-
Quantum computation presents incomparable advantages over classical computer in solving some complex problems. To realize large-scale quantum computation, it is required to establish a hardware platform that is universal, scalable and fault tolerant. Continuous-variable optical system, which has unique advantages, is a feasible way to realize large-scale quantum computation and has attracted much attention in recent years. Measurement-based continuous-variable quantum computation realizes the computation by performing the measurement and feedforward of measurement results in large-scale Gaussian cluster states, and it provides an efficient method to realize quantum computation. Quantum error correction is an important part in quantum computation and quantum communication to protect quantum information. This review briefly introduces the basic principles and research advances in one-way quantum computation based on cluster states, quantum computation based on optical Schrödinger cat states and quantum error correction with continuous variables, and discusses the problems and challenges that the continuous-variable quantum computation is facing.
-
Keywords:
- quantum computation /
- continuous variables /
- cluster states /
- Schrödinger cat states /
- quantum error correction
[1] Shor P W 1994 Proceedings 35th Annual Symposium on Foundations of Computer Science Santa Fe, American, November 20–22, 1994
[2] Feynman R P 1982 Int. J. Theor. Phys. 21 467
Google Scholar
[3] Lloyd S 1993 Science 261 1569
Google Scholar
[4] Lloyd S 1994 Science 263 695
Google Scholar
[5] Rarity J G, Ownes P C M, Tapster P R 1994 J. Mod. Opt. 41 2435
Google Scholar
[6] Devoret M H, Schoelkopf R J 2013 Science 339 1169
Google Scholar
[7] Gambetta J M, Chow J M, Steffen M 2017 NPJ Quantum Inf. 3 2
Google Scholar
[8] Li Z Y, Yu H F, Tan X S, Zhao S P, Yu Y 2019 Chin. Phys. B 28 098505
Google Scholar
[9] Gong M, Wang S, Zha C, et al. 2021 Science 372 948
Google Scholar
[10] Huang H L, Wu D, Fan D, Zhu X 2020 Sci. Chin. Inf. Sci. 63 180501
Google Scholar
[11] Pagano G, Bapat A, Becker P, Collins K S, De A, Hess P W, Kaplan H B, Kyprianidis A, Tan W L, Baldwin C, Brady L T, Deshpande A, Liu F, Jordan S, Gorshkov A V, Monroe C 2020 Proc. Natl. Acad. Sci. 117 25396
Google Scholar
[12] Pino J M, Dreiling J M, Figgatt C, et al. 2021 Nature 592 209
Google Scholar
[13] Watson T F, Philips S G J, Kawakami E, et al. 2018 Nature 555 633
Google Scholar
[14] Hendrickx N W, Lawrie W I L, Russ M, et al. 2021 Nature 591 580
Google Scholar
[15] Arrazola J M, Bergholm V, Brádler K, et al. 2021 Nature 591 54
Google Scholar
[16] Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C L, Klimeck G, Rogge S, Coppersmith S N, Eriksson M A 2013 Rev. Mod. Phys. 85 961
Google Scholar
[17] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505
Google Scholar
[18] Yan Z, Zhang Y R, Gong M, et al. 2019 Science 364 753
Google Scholar
[19] Wu Y, Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501
Google Scholar
[20] Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460
Google Scholar
[21] Zhong H S, Deng Y H, Qin J, et al. 2021 Phys. Rev. Lett. 127 180502
Google Scholar
[22] van Loock P 2011 Laser Photonics Rev. 5 167
Google Scholar
[23] Andersen U L, Neergaard-Nielsen J S, van Loock P, Furusawa A 2015 Nat. Phys. 11 713
Google Scholar
[24] Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513
Google Scholar
[25] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621
Google Scholar
[26] Huh J, Guerreschi G G, Peropadre B, McClean J R, Aspuru-Guzik A 2015 Nat. Photonics 9 615
Google Scholar
[27] Hamilton C S, Kruse R, Sansoni L, Barkhofen S, Silberhorn C, Jex I 2017 Phys. Rev. Lett. 119 170501
