Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of silicon and germanium quantum computing materials

Zhang Jie-Yin Gao Fei Zhang Jian-Jun

Citation:

Research progress of silicon and germanium quantum computing materials

Zhang Jie-Yin, Gao Fei, Zhang Jian-Jun
PDF
HTML
Get Citation
  • Semiconductor quantum dot is one of the promising ways to realize solid-state quantum computing. The key is to obtain high-quality semiconductor quantum computing materials. Silicon and germanium can be isotopically purified to achieve nuclear spin-free isotopes, meeting the requirement for long decoherence time. They are also compatible with the current CMOS technology, thus making them ideal material platforms for large scale integration. This review first summarizes the important progress of semiconductor quantum-dot quantum computing in recent years, then focuses on the material progress including the silicon-based Si/SiGe heterostructures, Ge/SiGe heterostructures, and Ge/Si one-dimensional wires, finally presents the outlook about the development of silicon and Ge quantum computing materials.
      Corresponding author: Zhang Jian-Jun, jjzhang@iphy.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0301701)
    [1]

    Zhang X, Li H O, Cao G, Xiao M, Guo G C, Guo G P 2019 National Sci. Rev. 6 32Google Scholar

    [2]

    Wendin G 2017 Rep. Prog. Phys. 80 106001Google Scholar

    [3]

    Lutchyn R M, Bakkers E P A M, Kouwenhoven L P, Krogstrup P, Marcus C M, Oreg Y 2018 Nat. Rev. Mater. 3 52Google Scholar

    [4]

    Brown K R, Kim J, Monroe C 2016 NPJ Quantum Inf. 2 16034Google Scholar

    [5]

    孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁 2018 67 220301Google Scholar

    Kong X Y, Zhu Y Y, Wen J W, Xin T, Li K R, Long G L 2018 Acta Phys. Sin. 67 220301Google Scholar

    [6]

    Loss D, DiVincenzo D P 1998 Phys. Rev. A 57 120Google Scholar

    [7]

    Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P, Gossard A C 2005 Science 309 2180Google Scholar

    [8]

    Koppens F H, Nowack K C, Vandersypen L M 2008 Phys. Rev. Lett. 100 236802Google Scholar

    [9]

    Yoneda J, Otsuka T, Nakajima T, Takakura T, Obata T, Pioro-Ladriere M, Lu H, Palmstrom C J, Gossard A C, Tarucha S 2014 Phys. Rev. Lett. 113 267601Google Scholar

    [10]

    Nadj-Perge S, Frolov S M, Bakkers E P, Kouwenhoven L P 2010 Nature 468 1084Google Scholar

    [11]

    van den Berg J W, Nadj-Perge S, Pribiag V S, Plissard S R, Bakkers E P, Frolov S M, Kouwenhoven L P 2013 Phys. Rev. Lett. 110 066806Google Scholar

    [12]

    Elzerman J M, Hanson R, van Beveren L H W, Witkamp B, Vandersypen L M K, Kouwenhoven L P 2004 Nature 430 431Google Scholar

    [13]

    Li R, Hudson F E, Dzurak A S, Hamilton A R 2015 Nano Lett. 15 7314Google Scholar

    [14]

    Borselli M G, Eng K, Croke E T, Maune B M, Huang B, Ross R S, Kiselev A A, Deelman P W, Alvarado-Rodriguez I, Schmitz A E, Sokolich M, Holabird K S, Hazard T M, Gyure M F, Hunter A T 2011 Appl. Phys. Lett. 99 063109Google Scholar

    [15]

    Yang C, Zhong Z H, Lieber C M 2005 Science 310 1304Google Scholar

    [16]

    Sellier H, Lansbergen G P, Caro J, Rogge S, Collaert N, Ferain I, Jurczak M, Biesemans S 2006 Phys. Rev. Lett. 97 206805Google Scholar

    [17]

    Kane B E 1998 Nature 393 133Google Scholar

    [18]

    Hendrickx N W, Lawrie W I L, Russ M, van Riggelen F, de Snoo S L, Schouten R N, Sammak A, Scappucci G, Veldhorst M 2021 Nature 591 580Google Scholar

    [19]

    Higginbotham A P, Larsen T W, Yao J, Yan H, Lieber C M, Marcus C M, Kuemmeth F 2014 Nano Lett. 14 3582Google Scholar

    [20]

    Watzinger H, Kukucka J, Vukusic L, Gao F, Wang T, Schaffler F, Zhang J J, Katsaros G 2018 Nat. Commun. 9 3902Google Scholar

    [21]

    Yoneda J, Takeda K, Otsuka T, Nakajima T, Delbecq M R, Allison G, Honda T, Kodera T, Oda S, Hoshi Y, Usami N, Itoh K M, Tarucha S 2018 Nat. Nanotechnol. 13 102Google Scholar

    [22]

    Schoenfield J S, Freeman B M, Jiang H 2017 Nat. Commun. 8 64Google Scholar

    [23]

    Veldhorst M, Yang C H, Hwang J C, Huang W, Dehollain J P, Muhonen J T, Simmons S, Laucht A, Hudson F E, Itoh K M, Morello A, Dzurak A S 2015 Nature 526 410Google Scholar

    [24]

    Takeda K, Noiri A, Nakajima T, Yoneda J, Kobayashi T, Tarucha S 2021 Nat. Nanotechnol. 16 965Google Scholar

    [25]

    Borjans F, Croot X G, Mi X, Gullans M J, Petta J R 2020 Nature 577 195Google Scholar

    [26]

    Kawakami E, Scarlino P, Ward D R, Braakman F R, Savage D E, Lagally M G, Friesen M, Coppersmith S N, Eriksson M A, Vandersypen L M 2014 Nat. Nanotechnol. 9 666Google Scholar

    [27]

    Takeda K, Kamioka J, Otsuka T, Yoneda J, Nakajima T, Delbecq M R, Amaha S, Allison G, Kodera T, Oda S, Tarucha S 2016 Sci. Adv. 2 1600694Google Scholar

    [28]

    Veldhorst M, Hwang J C, Yang C H, Leenstra A W, de Ronde B, Dehollain J P, Muhonen J T, Hudson F E, Itoh K M, Morello A, Dzurak A S 2014 Nat. Nanotechnol. 9 981Google Scholar

    [29]

    Yang C H, Leon R C C, Hwang J C C, Saraiva A, Tanttu T, Huang W, Camirand Lemyre J, Chan K W, Tan K Y, Hudson F E, Itoh K M, Morello A, Pioro-Ladriere M, Laucht A, Dzurak A S 2020 Nature 580 350Google Scholar

    [30]

    Petit L, Eenink H G J, Russ M, Lawrie W I L, Hendrickx N W, Philips S G J, Clarke J S, Vandersypen L M K, Veldhorst M 2020 Nature 580 355Google Scholar

    [31]

    O'Gorman J, Nickerson N H, Ross P, Morton J J L, Benjamin S C 2016 NPJ Quantum Inf. 2 15019Google Scholar

    [32]

    Pica G, Lovett B W, Bhatt R N, Schenkel T, Lyon S A 2016 Phys. Rev. B 93 035306Google Scholar

    [33]

    Hill C D, Peretz E, Hile S J, House M G, Fuechsle M, Rogge S, Simmons M Y, Hollenberg L C L 2015 Sci. Adv. 1 1500707Google Scholar

    [34]

    Muhonen J T, Dehollain J P, Laucht A, Hudson F E, Kalra R, Sekiguchi T, Itoh K M, Jamieson D N, McCallum J C, Dzurak A S, Morello A 2014 Nat. Nanotechnol. 9 986Google Scholar

    [35]

