potential; (b) calculated deformation potential energies of different structures.

    表 1  优化后的晶格参数

    Table 1.  Optimized lattice parameters.

    文献[14] 文献[15] Sb2Se3 AsSb2Se3 BiSb2Se3
    a 3.98 3.99 3.99 3.97 4.00
    b 11.64 11.63 11.35 11.35 11.36
    c 11.79 11.78 11.65 11.63 11.65
    v3 547.1 546.6 527.3 524.7 528.9
    DownLoad: CSV

    表 2  不同Sb2Se3结构的空穴有效质量

    Table 2.  Effective mass of holes for different structures of Sb2Se3.

    m*/m0Sb2Se3As-Sb2Se3Bi-Sb2Se3
    $ {m}_{xx}^{*} $0.430.450.42
    $ {m}_{yy}^{*} $0.880.890.67
    $ {m}_{zz}^{*} $1.081.221.61
    $ {\stackrel{-}{m}}^{*} $0.680.720.67
    DownLoad: CSV

    表 3  三种结构的空穴迁移率

    Table 3.  Hole mobility of Sb2Se3, As-Sb2Se3 and Bi-Sb2Se3 along three principle directions.

    迁移率/(cm2·V–1·s–1)Sb2Se3As-Sb2Se3Bi-Sb2Se3
    μx232.62221.59240.66
    μy32.7831.2066.71
    μz20.0215.118.04
    μavg95.1489.30105.13
    DownLoad: CSV
    Baidu
  • [1]

    Chen C, Li K H, Tang J 2022 Sol. RRL 6 2200094Google Scholar

    [2]

    Zhang X, Li C, Sun K, Zhou J, Zhang Z 2021 Adv. Energy Mater. 11 2002614Google Scholar

    [3]

    薛丁江, 石杭杰, 唐江 2015 64 038406Google Scholar

    Xue D J, Shi H J, Tang J 2015 Acta Phys. Sin. 64 038406Google Scholar

    [4]

    Zhao Y, Wang S, Li C, Che B, Chen X, Chen H, Tang R, Wang X, Chen G, Wang T, Gong J, Chen T, Xiao X 2022 Energy Environ. Sci. 15 5118Google Scholar

    [5]

    Li Z, Liang X, Li G, Liu H, Zhang H, Guo J, Chen J, Shen K, San X, Yu W, Schropp R, Mai Y 2019 Nat. Commun. 10 125Google Scholar

    [6]

    Wang X, Ganose A M, Kavanagh S R, Walsh A 2022 ACS Energy Lett. 7 2954Google Scholar

    [7]

    Spaggiari G, Bersani D, Calestani D, Gilioli E, Gombia E, Mezzadri F, Casappa M, Pattini F, Trevisi G, Rampino S 2022 Int. J. Mol. Sci. 23 15529Google Scholar

    [8]

    Huang M, Lu S, Li K, Lu Y, Chen C, Tang J, Chen S 2022 Sol. RRL 6 2100730Google Scholar

    [9]

    Liang G, Chen X, Ren D, Jiang X, Tang R, Zheng Z, Su Z, Fan P, Zhang X, Zhang Y, Chen S 2021 J. Materiomics 7 1324Google Scholar

    [10]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [11]

    Vadapoo R, Krishnan S, Yilmaz H, Marin C 2011 Phys. Status Solidi B 248 700Google Scholar

    [12]

    Bardekn J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [13]

    Xi J, Long M, Tang L, Wang D, Shuai Z 2012 Nanoscale 4 4348Google Scholar

    [14]

    El-Sayad E A, Moustafa A M, Marzouk S Y 2009 Physica B 404 1119Google Scholar

    [15]

    Zheng X, Xie Y, Zhu L, Jiang X, Jia Y, Song W, Sun Y 2002 Inorg. Chem. 41 455Google Scholar

    [16]

    Effective Mass Calculator for Semiconductors, Fonari A, Sutton C https://github.com/afonari/emc [2013-3-18

    [17]

    Zhang B, Qian X 2022 ACS Appl. Energy Mater. 5 492Google Scholar

    [18]

    Wang X, Li Z, Kavanagh S R, Ganose A M, Walsh A 2022 Phys. Chem. Chem. Phys. 24 7195Google Scholar

    [19]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033Google Scholar

    [20]

    Silva E Lora da, Skelton J M, Rodríguez-Hernández P, Muõz A, Santo M C, Martínez-García D, Vilaplana R, Manjón F J 2022 J. Mater. Chem. C 10 15061Google Scholar

    [21]

    Zhou Y, Leng M, Xia Z, Zhong J, Song H, Liu X, Yang B, Zhang J, Chen J, Zhou K 2014 Adv. Energy Mater. 4 1301846Google Scholar

    [22]

    Madelung O 1996 Semiconductor: Data Handbook (2rd Ed.) (New York: Springer-Verlag Berlin Heidelbergy) p204

    [23]

    Black J, Conwell E, Seigle L, Spencer C 1957 J. Phys. Chem. Solids 2 240Google Scholar

    [24]