Google Scholar
[28] Arrazola J M, Bromley T R 2018 Phys. Rev. Lett. 121 030503
Google Scholar
[29] Banchi L, Fingerhuth M, Babej T, Ing C, Arrazola J M 2020 Sci. Adv. 6 eaax1950
Google Scholar
[30] Lau H K, Pooser R, Siopsis G, Weedbrook C 2017 Phys. Rev. Lett. 118 080501
Google Scholar
[31] Schuld M, Killoran N 2019 Phys. Rev. Lett. 122 040504
Google Scholar
[32] Killoran N, Bromley T R, Arrazola J M, Schuld M, Quesada N, Lloyd S 2019 Phys. Rev. Res. 1 033063
Google Scholar
[33] Kalajdzievski T, Weedbrook C, Rebentrost P 2018 Phys. Rev. A 97 062311
Google Scholar
[34] Arrazola J M, Kalajdzievski T, Weedbrook C, Lloyd S 2019 Phys. Rev. A 100 032306
Google Scholar
[35] Adesso G, Illuminati F 2007 J. Phys. A:Math. Theor. 40 7821
Google Scholar
[36] 苏晓龙, 贾晓军, 彭堃墀 2016 物理学进展 36 101
Su X L, Jia X J, Peng K C 2016 Process phys. 36 101 (in Chinese)
[37] Fukui K, Takeda S 2022 J. Phys. B:At. Mol. Opt. Phys. 55 012001
Google Scholar
[38] Gu M, Weedbrook C, Menicucci N C, Ralph T C, van Loock P 2009 Phys. Rev. A 79 062318
Google Scholar
[39] Furusawa A, van Loock P 2011 Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing (Hoboken: Wiley) p16
[40] Lloyd S, Braunstein S L 1999 Phys. Rev. Lett. 82 1784
Google Scholar
[41] Furusawa A, van Loock P 2011 Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing (Hoboken: Wiley) p58
[42] Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188
Google Scholar
[43] Menicucci N C, van Loock P, Gu M, Weedbrook C, Ralph T C, Nielsen M A 2006 Phys. Rev. Lett. 97 110501
Google Scholar
[44] Zhang J, Braunstein S L 2006 Phys. Rev. A 73 032318
Google Scholar
[45] Hao S, Deng X, Liu Y, Su X, Xie C, Peng K 2021 Chin. Phys. B 30 060312
Google Scholar
[46] 苏晓龙, 贾晓军, 谢常德, 彭堃墀 2010 物理 39 746
Su X L, Jia X J, Xie C D, Peng K C 2010 Physics 39 746
[47] 彭堃墀, 苏晓龙, 贾晓军, 谢常德 2012 山西大学学报 35 231
Google Scholar
Peng K C, Su X L, Jia X J, Xie C D 2012 J. Shanxi Univ. 35 231
Google Scholar
[48] Wang Y, Tian C, Su Q, Wang M, Su X 2019 Sci. Chin. Inf. Sci. 62 72501
Google Scholar
[49] Su X, Wang M, Yan Z, Jia X, Xie C, Peng K 2020 Sci. Chin. Inf. Sci. 63 180503
Google Scholar
[50] Menicucci N C, Flammia S T, van Loock P 2011 Phys. Rev. A 83 042335
Google Scholar
[51] Su X, Tan A, Jia X, Zhang J, Xie C, Peng K 2007 Phys. Rev. Lett. 98 070502
Google Scholar
[52] Yukawa M, Ukai R, van Loock P, Furusawa A 2008 Phys. Rev. A 78 012301
Google Scholar
[53] Tan A, Wang Y, Jin X, Su X, Jia X, Zhang J, Xie C, Peng K 2008 Phys. Rev. A 78 013828
Google Scholar
[54] Su X, Zhao Y, Hao S, Jia X, Xie C, Peng K 2012 Opt. Lett. 37 5178
Google Scholar
[55] Pysher M, Miwa Y, Shahrokhshahi R, Bloomer R, Pfister O 2011 Phys. Rev. Lett. 107 030505
Google Scholar
[56] Chen M, Menicucci N C, Pfister O 2014 Phys. Rev. Lett. 112 120505
Google Scholar
[57] Roslund J, de Araújo R M, Jiang S, Fabre C, Treps N 2014 Nat. Photonics. 8 109
Google Scholar
[58] Cai Y, Roslund J, Ferrini G, Arzani F, Xu X, Fabre C, Treps N 2017 Nat. Commun. 8 15645
Google Scholar
[59] Menicucci N C 2011 Phys. Rev. A 83 062314
Google Scholar
[60] Yokoyama S, Ukai R, Armstrong S C, Sornphiphatphong C, Kaji T, Suzuki S, Yoshikawa J I, Yonezawa H, Menicucci N C, Furusawa A 2013 Nat. Photonics 7 982
Google Scholar
[61] Yoshikawa J I, Yokoyama S, Kaji T, Sornphiphatphong C, Shiozawa Y, Makino K, Furusawa A 2016 APL Photonics 1 060801
Google Scholar
[62] Larsen M V, Guo X, Breum C R, Neergaard-Nielsen J S, Andersen U L 2019 Science 366 369
Google Scholar
[63] Asavanant W, Shiozawa Y, Yokoyama S, et al. 2019 Science 366 373
Google Scholar
[64] Raussendorf R, Harrington J 2007 Phys. Rev. Lett. 98 190504