    Muhonen J T, Laucht A, Simmons S, Dehollain J P, Kalra R, Hudson F E, Freer S, Itoh K M, Jamieson D N, McCallum J C, Dzurak A S, Morello A 2015 J. Phys. Condens. Matter 27 154205Google Scholar

    [36]

    He Y, Gorman S K, Keith D, Kranz L, Keizer J G, Simmons M Y 2019 Nature 571 371Google Scholar

    [37]

    Wang K, X G, Gao F, Liu H, Ma R L, Zhang X, Zhang T, Cao G, Wang T, Zhang J J, Hu X, Jiang H W, Li H O, Guo G C, Guo G P 2020 arXiv: 2006.12340 [cond-mat. mes-hall]

    [38]

    Hendrickx N W, Franke D P, Sammak A, Scappucci G, Veldhorst M 2020 Nature 577 487Google Scholar

    [39]

    Dobbie A, Myronov M, Morris R J H, Hassan A H A, Prest M J, Shah V A, Parker E H C, Whall T E, Leadley D R 2012 Appl. Phys. Lett. 101 172108Google Scholar

    [40]

    Failla M, Keller J, Scalari G, Maissen C, Faist J, Reichl C, Wegscheider W, Newell O J, Leadley D R, Myronov M, Lloyd-Hughes J 2016 New J. Phys. 18 113036Google Scholar

    [41]

    Zhang J J, Katsaros G, Montalenti F, Scopece D, Rezaev R O, Mickel C, Rellinghaus B, Miglio L, De Franceschi S, Rastelli A, Schmidt O G 2012 Phys. Rev. Lett. 109 085502Google Scholar

    [42]

    Gao F, Wang J H, Watzinger H, Hu H, Rancic M J, Zhang J Y, Wang T, Yao Y, Wang G L, Kukucka J, Vukusic L, Kloeffel C, Loss D, Liu F, Katsaros G, Zhang J J 2020 Adv. Mater. 32 1906523Google Scholar

    [43]

    Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C L, Klimeck G, Rogge S, Coppersmith S N, Eriksson M A 2013 Rev. Mod. Phys. 85 961Google Scholar

    [44]

    Hofheinz M, Jehl X, Sanquer M, Molas G, Vinet M, Deleonibus S 2006 Appl. Phys. Lett. 89 143504Google Scholar

    [45]

    Fujiwara A, Inokawa H, Yamazaki K, Namatsu H, Takahashi Y, Zimmerman N M, Martin S B 2006 Appl. Phys. Lett. 88 053121Google Scholar

    [46]

    Liu H W, Fujisawa T, Inokawa H, Ono Y, Fujiwara A, Hirayama Y 2008 Appl. Phys. Lett. 92 222104Google Scholar

    [47]

    Morales A M, Lieber C M 1998 Science 279 208Google Scholar

    [48]

    Kravchenko S V, Sarachik M P 2004 Rep. Prog. Phys. 67 1Google Scholar

    [49]

    Wang K, Li H O, Luo G, Zhang X, Jing F M, Hu R Z, Zhou Y, Liu H, Wang G L, Cao G, Jiang H W, Guo G P 2020 Europhys. Lett. 130 27001Google Scholar

    [50]

    Fitzgerald E A 1992 J. Vac. Sci. Technol. 10 1807Google Scholar

    [51]

    Schaffler F, Tobben D, Herzog H J, Abstreiter G, Hollander B 1992 Semicond. Sci. Technol. 7 260Google Scholar

    [52]

    Sugii N, Nakagawa K, Kimura Y, Yamaguchi S, Miyao M 1998 Semicond. Sci. Technol. 13 A140Google Scholar

    [53]

    Melnikov M Y, Shashkin A A, Dolgopolov V T, Huang S H, Liu C W, Kravchenko S V 2015 Appl. Phys. Lett. 106 092102Google Scholar

    [54]

    Abstreiter G, Brugger H, Wolf T, Jorke H, Herzog H J 1985 Phys. Rev. Lett. 54 2441Google Scholar

    [55]

    Lee M L, Fitzgerald E A, Bulsara M T, Currie M T, Lochtefeld A 2005 J. Appl. Phys. 97 011101Google Scholar

    [56]

    Schuberth G, Schäffler F, Besson M, Abstreiter G, Gornik E 1991 Appl. Phys. Lett. 59 3318Google Scholar

    [57]

    Ismail K, Meyerson B S, Wang P J 1991 Appl. Phys. Lett. 58 2117Google Scholar

    [58]

    Nelson S F, Ismail K, Nocera J J, Fang F F, Mendez E E, Chu J O, Meyerson B S 1992 Appl. Phys. Lett. 61 64Google Scholar

    [59]

    Xie Y H, Fitzgerald E A, Mii Y J, Monroe D, Thiel F A, Weir B E, Feldman L C 1991 Mater. Res. Soc. Symp. Proc. 220 413Google Scholar

    [60]

    Mii Y J, Xie Y H, Fitzgerald E A, Monroe D, Thiel F A, Weir B E, Feldman L C 1991 Appl. Phys. Lett. 59 1611Google Scholar

    [61]

    Schaffler F 1997 Semicond. Sci. Technol. 12 1515Google Scholar

    [62]

    Ismail K, LeGoues F K, Saenger K L, Arafa M, Chu J O, Mooney P M, Meyerson B S 1994 Phys. Rev. Lett. 73 3447Google Scholar

    [63]

    Ismail K, Arafa M, Saenger K L, Chu J O, Meyerson B S 1995 Appl. Phys. Lett. 66 1077Google Scholar

    [64]

    Ismail K 1996 J. Vac. Sci. Technol. , B 14 2776Google Scholar

    [65]

    Lai K, Ye P D, Pan W, Tsui D C, Lyon S A, Mühlberger M, Schäffler F 2005 Appl. Phys. Lett. 87 142103Google Scholar

    [66]

    Lu T M, Tsui D C, Lee C H, Liu C W 2009 Appl. Phys. Lett. 94 182102Google Scholar

    [67]

    Huang S H, Lu T M, Lu S C, Lee C H, Liu C W, Tsui D C 2012 Appl. Phys. Lett. 101 042111Google Scholar

    [68]

    Laroche D, Huang S H, Nielsen E, Chuang Y, Li J Y, Liu C W, Lu T M 2015 AIP Adv. 5 107106Google Scholar

    [69]

    Mi X, Hazard T M, Payette C, Wang K, Zajac D M, Cady J V, Petta J R 2015 Phys. Rev. B 92 035304Google Scholar

    [70]

    Ando T 1979 Phys. Rev. B 19 3089Google Scholar

    [71]

    Friesen M, Eriksson M A, Coppersmith S N 2006 Appl. Phys. Lett. 89 202106Google Scholar

    [72]

    Friesen M, Chutia S, Tahan C, Coppersmith S N 2007 Phys. Rev. B 75 115318Google Scholar

    [73]

    Weitz P, Haug R J, vonKlitzing K, Schaffler F 1996 Surf. Sci. 361 542Google Scholar

    [74]

    Koester S J, Ismail K, Chu J O 1997 Semicond. Sci. Technol. 12 384Google Scholar

    [75]

    Lai K, Pan W, Tsui D C, Lyon S, Muhlberger M, Schaffler F 2004 Phys. Rev. Lett. 93 156805Google Scholar

    [76]

    Khrapai V S, Shashkin A A, Dolgopolov V T 2003 Phys. Rev. B 67 113305Google Scholar

    [77]

    Goswami S, Slinker K A, Friesen M, McGuire L M, Truitt J L, Tahan C, Klein L J, Chu J O, Mooney P M, van der Weide D W, Joynt R, Coppersmith S N, Eriksson M A 2007 Nat. Phys. 3 41Google Scholar

    [78]