    Cheng L, Liu Y 2018 J. Am. Chem. Soc. 140 17895Google Scholar

  • [1] Zhang Leng, Shen Yu-Hao, Tang Chao-Yang, Wu Kong-Ping, Zhang Peng-Zhan, Liu Fei, Hou Ji-Wei. Effect of uniaxial strain on Hole mobility of Sb2Se3. Acta Physica Sinica, 2024, 73(11): 117101. doi: 10.7498/aps.73.20240175
    [2] Huang Hao, Niu Ben, Tao Ting-Ting, Luo Shi-Ping, Wang Ying, Zhao Xiao-Hui, Wang Kai, Li Zhi-Qiang, Dang Wei. Ultrafast carrier kinetics at surface and interface of Sb2Se3 film by transient reflectance. Acta Physica Sinica, 2022, 71(6): 066402. doi: 10.7498/aps.71.20211714
    [3] Zhang Xiao-Ya, Song Jia-Xun, Wang Xin-Hao, Wang Jin-Bin, Zhong Xiang-Li. First principles calculation of optical absorption and polarization properties of In doped h-LuFeO3. Acta Physica Sinica, 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [4] Yan Jun, Wang Zi-Yi, Zeng Ruo-Sheng, Zou Bing-Suo. Zero-dimensional Sb3+ doped Rb7Bi3Cl16 metal halides with triplet self-trapped exciton emission. Acta Physica Sinica, 2021, 70(24): 247801. doi: 10.7498/aps.70.20211024
    [5] Yuan Guo-Cai, Chen Xi, Huang Yu-Yang, Mao Jun-Xi, Yu Jin-Qiu, Lei Xiao-Bo, Zhang Qin-Yong. Comparative study of thermoelectric properties of Mg2Si0.3Sn0.7 doped by Ag or Li. Acta Physica Sinica, 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [6] Ruan Lu-Feng, Wang Lei, Sun De-Yan. Effect of Sr doping on electronic structure of La1-xSrxMnO3/LaAlO3/SrTiO3 heterointerface. Acta Physica Sinica, 2017, 66(18): 187301. doi: 10.7498/aps.66.187301
    [7] Xu Jing, Liang Jia-Qing, Li Hong-Ping, Li Chang-Sheng, Liu Xiao-Juan, Meng Jian. First-principles study on the electronic structure of Ti-doped NbSe2. Acta Physica Sinica, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [8] Cheng Chao-Qun, Li Gang, Zhang Wen-Dong, Li Peng-Wei, Hu Jie, Sang Sheng-Bo, Deng Xiao. Electronic structures and optical properties of boron and phosphorus doped β-Si3N4. Acta Physica Sinica, 2015, 64(6): 067102. doi: 10.7498/aps.64.067102
    [9] Liao Jian, Xie Zhao-Qi, Yuan Jian-Mei, Huang Yan-Ping, Mao Yu-Liang. First-principles study of 3d transition metal Co doped core-shell silicon nanowires. Acta Physica Sinica, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [10] Cao Juan, Cui Lei, Pan Jing. Magnetism of V, Cr and Mn doped MoS2 by first-principal study. Acta Physica Sinica, 2013, 62(18): 187102. doi: 10.7498/aps.62.187102
    [11] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [12] Xu Jin-Rong, Wang Ying, Zhu Xing-Feng, Li Ping, Zhang Li. First-principles study of N-doped and N-V co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(20): 207103. doi: 10.7498/aps.61.207103
    [13] Zhou Chuan-Cang, Liu Fa-Min, Ding Peng, Zhong Wen-Wu, Cai Lu-Gang, Zeng Le-Gui. Molten salt synthesis, V-doped and magnetic properties of columbite MnNb2O6. Acta Physica Sinica, 2011, 60(4): 048101. doi: 10.7498/aps.60.048101
    [14] Zhang Yun, Shao Xiao-Hong, Wang Zhi-Qiang. A first principle study on p-type doped 3C-SiC. Acta Physica Sinica, 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [15] Xu Xin-Fa, Shao Xiao-Hong. Calculation of the electronic structure of Y-doped SrTiO3. Acta Physica Sinica, 2009, 58(3): 1908-1916. doi: 10.7498/aps.58.1908
    [16] Du Li-Ping, Chen Bao-Xue, Sun Bei, Chen Zhi, Zou Lin-Er, Hiromi Hamanaka, Mamoru Iso. Optical stopping effect of impurity-doping As2S8 glass waveguide. Acta Physica Sinica, 2008, 57(6): 3593-3599. doi: 10.7498/aps.57.3593
    [17] Kim Sung-Chol, Huang Zu-Fei, Ming Xing, Wang Chun-Zhong, Meng Xing, Chen Gang. Effect of bivalent metal element doping on the electronic transport properties of LiCoO2. Acta Physica Sinica, 2007, 56(10): 6008-6012. doi: 10.7498/aps.56.6008
    [18] Wang Xian-Jie, Sui Yu, Qian Zheng-Nan, Liu Zhi-Guo, Miao Ji-Peng, Huang Xi-Qiang, Lü Zhe, Zhu Rui-Bin, Cheng Jin-Guang, Su Wen-Hui. Influence of doping Al at Fe site on the magnetic structure and magnetotransport properties of Sr2FeMoO6. Acta Physica Sinica, 2006, 55(2): 849-853. doi: 10.7498/aps.55.849
    [19] Zhang Jia-Hong, Ma Rong, Liu Su, Liu Mei. First-principles calculations on the superconductivity and magnetism of doping MgCNi3. Acta Physica Sinica, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
    [20] Dai Yue-Hua, Chen Jun-Ning, Ke Dao-Ming, Sun Jia-E, Hu Yuan. An analytical model of mobility in nano-scaled n-MOSFETs. Acta Physica Sinica, 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
Metrics
  • Abstract views:  2190
  • PDF Downloads:  84
  • Cited By: 0
Publishing process
  • Received Date:  31 August 2023
  • Accepted Date:  20 November 2023
  • Available Online:  24 November 2023
  • Published Online:  20 February 2024

/

返回文章
返回
Baidu
map