Google Scholar
[65] Raussendorf R, Harrington J, Goyal K 2007 New J. Phys. 9 199
Google Scholar
[66] Fukui K, Asavanant W, Furusawa A 2020 Phys. Rev. A 102 032614
Google Scholar
[67] Yoshikawa J I, Hayashi T, Akiyama T, Takei N, Huck A, Andersen U L, Furusawa A 2007 Phys. Rev. A 76 060301
Google Scholar
[68] Yoshikawa J I, Miwa Y, Huck A, Andersen U L, van Loock P, Furusawa A 2008 Phys. Rev. Lett. 101 250501
Google Scholar
[69] Miwa Y, Yoshikawa J I, van Loock P, Furusawa A 2009 Phys. Rev. A 80 050303
Google Scholar
[70] Ukai R, Yokoyama S, Yoshikawa J I, van Loock P, Furusawa A 2011 Phys. Rev. Lett. 107 250501
Google Scholar
[71] Ukai R, Iwata N, Shimokawa Y, Armstrong S C, Politi A, Yoshikawa J I, van Loock P, Furusawa A 2011 Phys. Rev. Lett. 106 240504
Google Scholar
[72] Wang Y, Su X, Shen H, Tan A, Xie C, Peng K 2010 Phys. Rev. A 81 022311
Google Scholar
[73] Hao S, Deng X, Su X, Jia X, Xie C, Peng K 2014 Phys. Rev. A 89 032311
Google Scholar
[74] Su X, Hao S, Deng X, Ma L, Wang M, Jia X, Xie C, Peng K 2013 Nat. Commun. 4 2828
Google Scholar
[75] Asavanant W, Charoensombutamon B, Yokoyama S, et al. 2021 Phys. Rev. Appl. 16 034005
Google Scholar
[76] Larsen M V, Guo X, Breum C R, Neergaard-Nielsen J S, Andersen U L 2021 Nat. Phys. 17 1018
Google Scholar
[77] Gottesman D, Kitaev A, Preskill J 2001 Phys. Rev. A 64 012310
Google Scholar
[78] Miyata K, Ogawa H, Marek P, Filip R, Yonezawa H, Yoshikawa J I, Furusawa A 2016 Phys. Rev. A 93 022301
Google Scholar
[79] Sabapathy K K, Weedbrook C 2018 Phys. Rev. A 97 062315
Google Scholar
[80] Yukawa M, Miyata K, Yonezawa H, Marek P, Filip R, Furusawa A 2013 Phys. Rev. A 88 053816
Google Scholar
[81] Masada G, Miyata K, Politi A, Hashimoto T, O’Brien J L, Furusawa A 2015 Nat. Photonics 9 316
Google Scholar
[82] Yang Z, Jahanbozorgi M, Jeong D, Sun S, Pfister O, Lee H, Yi X 2021 Nat. Commun. 12 4781
Google Scholar
[83] Dutt A, Luke K, Manipatruni S, Gaeta A L, Nussenzveig P, Lipson M 2015 Phys. Rev. Appl. 3 044005
Google Scholar
[84] Zhao Y, Okawachi Y, Jang J K, Ji X, Lipson M, Gaeta A L 2020 Phys. Rev. Lett. 124 193601
Google Scholar
[85] Vaidya V D, Morrison B, Helt L G, et al. 2020 Sci. Adv. 6 eaba9186
Google Scholar
[86] Zhang Q Y, Xu P, Zhu S N 2018 Chin. Phys. B 27 054207
Google Scholar
[87] Kaiser F, Fedrici B, Zavatta A, D’Auria V, Tanzilli S 2016 Optica 3 362
Google Scholar
[88] Fürst J U, Strekalov D V, Elser D, Aiello A, Andersen U L, Marquardt Ch, Leuchs G 2011 Phys. Rev. Lett. 106 113901
Google Scholar
[89] Lenzini F, Janousek J, Thearle O, Villa M, Haylock B, Kasture S, Cui L, Phan H P, Dao D V, Yonezawa H, Lam P K, Huntington E H, Lobino M 2018 Sci. Adv. 4 eaat9331
Google Scholar
[90] Qi Y, Li Y 2020 Nanophotonics 9 1287
Google Scholar
[91] Chen P K, Briggs I, Hou S, Fan L 2022 Opt. Lett. 47 1506
Google Scholar
[92] Schrödinger E 1935 Naturwissenschaften 23 807
Google Scholar
[93] Haroche S 2013 Rev. Mod. Phys. 85 1083
Google Scholar
[94] Arndt M, Hornberger K 2014 Nat. Phys. 10 271
Google Scholar
[95] Ralph T C, Gilchrist A, Milburn G J, Munro W J, Glancy S 2003 Phys. Rev. A 68 042319
Google Scholar
[96] Jeong H, Kim M S 2002 Phys. Rev. A 65 042305
Google Scholar
[97] Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503
Google Scholar
[98] Sychev D V, Ulanov A E, Tiunov E S, Pushkina A A, Kuzhamuratov A, Novikov V, Lvovsky A I 2018 Nat. Commun. 9 3672
Google Scholar
[99] Dakna M, Anhut T, Opatrnýn T, Knöll L, Welsch D G 1997 Phys. Rev. A 55 3184
Google Scholar
[100] Ourjoumtsev A, Tualle-Brouri R, Laurat J, Grangier P 2006 Science 312 83
Google Scholar
[101] Neergaard-Nielsen J S, Melholt Nielsen B, Hettich C, Mølmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604