    Borselli M G, Ross R S, Kiselev A A, Croke E T, Holabird K S, Deelman P W, Warren L D, Alvarado-Rodriguez I, Milosavljevic I, Ku F C, Wong W S, Schmitz A E, Sokolich M, Gyure M F, Hunter A T 2011 Appl. Phys. Lett. 98 123118Google Scholar

    [79]

    Simmons C B, Prance J R, Van Bael B J, Koh T S, Shi Z, Savage D E, Lagally M G, Joynt R, Friesen M, Coppersmith S N, Eriksson M A 2011 Phys. Rev. Lett. 106 156804Google Scholar

    [80]

    Thalakulam M, Simmons C B, Van Bael B J, Rosemeyer B M, Savage D E, Lagally M G, Friesen M, Coppersmith S N, Eriksson M A 2011 Phys. Rev. B 84 045307Google Scholar

    [81]

    Leon R C C, Yang C H, Hwang J C C, Lemyre J C, Tanttu T, Huang W, Chan K W, Tan K Y, Hudson F E, Itoh K M, Morello A, Laucht A, Pioro-Ladriere M, Saraiva A, Dzurak A S 2020 Nat. Commun. 11 797Google Scholar

    [82]

    Struck T, Hollmann A, Schauer F, Fedorets O, Schmidbauer A, Sawano K, Riemann H, Abrosimov N V, Cywiński Ł, Bougeard D, Schreiber L R 2020 NPJ Quantum Inf. 6 40Google Scholar

    [83]

    Peter S, Loss D 2021 arXiv: 2107.06485 v1 [cond-mat. mes-hall]

    [84]

    Scappucci G, Kloeffel C, Zwanenburg F A, Loss D, Myronov M, Zhang J J, De Franceschi S, Katsaros G, Veldhorst M 2020 Nat. Rev. Mater. 6 926Google Scholar

    [85]

    Pillarisetty R 2011 Nature 479 324Google Scholar

    [86]

    Kloeffel C, Trif M, Loss D 2011 Phys. Rev. B 84 195314Google Scholar

    [87]

    Li S X, Li Y, Gao F, Xu G, Li H O, Cao G, Xiao M, Wang T, Zhang J J, Guo GP 2017 Appl. Phys. Lett. 110 133105Google Scholar

    [88]

    Watzinger H, Kloeffel C, Vukusic L, Rossell M D, Sessi V, Kukucka J, Kirchschlager R, Lausecker E, Truhlar A, Glaser M, Rastelli A, Fuhrer A, Loss D, Katsaros G 2016 Nano Lett. 16 6879Google Scholar

    [89]

    Burkard G 2008 Nat. Mater. 7 100Google Scholar

    [90]

    Dimoulas A, Tsipas P, Sotiropoulos A, Evangelou E K 2006 Appl. Phys. Lett. 89 252110Google Scholar

    [91]

    Wagner G R, Janocko M A 1989 Appl. Phys. Lett. 54 66Google Scholar

    [92]

    Murakami E, Etoh H, Nakagawa K, Miyao M 1990 Jpn. J. Appl. Phys., Part 2 29 1059Google Scholar

    [93]

    Murakami E, Nakagawa K, Nishida A, Miyao M 1991 IEEE Electron Device Lett. 12 71Google Scholar

    [94]

    Xie Y H, Monroe D, Fitzgerald E A, Silverman P J, Thiel F A, Watson G P 1993 Appl. Phys. Lett. 63 2263Google Scholar

    [95]

    von Kanel H, Kummer M, Isella G, Muller E, Hackbarth T 2002 Appl. Phys. Lett. 80 2922Google Scholar

    [96]

    Rossner B, Chrastina D, Isella G, von Kanel H 2004 Appl. Phys. Lett. 84 3058Google Scholar

    [97]

    Shah V A, Dobbie A, Myronov M, Fulgoni D J F, Nash L J, Leadley D R 2008 Appl. Phys. Lett. 93 192103Google Scholar

    [98]

    Shah V A, Dobbie A, Myronov M, Leadley D R 2010 J. Appl. Phys. 107 064304Google Scholar

    [99]

    Lu T M, Bishop N C, Pluym T, Means J, Kotula P G, Cederberg J, Tracy L A, Dominguez J, Lilly M P, Carroll M S 2011 Appl. Phys. Lett. 99 043101Google Scholar

    [100]

    Maune B M, Borselli M G, Huang B, Ladd T D, Deelman P W, Holabird K S, Kiselev A A, Alvarado-Rodriguez I, Ross R S, Schmitz A E, Sokolich M, Watson C A, Gyure M F, Hunter A T 2012 Nature 481 344Google Scholar

    [101]

    Laroche D, Huang S H, Chuang Y, Li J Y, Liu C W, Lu T M 2016 Appl. Phys. Lett. 108 233504Google Scholar

    [102]

    Sammak A, Sabbagh D, Hendrickx N W, Lodari M, Wuetz B P, Tosato A, Yeoh L, Bollani M, Virgilio M, Schubert M A, Zaumseil P, Capellini G, Veldhorst M, Scappucci G 2019 Adv. Funct. Mater. 29 1807613Google Scholar

    [103]

    Wagner R S, Ellis W C 1964 Appl. Phys. Lett. 4 89Google Scholar

    [104]

    Kodambaka S, Tersoff J, Reuter M C, Ross F M 2007 Science 316 729Google Scholar

    [105]

    Lauhon L J, Gudiksen M S, Wang C L, Lieber C M 2002 Nature 420 57Google Scholar

    [106]

    Hao X J, Tu T, Cao G, Zhou C, Li H O, Guo G C, Fung W Y, Ji Z, Guo G P, Lu W 2010 Nano Lett. 10 2956Google Scholar

    [107]

    Roddaro S, Fuhrer A, Brusheim P, Fasth C, Xu H Q, Samuelson L, Xiang J, Lieber C M 2008 Phys. Rev. Lett. 101 186802Google Scholar

    [108]

    Hu Y, Churchill H O, Reilly D J, Xiang J, Lieber C M, Marcus C M 2007 Nat. Nanotechnol. 2 622Google Scholar

    [109]

    Hu Y, Kuemmeth F, Lieber C M, Marcus C M 2011 Nat. Nanotechnol. 7 47Google Scholar

    [110]

    Higginbotham A P, Kuemmeth F, Larsen T W, Fitzpatrick M, Yao J, Yan H, Lieber C M, Marcus C M 2014 Phys. Rev. Lett. 112 216806Google Scholar

    [111]

    Jia C, Lin Z, Huang Y, Duan X 2019 Chem. Rev. 119 9074Google Scholar

    [112]

    Allen J E, Hemesath E R, Perea D E, Lensch-Falk J L, Li Z Y, Yin F, Gass M H, Wang P, Bleloch A L, Palmer R E, Lauhon L J 2008 Nat. Nanotechnol. 3 168Google Scholar

    [113]

    Zhang J, Brehm M, Grydlik M, Schmidt O G 2015 Chem. Soc. Rev. 44 26Google Scholar

    [114]

    Mo Y, Savage D E, Swartzentruber B S, Lagally M G 1990 Phys. Rev. Lett. 65 1020Google Scholar

    [115]

    Tersoff J, Tromp R M 1993 Phys. Rev. Lett. 70 2782Google Scholar

    [116]

    Daruka I, Grossauer C, Springholz G, Tersoff J 2014 Phys. Rev. B 89 235427Google Scholar

    [117]

    Fischer J, Coish W A, Bulaev D V, Loss D 2008 Phys. Rev. B. 78 155329Google Scholar

    [118]

    Xu G, Gao F, Wang K, Zhang T, Liu H, Cao G, Wang T, Zhang J J, Jiang H W, Li H O, Guo G P 2020 Appl. Phys. Express 13 065002Google Scholar

    [119]

    Li Y, Li S X, Gao F, Li H O, Xu G, Wang K, Liu D, Cao G, Xiao M, Wang T, Zhang J J, Guo G C, Guo G P 2018 Nano Lett. 18 2091Google Scholar

    [120]

    Xu G, Li Y, Gao F, Li H O, Liu H, Wang K, Cao G, Wang T, Zhang J J, Guo G C, Guo G P 2020 New J. Phys. 22 083068Google Scholar

    [121]

    Zhang T, Liu H, Gao F, Xu G, Wang K, Zhang X, Cao G, Wang T, Zhang J J, Hu X D, Li H O, Guo G P 2021 Nano Lett. 21 3835Google Scholar

    [122]

    Shu D J, Liu F, Gong X G 2001 Phys. Rev. B 64 245410Google Scholar

    [123]

    Huang L, Liu F, Gong X G 2004 Phys. Rev. B 70 155320Google Scholar

    [124]

    Vastola G, Grydlik M, Brehm M, Fromherz T, Bauer G, Boioli F, Miglio L, Montalenti F 2011 Phys. Rev. B 84 155415Google Scholar

    [125]

    高飞, 冯琦, 王霆, 张建军 2020 69 028102Google Scholar

    Gao F, Feng Q, Wang T, Zhang J J 2020 Acta Phys. Sin. 69 028102Google Scholar

    [126]

    Katsaros G, Kukucka J, Vukusic L, Watzinger H, Gao F, Wang T, Zhang J J, Held K 2020 Nano Lett. 20 5201Google Scholar

  • 图 1  (a) Si/SiGe异质结二维电子气低温霍尔峰值迁移率的发展, 其中实心圆圈和实心方块分别代表掺杂型结构和非掺杂型结构; 黑色、红色和蓝色分别代表SiGe缓冲层固定锗含量、Si/SiGe超晶格和组分渐变等3种不同生长方法; 插图是SiGe/Si/SiGe 异质结结构和能带结构对准示意图; (b)穿透位错密度对电子迁移率的影响[64]; (c)应变硅层厚度对电子低温峰值迁移率的影响[64]; (d) SiGe间隔层厚度对电子迁移率的影响[68]

    Figure 1.  (a) Mobility of Si two-dimensional electron gas with time. Solid squares and circles refer to undoped structure and doped structure, respectively. The black, red and blue color refer to three different growth methods (constant Ge composition, Si/SiGe superlattice and the graded Ge composition). Inset images show the SiGe/Si/SiGe heterostructures and the schematic band-edge profile. (b) Effect of threading dislocations on electron mobility[64]. (c) Effect of Si-channel thickness on electron mobility[64]. (d) Effect of the spacer layer thickness on electron mobility[68].

    图 2  (a)不同时期的Ge/SiGe异质结二维空穴气低温霍尔峰值迁移率, 其中实心圆圈和实心方块分别代表掺杂型结构和非掺杂型结构; 黑色、蓝色和红色分别代表SiGe缓冲层固定锗含量、组分正渐变和组分逆渐变等3种不同生长方法[84]; (b) Ge衬底上固定锗组分生长SiGe缓冲层的截面TEM, 可看到在缓冲层及量子阱层产生大量堆垛层错[92]; (c) Si衬底上锗组分逆渐变方法生长的Ge/SiGe空穴气结构的截面TEM图[102], 位错主要分布在逆渐变缓冲层

    Figure 2.  (a) Improvement of two-dimensional hole gas low temperature Hall mobility of Ge/SiGe heterostructure with time. Solid squares and circles refer to undoped structure and doped structure. The black, blue and red color refer to three different growth methods (the constant Ge composition, forward grading and the reverse grading) [84]. (b) Cross-sectional TEM of SiGe buffer layer with constant Ge composition on Ge substrate, plenty of stacking faults inside the constant Ge composition buffer layer and Ge quantum well[92]. (c) Cross-sectional TEM of two-dimensional hole gas obtained by reverse grading method[102]. Dislocations are mainly localized inside the reverse grading buffer layer.

    图 3  (a) VLS方法生长纳米线的示意图; (b) VLS方法生长的Ge纳米线的TEM图[104]; (c)结合激光烧蚀技术和VLS生长方法制备的直径为(5 ± 0.6) nm的Ge纳米线的TEM图[47]; (d) Ge/Si核/壳纳米线的TEM图, 其中黑色部分为Ge核, 浅灰色部分为Si壳[105]; (e) Ge/Si核/壳纳米线的高分辨TEM图, 表明Si壳为单晶结构[105]; (f) Ge/Si核/壳纳米线的横截面示意图以及能带偏移示意图[19]

    Figure 3.  (a) Schematic diagram of nanowires grown by VLS method; (b) TEM image of Ge nanowire grown by VLS method[104]; (c) TEM image of Ge nanowires with diameter of (5 ± 0.6) nm prepared by laser ablation method and VLS method[47]; (d) TEM image of Ge/Si core/shell nanowire with black Ge core and light gray Si shell[105]; (e) high resolution TEM image of Ge/Si core/shell nanowire showing a crystalline Si shell[105]; (f) schematic diagram of cross-section image and energy band offset of Ge/Si core/shell nanowire[19].

    图 4  (a) Si衬底上沉积4.4个Ge原子层后的表面AFM图; (b) Si衬底上沉积Ge层以及退火之后形成的Ge量子线的表面AFM图[41]; (c)和(d)分别是单根Ge量子线的扫描隧道显微镜图[116] 以及横截面TEM图[41]; (e) Si衬底上L形Ge量子线结构

    Figure 4.  (a) AFM image of Ge wetting layer after the growth of 4.4 monolayer Ge on Si substrate; (b) AFM image of Ge hut wire on Si substrate after the growth of Ge layer with subsequently annealing[41]; (c), (d) scanning tunneling microscope image[116] and cross-sectional TEM image of a Ge hut wire[41]; (e) L-shaped Ge hut wires on Si substrate.

    图 5  (a)具有凹槽结构的Si (001)图形衬底的表面AFM图[42]; (b)生长Si0.75Ge0.25层后形成一维SiGe条带结构的表面AFM图[42]; (c) SiGe条带上形成Ge量子线的表面AFM图, 插图为量子线的晶面分析图, Ge量子线的两个侧面均为{105}晶面[42]; (d)和(e)分别为Ge量子线的横截面STEM图及放大的STEM图[42], 插图为Ge量子线的横截面全貌图; (f)和(g)分别为Ge量子线沿线方向的高分辨STEM图以及放大的STEM图[42]; (h) Ge量子线各个生长阶段的AFM线扫描图[42]

    Figure 5.  (a) AFM image of trench-patterned Si (001) substrate[42]; (b) AFM image of SiGe mound after the growth of Si0.75Ge0.25 layer[42]; (c) AFM image of Ge hut wire on Si0.75Ge0.25 mound after the Ge layer deposition with subsequently annealing, where inset image shows the {105} side faceted Ge hut wires[42]; (d), (e) cross-sectional STEM image and magnified STEM image of a Ge hut wire, respectively[42], where inset is the overall view of a hut wire; (f), (g) STEM image and magnified STEM image along a Ge hut wire, respectively[42]; (h) AFM line-scans showing the growth process of a Ge hut wire[42].