Google Scholar
[102] Wakui K, Takahashi H, Furusawa A, Sasaki M 2007 Opt. Express 15 3568
Google Scholar
[103] Lee N, Benichi H, Takeno Y, Takeda S, Webb J, Huntington E, Furusawa A 2011 Science 332 330
Google Scholar
[104] Marek P, Fiurášek J 2010 Phys. Rev. A 82 014304
Google Scholar
[105] Tipsmark A, Dong R, Laghaout A, Marek P, Ježek M, Andersen U L 2011 Phys. Rev. A 84 050301
Google Scholar
[106] Blandino R, Ferreyrol F, Barbieri M, Grangier P, Tualle-Brouri R 2012 New J. Phys. 14 013017
Google Scholar
[107] Ourjoumtsev A, Ferreyrol F, Tualle-Brouri R, Grangier P 2009 Nat. Phys. 5 189
Google Scholar
[108] Sychev D V, Novikov V A, Pirov K K, Simon C, Lvovsky A I 2019 Optica 6 1425
Google Scholar
[109] Braunstein S L 1998 Nature 394 47
Google Scholar
[110] Lloyd S, Slotine J J E 1998 Phys. Rev. Lett. 80 4088
Google Scholar
[111] Braunstein S L 1998 Phys. Rev. Lett. 80 4084
Google Scholar
[112] Walker T A, Braunstein S L 2010 Phys. Rev. A 81 062305
Google Scholar
[113] Wilde M M, Krovi H, Brun T A 2007 Phys. Rev. A 76 052308
Google Scholar
[114] Niset J, Andersen U L, Cerf N J 2008 Phys. Rev. Lett. 101 130503
Google Scholar
[115] Niset J, Fiurášek J, Cerf N J 2009 Phys. Rev. Lett. 102 120501
Google Scholar
[116] Aoki T, Takahashi G, Kajiya T, Yoshikawa J I, Braunstein S L, van Loock P, Furusawa A 2009 Nat. Phys. 5 541
Google Scholar
[117] Lassen M, Berni A, Madsen L S, Filip R, Andersen U L 2013 Phys. Rev. Lett. 111 180502
Google Scholar
[118] Hao S, Su X, Tian C, Xie C, Peng K 2015 Sci. Rep. 5 15462
Google Scholar
[119] Ralph T C 2011 Phys. Rev. A 84 022339
Google Scholar
[120] Glancy S, Knill E 2006 Phys. Rev. A 73 012325
Google Scholar
[121] Albert V V, Noh K, Duivenvoorden K, Young D J, Brierley R T, Reinhold P, Vuillot C, Li L, Shen C, Girvin S M, Terhal B M, Jiang L 2018 Phys. Rev. A 97 032346
Google Scholar
[122] Flühmann C, Nguyen T L, Marinelli M, Negnevitsky V, Mehta K, Home J P 2019 Nature 566 513
Google Scholar
[123] Campagne-Ibarcq P, Eickbusch A, Touzard S, Zalys-Geller E, Frattini N E, Sivak V V, Reinhold P, Puri S, Shankar S, Schoelkopf R J, Frunzio L, Mirrahimi M, Devoret M H 2020 Nature 584 368
Google Scholar
[124] Vasconcelos H M, Sanz L, Glancy S 2010 Opt. Lett. 35 3261
Google Scholar
[125] Fukui K, Takeda S, Endo M, Asavanant W, Yoshikawa J I, van Loock P, Furusawa A 2022 Phys. Rev. Lett. 128 240503
Google Scholar
[126] Su D, Myers C R, Sabapathy K K 2019 Phys. Rev. A 100 052301
Google Scholar
[127] Fowler A G, Goyal K 2009 Quantum Inf. Comput. 9 727
Google Scholar
[128] Raussendorf R, Harrington J, Goyal K 2006 Ann. Phys. 321 2242
Google Scholar
[129] Stern A, Lindner N H 2013 Science 339 1179
Google Scholar
[130] Zhang J, Xie C, Peng K, van Loock P 2008 Phys. Rev. A 78 052121
Google Scholar
[131] Morimae T 2013 Phys. Rev. A 88 042311
Google Scholar
[132] Menicucci N C, Baragiola B Q, Demarie T F, Brennen G K 2018 Phys. Rev. A 97 032345
Google Scholar
[133] Milne D F, Korolkova N V, van Loock P 2012 Phys. Rev. A 85 052325
Google Scholar
[134] Menicucci N C 2014 Phys. Rev. Lett. 112 120504
Google Scholar
[135] Hao S, Wang M, Wang D, Su X 2021 Phys. Rev. A 103 052407
Google Scholar
-
图 10 基于cluster态的连续变量拓扑误差修正方案 (a) 八组份拓扑结构连续变量cluster 纠缠态的图态表示[135]; (b) 产生八组份连续变量cluster 纠缠态的分束器网络[135]
Figure 10. Scheme of topological error correction with CV a Gaussian cluster state: (a) The graph structure of the topological eight-partite CV cluster state; (b) the beam-splitter network for the preparation of the cluster state[135].
表 1 离散变量和连续变量量子逻辑门的比较[37]
Table 1. Comparison between quantum logical gates with describe variables and continuous variables[37].
离散变量 (qubits) 连续变量 (qumodes) 计算基矢 $ \{{ |0 \rangle }_{\mathrm{L}}, { |1 \rangle }_{\mathrm{L}} \} $ $ \{{{ |s \rangle }_{x}\}}_{\mathrm{s}\in \mathbb{R}} $ 共轭基矢 $ \big\{{{ |\pm \rangle }_{\mathrm{L}}=( |0 \rangle }_{\mathrm{L}}\pm { |1 \rangle }_{\mathrm{L}})/\sqrt{2} \big \} $ ${ \bigg\{ { |t \rangle }_{p}=\dfrac{1}{\sqrt{2\mathrm{\pi } } } \displaystyle\int_{-\infty }^{\infty }\mathrm{d}s{\mathrm{e} }^{\mathrm{i}st}{ |s \rangle }_{x} \bigg\} }_{t\in \mathbb{R} }$ 编码 $ { |\psi \rangle =\alpha |0 \rangle }_{\mathrm{L}}+\beta { |1 \rangle }_{\mathrm{L}} $$ ({ |\alpha |}^{2}+{ |\beta |}^{2}=1 $) $|\psi \rangle = \displaystyle\int_{-\infty }^{\infty }\mathrm{d}s\psi (s ){ |s \rangle }_{x} \bigg(\displaystyle\int_{-\infty }^{\infty }\mathrm{d}s{ |\psi (s ) |}^{2}=1 \bigg)$ 探测方式 光子探测 平衡零拍探测 量子逻辑门 Bit-flip: $ {\widehat{X} |0 \rangle }_{\mathrm{L}}={ |1 \rangle }_{\mathrm{L}}, {\widehat{X} |1 \rangle }_{\mathrm{L}}={ |0 \rangle }_{\mathrm{L}} $ x方向平移: $ \widehat{X} (v ){ |s \rangle }_{x}={ |s+v \rangle }_{x} $ Phase-flip: $ {\widehat{Z} |0 \rangle }_{\mathrm{L}}={ |0 \rangle }_{\mathrm{L}}, {\widehat{Z} |1 \rangle }_{\mathrm{L}}={- |1 \rangle }_{\mathrm{L}} $ p方向平移: $ \widehat{Z} (u ){ |t \rangle }_{p}={ |t+u \rangle }_{p} $ Hadamard门:$ {\widehat{H} |0 \rangle }_{\mathrm{L}}={ |+ \rangle }_{\mathrm{L}}, {\widehat{H} |1 \rangle }_{\mathrm{L}}={ |- \rangle }_{\mathrm{L}} $ 傅立叶变换: $\widehat{R} ( {\mathrm{\pi } }/{2} ){ |s \rangle }_{x}={ |s \rangle }_{p}, \widehat{R} ( {\mathrm{\pi } }/{2} ){ |t \rangle }_{p}={ |-t \rangle }_{x}$ 可控非门: $ {\widehat{CX} |0 \rangle }_{\mathrm{L}}{ |0 (1 ) \rangle }_{\mathrm{L}}={ |0 \rangle }_{\mathrm{L}}{ |0 (1 ) \rangle }_{\mathrm{L}} $ 可控X门: $ {\widehat{CX} |{s}_{1} \rangle }_{{q}_{1}}{ |{s}_{2} \rangle }_{{q}_{2}}={ |{s}_{1} \rangle }_{{q}_{1}}{ |{s}_{2}+{s}_{1} \rangle }_{{q}_{2}} $ $ {\widehat{CX} |1 \rangle }_{\mathrm{L}}{ |0 (1 ) \rangle }_{\mathrm{L}}={ |1 \rangle }_{\mathrm{L}}{ |1 (0 ) \rangle }_{\mathrm{L}} $ $ {\widehat{CX} |{t}_{1} \rangle }_{{p}_{1}}{ |{t}_{2} \rangle }_{{p}_{2}}={ |{t}_{1}-{t}_{2} \rangle }_{{p}_{1}}{ |{t}_{2} \rangle }_{{p}_{2}} $ -
[1] Shor P W 1994 Proceedings 35th Annual Symposium on Foundations of Computer Science Santa Fe, American, November 20–22, 1994
[2] Feynman R P 1982 Int. J. Theor. Phys. 21 467
Google Scholar
[3] Lloyd S 1993 Science 261 1569
Google Scholar
[4] Lloyd S 1994 Science 263 695
Google Scholar
[5] Rarity J G, Ownes P C M, Tapster P R 1994 J. Mod. Opt. 41 2435
Google Scholar
[6] Devoret M H, Schoelkopf R J 2013 Science 339 1169
Google Scholar
[7] Gambetta J M, Chow J M, Steffen M 2017 NPJ Quantum Inf. 3 2
Google Scholar
[8] Li Z Y, Yu H F, Tan X S, Zhao S P, Yu Y 2019 Chin. Phys. B 28 098505
Google Scholar
[9] Gong M, Wang S, Zha C, et al. 2021 Science 372 948
Google Scholar
[10] Huang H L, Wu D, Fan D, Zhu X 2020 Sci. Chin. Inf. Sci. 63 180501
Google Scholar
[11] Pagano G, Bapat A, Becker P, Collins K S, De A, Hess P W, Kaplan H B, Kyprianidis A, Tan W L, Baldwin C, Brady L T, Deshpande A, Liu F, Jordan S, Gorshkov A V, Monroe C 2020 Proc. Natl. Acad. Sci. 117 25396
Google Scholar
[12] Pino J M, Dreiling J M, Figgatt C, et al. 2021 Nature 592 209
Google Scholar
[13] Watson T F, Philips S G J, Kawakami E, et al. 2018 Nature 555 633
Google Scholar
[14] Hendrickx N W, Lawrie W I L, Russ M, et al. 2021 Nature 591 580
Google Scholar
[15] Arrazola J M, Bergholm V, Brádler K, et al. 2021 Nature 591 54
Google Scholar
[16] Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C L, Klimeck G, Rogge S, Coppersmith S N, Eriksson M A 2013 Rev. Mod. Phys. 85 961
Google Scholar
[17] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505
Google Scholar
[18] Yan Z, Zhang Y R, Gong M, et al. 2019 Science 364 753
Google Scholar