    图 6  (a)—(d)在Si (001)衬底上凹槽边缘生长的紧邻平行排列的Ge量子线、长度为10 μm的Ge量子线、口字形和L形Ge量子线的AFM图[42]; (e)—(g) Si (001)衬底上凹槽内部生长的Ge0.33Si0.67量子线的表面AFM图, 周期分别为1 μm, 2 μm及500 nm[125]; (h)凹槽内部生长的单根Ge0.33Si0.67量子线的线扫描图, GeSi量子线的侧壁倾角为11.3°, 侧壁为{105}晶面[125]

    Figure 6.  (a)−(d) AFM images of closely spaced parallel Ge hut wires, Ge hut wires with length of 10 μm, square-shaped and L-shaped Ge hut wires at the edges of trenches on Si (001) substrate, respectively[42]; (e)−(g) AFM images of Ge0.33Si0.67 hut wires inside the trenches on Si (001) substrate with a period of 1 μm, 2 μm and 500 nm, respectively[125]; (h) AFM line-scan of a Ge0.33Si0.67 hut wire inside the trench, which shows the {105} side facet with an inclination angle of 11.3°[125].

    图 7  (a)紧邻平行排列的Ge量子线AFM图; (b)双量子点器件结构示意图[42]; (c)总电流I1 + I2VG1以及VG2的变化关系图[42]

    Figure 7.  (a) AFM image of the closely spaced parallel Ge hut wires; (b) schematic diagram of double quantum dot devices[42]; (c) total current I1 + I2 versus VG1 and VG2[42].

    Baidu
  • [1]

    Zhang X, Li H O, Cao G, Xiao M, Guo G C, Guo G P 2019 National Sci. Rev. 6 32Google Scholar

    [2]

    Wendin G 2017 Rep. Prog. Phys. 80 106001Google Scholar

    [3]

    Lutchyn R M, Bakkers E P A M, Kouwenhoven L P, Krogstrup P, Marcus C M, Oreg Y 2018 Nat. Rev. Mater. 3 52Google Scholar

    [4]

    Brown K R, Kim J, Monroe C 2016 NPJ Quantum Inf. 2 16034Google Scholar

    [5]

    孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁 2018 67 220301Google Scholar

    Kong X Y, Zhu Y Y, Wen J W, Xin T, Li K R, Long G L 2018 Acta Phys. Sin. 67 220301Google Scholar

    [6]

    Loss D, DiVincenzo D P 1998 Phys. Rev. A 57 120Google Scholar

    [7]

    Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P, Gossard A C 2005 Science 309 2180Google Scholar

    [8]

    Koppens F H, Nowack K C, Vandersypen L M 2008 Phys. Rev. Lett. 100 236802Google Scholar

    [9]

    Yoneda J, Otsuka T, Nakajima T, Takakura T, Obata T, Pioro-Ladriere M, Lu H, Palmstrom C J, Gossard A C, Tarucha S 2014 Phys. Rev. Lett. 113 267601Google Scholar

    [10]

    Nadj-Perge S, Frolov S M, Bakkers E P, Kouwenhoven L P 2010 Nature 468 1084Google Scholar

    [11]

    van den Berg J W, Nadj-Perge S, Pribiag V S, Plissard S R, Bakkers E P, Frolov S M, Kouwenhoven L P 2013 Phys. Rev. Lett. 110 066806Google Scholar

    [12]

    Elzerman J M, Hanson R, van Beveren L H W, Witkamp B, Vandersypen L M K, Kouwenhoven L P 2004 Nature 430 431Google Scholar

    [13]

    Li R, Hudson F E, Dzurak A S, Hamilton A R 2015 Nano Lett. 15 7314Google Scholar

    [14]

    Borselli M G, Eng K, Croke E T, Maune B M, Huang B, Ross R S, Kiselev A A, Deelman P W, Alvarado-Rodriguez I, Schmitz A E, Sokolich M, Holabird K S, Hazard T M, Gyure M F, Hunter A T 2011 Appl. Phys. Lett. 99 063109Google Scholar

    [15]

    Yang C, Zhong Z H, Lieber C M 2005 Science 310 1304Google Scholar

    [16]

    Sellier H, Lansbergen G P, Caro J, Rogge S, Collaert N, Ferain I, Jurczak M, Biesemans S 2006 Phys. Rev. Lett. 97 206805Google Scholar

    [17]

    Kane B E 1998 Nature 393 133Google Scholar

    [18]

    Hendrickx N W, Lawrie W I L, Russ M, van Riggelen F, de Snoo S L, Schouten R N, Sammak A, Scappucci G, Veldhorst M 2021 Nature 591 580Google Scholar

    [19]

    Higginbotham A P, Larsen T W, Yao J, Yan H, Lieber C M, Marcus C M, Kuemmeth F 2014 Nano Lett. 14 3582Google Scholar

    [20]

    Watzinger H, Kukucka J, Vukusic L, Gao F, Wang T, Schaffler F, Zhang J J, Katsaros G 2018 Nat. Commun. 9 3902Google Scholar

    [21]

    Yoneda J, Takeda K, Otsuka T, Nakajima T, Delbecq M R, Allison G, Honda T, Kodera T, Oda S, Hoshi Y, Usami N, Itoh K M, Tarucha S 2018 Nat. Nanotechnol. 13 102Google Scholar

    [22]

    Schoenfield J S, Freeman B M, Jiang H 2017 Nat. Commun. 8 64Google Scholar

    [23]

    Veldhorst M, Yang C H, Hwang J C, Huang W, Dehollain J P, Muhonen J T, Simmons S, Laucht A, Hudson F E, Itoh K M, Morello A, Dzurak A S 2015 Nature 526 410Google Scholar

    [24]

    Takeda K, Noiri A, Nakajima T, Yoneda J, Kobayashi T, Tarucha S 2021 Nat. Nanotechnol. 16 965Google Scholar

    [25]

    Borjans F, Croot X G, Mi X, Gullans M J, Petta J R 2020 Nature 577 195Google Scholar

    [26]

    Kawakami E, Scarlino P, Ward D R, Braakman F R, Savage D E, Lagally M G, Friesen M, Coppersmith S N, Eriksson M A, Vandersypen L M 2014 Nat. Nanotechnol. 9 666Google Scholar

    [27]

    Takeda K, Kamioka J, Otsuka T, Yoneda J, Nakajima T, Delbecq M R, Amaha S, Allison G, Kodera T, Oda S, Tarucha S 2016 Sci. Adv. 2 1600694Google Scholar

    [28]

    Veldhorst M, Hwang J C, Yang C H, Leenstra A W, de Ronde B, Dehollain J P, Muhonen J T, Hudson F E, Itoh K M, Morello A, Dzurak A S 2014 Nat. Nanotechnol. 9 981Google Scholar

    [29]

    Yang C H, Leon R C C, Hwang J C C, Saraiva A, Tanttu T, Huang W, Camirand Lemyre J, Chan K W, Tan K Y, Hudson F E, Itoh K M, Morello A, Pioro-Ladriere M, Laucht A, Dzurak A S 2020 Nature 580 350Google Scholar

    [30]

    Petit L, Eenink H G J, Russ M, Lawrie W I L, Hendrickx N W, Philips S G J, Clarke J S, Vandersypen L M K, Veldhorst M 2020 Nature 580 355Google Scholar

    [31]

    O'Gorman J, Nickerson N H, Ross P, Morton J J L, Benjamin S C 2016 NPJ Quantum Inf. 2 15019Google Scholar

    [32]

    Pica G, Lovett B W, Bhatt R N, Schenkel T, Lyon S A 2016 Phys. Rev. B 93 035306Google Scholar

    [33]

    Hill C D, Peretz E, Hile S J, House M G, Fuechsle M, Rogge S, Simmons M Y, Hollenberg L C L 2015 Sci. Adv. 1 1500707Google Scholar

    [34]

    Muhonen J T, Dehollain J P, Laucht A, Hudson F E, Kalra R, Sekiguchi T, Itoh K M, Jamieson D N, McCallum J C, Dzurak A S, Morello A 2014 Nat. Nanotechnol. 9 986Google Scholar

    [35]

    Muhonen J T, Laucht A, Simmons S, Dehollain J P, Kalra R, Hudson F E, Freer S, Itoh K M, Jamieson D N, McCallum J C, Dzurak A S, Morello A 2015 J. Phys. Condens. Matter 27 154205Google Scholar

    [36]

    He Y, Gorman S K, Keith D, Kranz L, Keizer J G, Simmons M Y 2019 Nature 571 371Google Scholar

    [37]

    Wang K, X G, Gao F, Liu H, Ma R L, Zhang X, Zhang T, Cao G, Wang T, Zhang J J, Hu X, Jiang H W, Li H O, Guo G C, Guo G P 2020 arXiv: 2006.12340 [cond-mat. mes-hall]

    [38]

    Hendrickx N W, Franke D P, Sammak A, Scappucci G, Veldhorst M 2020 Nature 577 487Google Scholar

    [39]

    Dobbie A, Myronov M, Morris R J H, Hassan A H A, Prest M J, Shah V A, Parker E H C, Whall T E, Leadley D R 2012 Appl. Phys. Lett. 101 172108Google Scholar

    [40]

    Failla M, Keller J, Scalari G, Maissen C, Faist J, Reichl C, Wegscheider W, Newell O J, Leadley D R, Myronov M, Lloyd-Hughes J 2016 New J. Phys. 18 113036Google Scholar

    [41]

    Zhang J J, Katsaros G, Montalenti F, Scopece D, Rezaev R O, Mickel C, Rellinghaus B, Miglio L, De Franceschi S, Rastelli A, Schmidt O G 2012 Phys. Rev. Lett. 109 085502Google Scholar

    [42]

    Gao F, Wang J H, Watzinger H, Hu H, Rancic M J, Zhang J Y, Wang T, Yao Y, Wang G L, Kukucka J, Vukusic L, Kloeffel C, Loss D, Liu F, Katsaros G, Zhang J J 2020 Adv. Mater. 32 1906523Google Scholar

    [43]

    Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C L, Klimeck G, Rogge S, Coppersmith S N, Eriksson M A 2013 Rev. Mod. Phys. 85 961Google Scholar

    [44]

    Hofheinz M, Jehl X, Sanquer M, Molas G, Vinet M, Deleonibus S 2006 Appl. Phys. Lett. 89 143504Google Scholar

    [45]

    Fujiwara A, Inokawa H, Yamazaki K, Namatsu H, Takahashi Y, Zimmerman N M, Martin S B 2006 Appl. Phys. Lett. 88 053121Google Scholar

    [46]

    Liu H W, Fujisawa T, Inokawa H, Ono Y, Fujiwara A, Hirayama Y 2008 Appl. Phys. Lett. 92 222104Google Scholar

    [47]

    Morales A M, Lieber C M 1998 Science 279 208Google Scholar

    [48]

    Kravchenko S V, Sarachik M P 2004 Rep. Prog. Phys. 67 1Google Scholar

    [49]

    Wang K, Li H O, Luo G, Zhang X, Jing F M, Hu R Z, Zhou Y, Liu H, Wang G L, Cao G, Jiang H W, Guo G P 2020 Europhys. Lett. 130 27001Google Scholar

    [50]

    Fitzgerald E A 1992 J. Vac. Sci. Technol. 10 1807Google Scholar

    [51]

    Schaffler F, Tobben D, Herzog H J, Abstreiter G, Hollander B 1992 Semicond. Sci. Technol. 7 260Google Scholar

    [52]

    Sugii N, Nakagawa K, Kimura Y, Yamaguchi S, Miyao M 1998 Semicond. Sci. Technol. 13 A140Google Scholar

    [53]

    Melnikov M Y, Shashkin A A, Dolgopolov V T, Huang S H, Liu C W, Kravchenko S V 2015 Appl. Phys. Lett. 106 092102Google Scholar

    [54]

    Abstreiter G, Brugger H, Wolf T, Jorke H, Herzog H J 1985 Phys. Rev. Lett. 54 2441Google Scholar

    [55]

    Lee M L, Fitzgerald E A, Bulsara M T, Currie M T, Lochtefeld A 2005 J. Appl. Phys. 97 011101Google Scholar

    [56]

    Schuberth G, Schäffler F, Besson M, Abstreiter G, Gornik E 1991 Appl. Phys. Lett. 59 3318Google Scholar

    [57]

    Ismail K, Meyerson B S, Wang P J 1991 Appl. Phys. Lett. 58 2117Google Scholar

    [58]

    Nelson S F, Ismail K, Nocera J J, Fang F F, Mendez E E, Chu J O, Meyerson B S 1992 Appl. Phys. Lett. 61 64Google Scholar

    [59]

    Xie Y H, Fitzgerald E A, Mii Y J, Monroe D, Thiel F A, Weir B E, Feldman L C 1991 Mater. Res. Soc. Symp. Proc. 220 413Google Scholar

    [60]

    Mii Y J, Xie Y H, Fitzgerald E A, Monroe D, Thiel F A, Weir B E, Feldman L C 1991 Appl. Phys. Lett. 59 1611Google Scholar

    [61]

    Schaffler F 1997 Semicond. Sci. Technol. 12 1515Google Scholar

    [62]

    Ismail K, LeGoues F K, Saenger K L, Arafa M, Chu J O, Mooney P M, Meyerson B S 1994 Phys. Rev. Lett. 73 3447Google Scholar

    [63]

    Ismail K, Arafa M, Saenger K L, Chu J O, Meyerson B S 1995 Appl. Phys. Lett. 66 1077Google Scholar

    [64]

    Ismail K 1996 J. Vac. Sci. Technol. , B 14 2776Google Scholar

    [65]

    Lai K, Ye P D, Pan W, Tsui D C, Lyon S A, Mühlberger M, Schäffler F 2005 Appl. Phys. Lett. 87 142103Google Scholar

    [66]

    Lu T M, Tsui D C, Lee C H, Liu C W 2009 Appl. Phys. Lett. 94 182102Google Scholar

    [67]

    Huang S H, Lu T M, Lu S C, Lee C H, Liu C W, Tsui D C 2012 Appl. Phys. Lett. 101 042111Google Scholar

    [68]

    Laroche D, Huang S H, Nielsen E, Chuang Y, Li J Y, Liu C W, Lu T M 2015 AIP Adv. 5 107106Google Scholar

    [69]

    Mi X, Hazard T M, Payette C, Wang K, Zajac D M, Cady J V, Petta J R 2015 Phys. Rev. B 92 035304Google Scholar

    [70]

    Ando T 1979 Phys. Rev. B 19 3089Google Scholar

    [71]

    Friesen M, Eriksson M A, Coppersmith S N 2006 Appl. Phys. Lett. 89 202106Google Scholar

    [72]

    Friesen M, Chutia S, Tahan C, Coppersmith S N 2007 Phys. Rev. B 75 115318Google Scholar

    [73]

    Weitz P, Haug R J, vonKlitzing K, Schaffler F 1996 Surf. Sci. 361 542Google Scholar

    [74]

    Koester S J, Ismail K, Chu J O 1997 Semicond. Sci. Technol. 12 384Google Scholar

    [75]

    Lai K, Pan W, Tsui D C, Lyon S, Muhlberger M, Schaffler F 2004 Phys. Rev. Lett. 93 156805Google Scholar

    [76]

    Khrapai V S, Shashkin A A, Dolgopolov V T 2003 Phys. Rev. B 67 113305Google Scholar

    [77]

    Goswami S, Slinker K A, Friesen M, McGuire L M, Truitt J L, Tahan C, Klein L J, Chu J O, Mooney P M, van der Weide D W, Joynt R, Coppersmith S N, Eriksson M A 2007 Nat. Phys. 3 41Google Scholar

    [78]