[19] Wu Y, Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501
Google Scholar
[20] Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460
Google Scholar
[21] Zhong H S, Deng Y H, Qin J, et al. 2021 Phys. Rev. Lett. 127 180502
Google Scholar
[22] van Loock P 2011 Laser Photonics Rev. 5 167
Google Scholar
[23] Andersen U L, Neergaard-Nielsen J S, van Loock P, Furusawa A 2015 Nat. Phys. 11 713
Google Scholar
[24] Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513
Google Scholar
[25] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621
Google Scholar
[26] Huh J, Guerreschi G G, Peropadre B, McClean J R, Aspuru-Guzik A 2015 Nat. Photonics 9 615
Google Scholar
[27] Hamilton C S, Kruse R, Sansoni L, Barkhofen S, Silberhorn C, Jex I 2017 Phys. Rev. Lett. 119 170501
Google Scholar
[28] Arrazola J M, Bromley T R 2018 Phys. Rev. Lett. 121 030503
Google Scholar
[29] Banchi L, Fingerhuth M, Babej T, Ing C, Arrazola J M 2020 Sci. Adv. 6 eaax1950
Google Scholar
[30] Lau H K, Pooser R, Siopsis G, Weedbrook C 2017 Phys. Rev. Lett. 118 080501
Google Scholar
[31] Schuld M, Killoran N 2019 Phys. Rev. Lett. 122 040504
Google Scholar
[32] Killoran N, Bromley T R, Arrazola J M, Schuld M, Quesada N, Lloyd S 2019 Phys. Rev. Res. 1 033063
Google Scholar
[33] Kalajdzievski T, Weedbrook C, Rebentrost P 2018 Phys. Rev. A 97 062311
Google Scholar
[34] Arrazola J M, Kalajdzievski T, Weedbrook C, Lloyd S 2019 Phys. Rev. A 100 032306
Google Scholar
[35] Adesso G, Illuminati F 2007 J. Phys. A:Math. Theor. 40 7821
Google Scholar
[36] 苏晓龙, 贾晓军, 彭堃墀 2016 物理学进展 36 101
Su X L, Jia X J, Peng K C 2016 Process phys. 36 101 (in Chinese)
[37] Fukui K, Takeda S 2022 J. Phys. B:At. Mol. Opt. Phys. 55 012001
Google Scholar
[38] Gu M, Weedbrook C, Menicucci N C, Ralph T C, van Loock P 2009 Phys. Rev. A 79 062318
Google Scholar
[39] Furusawa A, van Loock P 2011 Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing (Hoboken: Wiley) p16
[40] Lloyd S, Braunstein S L 1999 Phys. Rev. Lett. 82 1784
Google Scholar
[41] Furusawa A, van Loock P 2011 Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing (Hoboken: Wiley) p58
[42] Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188
Google Scholar
[43] Menicucci N C, van Loock P, Gu M, Weedbrook C, Ralph T C, Nielsen M A 2006 Phys. Rev. Lett. 97 110501
Google Scholar
[44] Zhang J, Braunstein S L 2006 Phys. Rev. A 73 032318
Google Scholar
[45] Hao S, Deng X, Liu Y, Su X, Xie C, Peng K 2021 Chin. Phys. B 30 060312
Google Scholar
[46] 苏晓龙, 贾晓军, 谢常德, 彭堃墀 2010 物理 39 746
Su X L, Jia X J, Xie C D, Peng K C 2010 Physics 39 746
[47] 彭堃墀, 苏晓龙, 贾晓军, 谢常德 2012 山西大学学报 35 231
Google Scholar
Peng K C, Su X L, Jia X J, Xie C D 2012 J. Shanxi Univ. 35 231
Google Scholar
[48] Wang Y, Tian C, Su Q, Wang M, Su X 2019 Sci. Chin. Inf. Sci. 62 72501
Google Scholar
[49] Su X, Wang M, Yan Z, Jia X, Xie C, Peng K 2020 Sci. Chin. Inf. Sci. 63 180503
Google Scholar
[50] Menicucci N C, Flammia S T, van Loock P 2011 Phys. Rev. A 83 042335
Google Scholar
[51] Su X, Tan A, Jia X, Zhang J, Xie C, Peng K 2007 Phys. Rev. Lett. 98 070502
Google Scholar
[52] Yukawa M, Ukai R, van Loock P, Furusawa A 2008 Phys. Rev. A 78 012301
Google Scholar
[53] Tan A, Wang Y, Jin X, Su X, Jia X, Zhang J, Xie C, Peng K 2008 Phys. Rev. A 78 013828
Google Scholar
[54] Su X, Zhao Y, Hao S, Jia X, Xie C, Peng K 2012 Opt. Lett. 37 5178
Google Scholar
[55] Pysher M, Miwa Y, Shahrokhshahi R, Bloomer R, Pfister O 2011 Phys. Rev. Lett. 107 030505
Google Scholar
[56] Chen M, Menicucci N C, Pfister O 2014 Phys. Rev. Lett. 112 120505
Google Scholar
[57] Roslund J, de Araújo R M, Jiang S, Fabre C, Treps N 2014 Nat. Photonics. 8 109
Google Scholar
[58] Cai Y, Roslund J, Ferrini G, Arzani F, Xu X, Fabre C, Treps N 2017 Nat. Commun. 8 15645
Google Scholar