    Borselli M G, Ross R S, Kiselev A A, Croke E T, Holabird K S, Deelman P W, Warren L D, Alvarado-Rodriguez I, Milosavljevic I, Ku F C, Wong W S, Schmitz A E, Sokolich M, Gyure M F, Hunter A T 2011 Appl. Phys. Lett. 98 123118Google Scholar

    [79]

    Simmons C B, Prance J R, Van Bael B J, Koh T S, Shi Z, Savage D E, Lagally M G, Joynt R, Friesen M, Coppersmith S N, Eriksson M A 2011 Phys. Rev. Lett. 106 156804Google Scholar

    [80]

    Thalakulam M, Simmons C B, Van Bael B J, Rosemeyer B M, Savage D E, Lagally M G, Friesen M, Coppersmith S N, Eriksson M A 2011 Phys. Rev. B 84 045307Google Scholar

    [81]

    Leon R C C, Yang C H, Hwang J C C, Lemyre J C, Tanttu T, Huang W, Chan K W, Tan K Y, Hudson F E, Itoh K M, Morello A, Laucht A, Pioro-Ladriere M, Saraiva A, Dzurak A S 2020 Nat. Commun. 11 797Google Scholar

    [82]

    Struck T, Hollmann A, Schauer F, Fedorets O, Schmidbauer A, Sawano K, Riemann H, Abrosimov N V, Cywiński Ł, Bougeard D, Schreiber L R 2020 NPJ Quantum Inf. 6 40Google Scholar

    [83]

    Peter S, Loss D 2021 arXiv: 2107.06485 v1 [cond-mat. mes-hall]

    [84]

    Scappucci G, Kloeffel C, Zwanenburg F A, Loss D, Myronov M, Zhang J J, De Franceschi S, Katsaros G, Veldhorst M 2020 Nat. Rev. Mater. 6 926Google Scholar

    [85]

    Pillarisetty R 2011 Nature 479 324Google Scholar

    [86]

    Kloeffel C, Trif M, Loss D 2011 Phys. Rev. B 84 195314Google Scholar

    [87]

    Li S X, Li Y, Gao F, Xu G, Li H O, Cao G, Xiao M, Wang T, Zhang J J, Guo GP 2017 Appl. Phys. Lett. 110 133105Google Scholar

    [88]

    Watzinger H, Kloeffel C, Vukusic L, Rossell M D, Sessi V, Kukucka J, Kirchschlager R, Lausecker E, Truhlar A, Glaser M, Rastelli A, Fuhrer A, Loss D, Katsaros G 2016 Nano Lett. 16 6879Google Scholar

    [89]

    Burkard G 2008 Nat. Mater. 7 100Google Scholar

    [90]

    Dimoulas A, Tsipas P, Sotiropoulos A, Evangelou E K 2006 Appl. Phys. Lett. 89 252110Google Scholar

    [91]

    Wagner G R, Janocko M A 1989 Appl. Phys. Lett. 54 66Google Scholar

    [92]

    Murakami E, Etoh H, Nakagawa K, Miyao M 1990 Jpn. J. Appl. Phys., Part 2 29 1059Google Scholar

    [93]

    Murakami E, Nakagawa K, Nishida A, Miyao M 1991 IEEE Electron Device Lett. 12 71Google Scholar

    [94]

    Xie Y H, Monroe D, Fitzgerald E A, Silverman P J, Thiel F A, Watson G P 1993 Appl. Phys. Lett. 63 2263Google Scholar

    [95]

    von Kanel H, Kummer M, Isella G, Muller E, Hackbarth T 2002 Appl. Phys. Lett. 80 2922Google Scholar

    [96]

    Rossner B, Chrastina D, Isella G, von Kanel H 2004 Appl. Phys. Lett. 84 3058Google Scholar

    [97]

    Shah V A, Dobbie A, Myronov M, Fulgoni D J F, Nash L J, Leadley D R 2008 Appl. Phys. Lett. 93 192103Google Scholar

    [98]

    Shah V A, Dobbie A, Myronov M, Leadley D R 2010 J. Appl. Phys. 107 064304Google Scholar

    [99]

    Lu T M, Bishop N C, Pluym T, Means J, Kotula P G, Cederberg J, Tracy L A, Dominguez J, Lilly M P, Carroll M S 2011 Appl. Phys. Lett. 99 043101Google Scholar

    [100]

    Maune B M, Borselli M G, Huang B, Ladd T D, Deelman P W, Holabird K S, Kiselev A A, Alvarado-Rodriguez I, Ross R S, Schmitz A E, Sokolich M, Watson C A, Gyure M F, Hunter A T 2012 Nature 481 344Google Scholar

    [101]

    Laroche D, Huang S H, Chuang Y, Li J Y, Liu C W, Lu T M 2016 Appl. Phys. Lett. 108 233504Google Scholar

    [102]

    Sammak A, Sabbagh D, Hendrickx N W, Lodari M, Wuetz B P, Tosato A, Yeoh L, Bollani M, Virgilio M, Schubert M A, Zaumseil P, Capellini G, Veldhorst M, Scappucci G 2019 Adv. Funct. Mater. 29 1807613Google Scholar

    [103]

    Wagner R S, Ellis W C 1964 Appl. Phys. Lett. 4 89Google Scholar

    [104]

    Kodambaka S, Tersoff J, Reuter M C, Ross F M 2007 Science 316 729Google Scholar

    [105]

    Lauhon L J, Gudiksen M S, Wang C L, Lieber C M 2002 Nature 420 57Google Scholar

    [106]

    Hao X J, Tu T, Cao G, Zhou C, Li H O, Guo G C, Fung W Y, Ji Z, Guo G P, Lu W 2010 Nano Lett. 10 2956Google Scholar

    [107]

    Roddaro S, Fuhrer A, Brusheim P, Fasth C, Xu H Q, Samuelson L, Xiang J, Lieber C M 2008 Phys. Rev. Lett. 101 186802Google Scholar

    [108]

    Hu Y, Churchill H O, Reilly D J, Xiang J, Lieber C M, Marcus C M 2007 Nat. Nanotechnol. 2 622Google Scholar

    [109]

    Hu Y, Kuemmeth F, Lieber C M, Marcus C M 2011 Nat. Nanotechnol. 7 47Google Scholar

    [110]

    Higginbotham A P, Kuemmeth F, Larsen T W, Fitzpatrick M, Yao J, Yan H, Lieber C M, Marcus C M 2014 Phys. Rev. Lett. 112 216806Google Scholar

    [111]

    Jia C, Lin Z, Huang Y, Duan X 2019 Chem. Rev. 119 9074Google Scholar

    [112]

    Allen J E, Hemesath E R, Perea D E, Lensch-Falk J L, Li Z Y, Yin F, Gass M H, Wang P, Bleloch A L, Palmer R E, Lauhon L J 2008 Nat. Nanotechnol. 3 168Google Scholar

    [113]

    Zhang J, Brehm M, Grydlik M, Schmidt O G 2015 Chem. Soc. Rev. 44 26Google Scholar

    [114]

    Mo Y, Savage D E, Swartzentruber B S, Lagally M G 1990 Phys. Rev. Lett. 65 1020Google Scholar

    [115]

    Tersoff J, Tromp R M 1993 Phys. Rev. Lett. 70 2782Google Scholar

    [116]

    Daruka I, Grossauer C, Springholz G, Tersoff J 2014 Phys. Rev. B 89 235427Google Scholar

    [117]

    Fischer J, Coish W A, Bulaev D V, Loss D 2008 Phys. Rev. B. 78 155329Google Scholar

    [118]

    Xu G, Gao F, Wang K, Zhang T, Liu H, Cao G, Wang T, Zhang J J, Jiang H W, Li H O, Guo G P 2020 Appl. Phys. Express 13 065002Google Scholar

    [119]