[59] Menicucci N C 2011 Phys. Rev. A 83 062314
Google Scholar
[60] Yokoyama S, Ukai R, Armstrong S C, Sornphiphatphong C, Kaji T, Suzuki S, Yoshikawa J I, Yonezawa H, Menicucci N C, Furusawa A 2013 Nat. Photonics 7 982
Google Scholar
[61] Yoshikawa J I, Yokoyama S, Kaji T, Sornphiphatphong C, Shiozawa Y, Makino K, Furusawa A 2016 APL Photonics 1 060801
Google Scholar
[62] Larsen M V, Guo X, Breum C R, Neergaard-Nielsen J S, Andersen U L 2019 Science 366 369
Google Scholar
[63] Asavanant W, Shiozawa Y, Yokoyama S, et al. 2019 Science 366 373
Google Scholar
[64] Raussendorf R, Harrington J 2007 Phys. Rev. Lett. 98 190504
Google Scholar
[65] Raussendorf R, Harrington J, Goyal K 2007 New J. Phys. 9 199
Google Scholar
[66] Fukui K, Asavanant W, Furusawa A 2020 Phys. Rev. A 102 032614
Google Scholar
[67] Yoshikawa J I, Hayashi T, Akiyama T, Takei N, Huck A, Andersen U L, Furusawa A 2007 Phys. Rev. A 76 060301
Google Scholar
[68] Yoshikawa J I, Miwa Y, Huck A, Andersen U L, van Loock P, Furusawa A 2008 Phys. Rev. Lett. 101 250501
Google Scholar
[69] Miwa Y, Yoshikawa J I, van Loock P, Furusawa A 2009 Phys. Rev. A 80 050303
Google Scholar
[70] Ukai R, Yokoyama S, Yoshikawa J I, van Loock P, Furusawa A 2011 Phys. Rev. Lett. 107 250501
Google Scholar
[71] Ukai R, Iwata N, Shimokawa Y, Armstrong S C, Politi A, Yoshikawa J I, van Loock P, Furusawa A 2011 Phys. Rev. Lett. 106 240504
Google Scholar
[72] Wang Y, Su X, Shen H, Tan A, Xie C, Peng K 2010 Phys. Rev. A 81 022311
Google Scholar
[73] Hao S, Deng X, Su X, Jia X, Xie C, Peng K 2014 Phys. Rev. A 89 032311
Google Scholar
[74] Su X, Hao S, Deng X, Ma L, Wang M, Jia X, Xie C, Peng K 2013 Nat. Commun. 4 2828
Google Scholar
[75] Asavanant W, Charoensombutamon B, Yokoyama S, et al. 2021 Phys. Rev. Appl. 16 034005
Google Scholar
[76] Larsen M V, Guo X, Breum C R, Neergaard-Nielsen J S, Andersen U L 2021 Nat. Phys. 17 1018
Google Scholar
[77] Gottesman D, Kitaev A, Preskill J 2001 Phys. Rev. A 64 012310
Google Scholar
[78] Miyata K, Ogawa H, Marek P, Filip R, Yonezawa H, Yoshikawa J I, Furusawa A 2016 Phys. Rev. A 93 022301
Google Scholar
[79] Sabapathy K K, Weedbrook C 2018 Phys. Rev. A 97 062315
Google Scholar
[80] Yukawa M, Miyata K, Yonezawa H, Marek P, Filip R, Furusawa A 2013 Phys. Rev. A 88 053816
Google Scholar
[81] Masada G, Miyata K, Politi A, Hashimoto T, O’Brien J L, Furusawa A 2015 Nat. Photonics 9 316
Google Scholar
[82] Yang Z, Jahanbozorgi M, Jeong D, Sun S, Pfister O, Lee H, Yi X 2021 Nat. Commun. 12 4781
Google Scholar
[83] Dutt A, Luke K, Manipatruni S, Gaeta A L, Nussenzveig P, Lipson M 2015 Phys. Rev. Appl. 3 044005
Google Scholar
[84] Zhao Y, Okawachi Y, Jang J K, Ji X, Lipson M, Gaeta A L 2020 Phys. Rev. Lett. 124 193601
Google Scholar
[85] Vaidya V D, Morrison B, Helt L G, et al. 2020 Sci. Adv. 6 eaba9186
Google Scholar
[86] Zhang Q Y, Xu P, Zhu S N 2018 Chin. Phys. B 27 054207
Google Scholar
[87] Kaiser F, Fedrici B, Zavatta A, D’Auria V, Tanzilli S 2016 Optica 3 362
Google Scholar
[88] Fürst J U, Strekalov D V, Elser D, Aiello A, Andersen U L, Marquardt Ch, Leuchs G 2011 Phys. Rev. Lett. 106 113901
Google Scholar
[89] Lenzini F, Janousek J, Thearle O, Villa M, Haylock B, Kasture S, Cui L, Phan H P, Dao D V, Yonezawa H, Lam P K, Huntington E H, Lobino M 2018 Sci. Adv. 4 eaat9331
Google Scholar
[90] Qi Y, Li Y 2020 Nanophotonics 9 1287
Google Scholar
[91] Chen P K, Briggs I, Hou S, Fan L 2022 Opt. Lett. 47 1506
Google Scholar
[92] Schrödinger E 1935 Naturwissenschaften 23 807
Google Scholar
[93] Haroche S 2013 Rev. Mod. Phys. 85 1083
Google Scholar
[94] Arndt M, Hornberger K 2014 Nat. Phys. 10 271
Google Scholar
[95] Ralph T C, Gilchrist A, Milburn G J, Munro W J, Glancy S 2003 Phys. Rev. A 68 042319
Google Scholar
[96] Jeong H, Kim M S 2002 Phys. Rev. A 65 042305
Google Scholar
[97] Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503
Google Scholar
[98] Sychev D V, Ulanov A E, Tiunov E S, Pushkina A A, Kuzhamuratov A, Novikov V, Lvovsky A I 2018 Nat. Commun. 9 3672
Google Scholar
[99] Dakna M, Anhut T, Opatrnýn T, Knöll L, Welsch D G 1997 Phys. Rev. A 55 3184
Google Scholar
[100] Ourjoumtsev A, Tualle-Brouri R, Laurat J, Grangier P 2006 Science 312 83
Google Scholar
[101] Neergaard-Nielsen J S, Melholt Nielsen B, Hettich C, Mølmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604
Google Scholar
[102] Wakui K, Takahashi H, Furusawa A, Sasaki M 2007 Opt. Express 15 3568
Google Scholar
[103] Lee N, Benichi H, Takeno Y, Takeda S, Webb J, Huntington E, Furusawa A 2011 Science 332 330
Google Scholar
[104] Marek P, Fiurášek J 2010 Phys. Rev. A 82 014304
Google Scholar
[105] Tipsmark A, Dong R, Laghaout A, Marek P, Ježek M, Andersen U L 2011 Phys. Rev. A 84 050301
Google Scholar
[106] Blandino R, Ferreyrol F, Barbieri M, Grangier P, Tualle-Brouri R 2012 New J. Phys. 14 013017
Google Scholar
[107] Ourjoumtsev A, Ferreyrol F, Tualle-Brouri R, Grangier P 2009 Nat. Phys. 5 189
Google Scholar
[108] Sychev D V, Novikov V A, Pirov K K, Simon C, Lvovsky A I 2019 Optica 6 1425
Google Scholar
[109] Braunstein S L 1998 Nature 394 47
Google Scholar
[110] Lloyd S, Slotine J J E 1998 Phys. Rev. Lett. 80 4088
Google Scholar
[111] Braunstein S L 1998 Phys. Rev. Lett. 80 4084
Google Scholar
[112] Walker T A, Braunstein S L 2010 Phys. Rev. A 81 062305
Google Scholar
[113] Wilde M M, Krovi H, Brun T A 2007 Phys. Rev. A 76 052308
Google Scholar
[114] Niset J, Andersen U L, Cerf N J 2008 Phys. Rev. Lett. 101 130503
Google Scholar
[115] Niset J, Fiurášek J, Cerf N J 2009 Phys. Rev. Lett. 102 120501
Google Scholar
[116] Aoki T, Takahashi G, Kajiya T, Yoshikawa J I, Braunstein S L, van Loock P, Furusawa A 2009 Nat. Phys. 5 541
Google Scholar
[117] Lassen M, Berni A, Madsen L S, Filip R, Andersen U L 2013 Phys. Rev. Lett. 111 180502
Google Scholar
[118] Hao S, Su X, Tian C, Xie C, Peng K 2015 Sci. Rep. 5 15462
Google Scholar
[119] Ralph T C 2011 Phys. Rev. A 84 022339
Google Scholar
[120] Glancy S, Knill E 2006 Phys. Rev. A 73 012325
Google Scholar
[121] Albert V V, Noh K, Duivenvoorden K, Young D J, Brierley R T, Reinhold P, Vuillot C, Li L, Shen C, Girvin S M, Terhal B M, Jiang L 2018 Phys. Rev. A 97 032346
Google Scholar
[122] Flühmann C, Nguyen T L, Marinelli M, Negnevitsky V, Mehta K, Home J P 2019 Nature 566 513
Google Scholar
[123] Campagne-Ibarcq P, Eickbusch A, Touzard S, Zalys-Geller E, Frattini N E, Sivak V V, Reinhold P, Puri S, Shankar S, Schoelkopf R J, Frunzio L, Mirrahimi M, Devoret M H 2020 Nature 584 368
Google Scholar
[124] Vasconcelos H M, Sanz L, Glancy S 2010 Opt. Lett. 35 3261
Google Scholar
[125] Fukui K, Takeda S, Endo M, Asavanant W, Yoshikawa J I, van Loock P, Furusawa A 2022 Phys. Rev. Lett. 128 240503
Google Scholar
[126] Su D, Myers C R, Sabapathy K K 2019 Phys. Rev. A 100 052301
Google Scholar
[127] Fowler A G, Goyal K 2009 Quantum Inf. Comput. 9 727
Google Scholar
[128] Raussendorf R, Harrington J, Goyal K 2006 Ann. Phys. 321 2242
Google Scholar
[129] Stern A, Lindner N H 2013 Science 339 1179
Google Scholar
[130] Zhang J, Xie C, Peng K, van Loock P 2008 Phys. Rev. A 78 052121
Google Scholar
[131] Morimae T 2013 Phys. Rev. A 88 042311
Google Scholar
[132] Menicucci N C, Baragiola B Q, Demarie T F, Brennen G K 2018 Phys. Rev. A 97 032345
Google Scholar
[133] Milne D F, Korolkova N V, van Loock P 2012 Phys. Rev. A 85 052325
Google Scholar
[134] Menicucci N C 2014 Phys. Rev. Lett. 112 120504
Google Scholar
[135] Hao S, Wang M, Wang D, Su X 2021 Phys. Rev. A 103 052407
Google Scholar
Catalog
Metrics
- Abstract views: 7533
- PDF Downloads: 427
- Cited By: 0