    Li Y, Li S X, Gao F, Li H O, Xu G, Wang K, Liu D, Cao G, Xiao M, Wang T, Zhang J J, Guo G C, Guo G P 2018 Nano Lett. 18 2091Google Scholar

    [120]

    Xu G, Li Y, Gao F, Li H O, Liu H, Wang K, Cao G, Wang T, Zhang J J, Guo G C, Guo G P 2020 New J. Phys. 22 083068Google Scholar

    [121]

    Zhang T, Liu H, Gao F, Xu G, Wang K, Zhang X, Cao G, Wang T, Zhang J J, Hu X D, Li H O, Guo G P 2021 Nano Lett. 21 3835Google Scholar

    [122]

    Shu D J, Liu F, Gong X G 2001 Phys. Rev. B 64 245410Google Scholar

    [123]

    Huang L, Liu F, Gong X G 2004 Phys. Rev. B 70 155320Google Scholar

    [124]

    Vastola G, Grydlik M, Brehm M, Fromherz T, Bauer G, Boioli F, Miglio L, Montalenti F 2011 Phys. Rev. B 84 155415Google Scholar

    [125]

    高飞, 冯琦, 王霆, 张建军 2020 69 028102Google Scholar

    Gao F, Feng Q, Wang T, Zhang J J 2020 Acta Phys. Sin. 69 028102Google Scholar

    [126]

    Katsaros G, Kukucka J, Vukusic L, Watzinger H, Gao F, Wang T, Zhang J J, Held K 2020 Nano Lett. 20 5201Google Scholar

  • [1] Ding Jun, Wen Li-Wei, Li Rui-Xue, Zhang Ying. Control of electric properties of silicene heterostructure by reversal of ferroelectric polarization. Acta Physica Sinica, 2022, 71(17): 177303. doi: 10.7498/aps.71.20220815
    [2] Wang Ning, Wang Bao-Chuan, Guo Guo-Ping. New progress of silicon-based semiconductor quantum computation. Acta Physica Sinica, 2022, 71(23): 230301. doi: 10.7498/aps.71.20221900
    [3] Sun Yu-Xin, Wu De-Fan, Zhao Tong, Lan Wu, Yang De-Ren, Ma Xiang-Yang. Mechanical strength of Czochralski silicon crystal: Effects of co-doping germanium and nitrogen. Acta Physica Sinica, 2021, 70(9): 098101. doi: 10.7498/aps.70.20201803
    [4] Bai Liang, Zhao Qi-Xu, Shen Jian-Wei, Yang Yan, Yuan Qing-Hong, Zhong Cheng, Sun Hai-Tao, Sun Zhen-Rong. Computational screening of photocathodes based on layered MXene coated Cs3Sb heterostructures. Acta Physica Sinica, 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [5] Wang Chen, Xu Yi-Hong, Li Cheng, Lin Hai-Jun, Zhao Ming-Jie. Improved performance of Al/n+Ge Ohmic contact andGe n+/p diode by two-step annealing method. Acta Physica Sinica, 2019, 68(17): 178501. doi: 10.7498/aps.68.20190699
    [6] Li Dan, Liang Jun-Wu, Liu Hua-Wei, Zhang Xue-Hong, Wan Qiang, Zhang Qing-Lin, Pan An-Lian. Asymmetric waveguide and the dual-wavelength stimulated emission for CdS/CdS0.48Se0.52 axial nanowire heterostructures. Acta Physica Sinica, 2017, 66(6): 064204. doi: 10.7498/aps.66.064204
    [7] Shi Wen-Jun, Yi Ying-Yan, Li Min. Pressure dependence of refractive index of Ge near the absorption edge. Acta Physica Sinica, 2016, 65(16): 167801. doi: 10.7498/aps.65.167801
    [8] Han Dian-Rong, Wang Lu, Luo Cheng-Lin, Zhu Xing-Feng, Dai Ya-Fei. Torsional mechanical properties of (n, n)-(2n, 0) carbon nanotubes heterojunction. Acta Physica Sinica, 2015, 64(10): 106102. doi: 10.7498/aps.64.106102
    [9] Wen Jia-Le, Xu Zhi-Cheng, Gu Yu, Zheng Dong-Qin, Zhong Wei-Rong. Thermal rectification of heterojunction nanotubes. Acta Physica Sinica, 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [10] Gao Feng-Ju. Calculation of coherent X-ray diffraction from bent Cu nanowires. Acta Physica Sinica, 2015, 64(13): 138102. doi: 10.7498/aps.64.138102
    [11] Wang Jian-Yuan, Wang Chen, Li Cheng, Chen Song-Yan. Selective area growth of Ge film on Si. Acta Physica Sinica, 2015, 64(12): 128102. doi: 10.7498/aps.64.128102
    [12] Xue Yuan, Gao Chao-Jun, Gu Jin-Hua, Feng Ya-Yang, Yang Shi-E, Lu Jing-Xiao, Huang Qiang, Feng Zhi-Qiang. Study on the properties and optical emission spectroscopy of the intrinsic silicon thin film in silicon heterojunction solar cells. Acta Physica Sinica, 2013, 62(19): 197301. doi: 10.7498/aps.62.197301
    [13] Ding Wen-Ge, Sang Yun-Gang, Yu Wei, Yang Yan-Bin, Teng Xiao-Yun, Fu Guang-Sheng. Current transport mechanism in silicon-rich silicon nitride/c-Si heterojunction. Acta Physica Sinica, 2012, 61(24): 247304. doi: 10.7498/aps.61.247304
    [14] Cheng Zhi-Da, Zhu Jing, Sun Tie-Yu. Stability and magnetism of fcc single-crystal nickel nanowires by first principles calculations. Acta Physica Sinica, 2011, 60(3): 037504. doi: 10.7498/aps.60.037504
    [15] Meng Li-Jun, Xiao Hua-Ping, Tang Chao, Zhang Kai-Wang, Zhong Jian-Xin. Formation and thermal stability of compound stucture of carbon nanotube and silicon nanowire. Acta Physica Sinica, 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [16] Li Ai-Hua, Zhang Kai-Wang, Meng Li-Jun, Li Jun, Liu Wen-Liang, Zhong Jian-Xin. Novel silicon nanostructures based on graphene ribbons. Acta Physica Sinica, 2008, 57(7): 4356-4363. doi: 10.7498/aps.57.4356
    [17] Meng Li-Jun, Zhang Kai-Wang, Zhong Jian-Xin. Molecular dynamics simulation of formation of silicon nanoparticles on surfaces of carbon nanotubes. Acta Physica Sinica, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [18] Liu Hong, Chen Jiang-Wei. The structure and electronic properties of carbon nanotube heterojunction. Acta Physica Sinica, 2003, 52(3): 664-667. doi: 10.7498/aps.52.664
    [19] Zhang Yong-Peng, Yan Long, Xie Si-Shen, Pang Shi-Jin, Gao Hong-Jun. . Acta Physica Sinica, 2002, 51(2): 296-299. doi: 10.7498/aps.51.296
    [20] DAI YONG-BING, SHEN HE-SHENG, ZHANG ZHI-MING, HE XIAN-CHANG, HU XIAO-JUN, SUN FANG-HONG, XIN HAI-WEI. A MOLECULAR DYNAMICS SIMULATION OF DIAMOND/SILICON(001) INTERFACE. Acta Physica Sinica, 2001, 50(2): 244-250. doi: 10.7498/aps.50.244
Metrics
  • Abstract views:  8869
  • PDF Downloads:  367
  • Cited By: 0
Publishing process
  • Received Date:  12 August 2021
  • Accepted Date:  23 September 2021
  • Available Online:  29 October 2021
  • Published Online:  05 November 2021

/

返回文章
返回
Baidu
map