-
Since their prediction as fundamental particles in 1937, Majorana fermions have drawn lots of interests in particle physics and dark matter. Their counterparts in condensed matter physics, Majorana zero-Modes (MZMs), have attracted remarkable attention in condensed matter for their potential in building a fault-tolerant quantum computer. Due to the relentless effort, lots of important progress has been made in Majorana physics in the past two decades, as introduced in several excellent review articles. This review focuses on the non-Abelian statistics of MZMs and their application to quantum computation. In the first section of this work, the theoretical progress in searching for MZM is briefly reviewed and the latest experimental progresses are summarized. We next introduce the basic concepts of non-Abelian statistics of MZMs and explain how they can be applied to quantum computation. We then discuss two key experiments to implementing quantum computers in the MZM platform: MZM braiding and MZM qubit readout. In this part, several representative proposals for the Majorana braiding and MZM qubit readout are elaborated. Finally, we introduce a latest concept, the symmetry-protected non-Abelian braiding of Majorana Kramers pairs in time-reversal invariant topological superconductors.
-
Keywords:
- Majorana zero-modes /
- non-Abelian statistics /
- topological supercondutor /
- quantum computation
[1] Majorana E 1937 Nuovo Cim. 14 171
Google Scholar
[2] Schechter J, Valle J W F 1982 Phys. Rev. D 25 2951
Google Scholar
[3] Keung W Y, Senjanović G 1983 Phys. Rev. Lett. 50 1427
Google Scholar
[4] Atre A, Han T, Pascoli S, Zhang B 2009 J. High Energy Phys. 2009 030
Google Scholar
[5] Rodejohann W 2011 Inter. J. Mod. Phys. E 20 1833
Google Scholar
[6] de Gouvêa A, Vogel P 2013 Progress in Particle and Nuclear Physics 71 75
Google Scholar
[7] Kitaev A Y 2001 Physics-Uspekhi 44 131
Google Scholar
[8] Alicea J 2012 Rep. Prog. Phys. 75 076501
Google Scholar
[9] Elliott S R, Franz M 2015 Rev. Mod. Phys. 87 137
Google Scholar
[10] Leijnse M, Flensberg K 2012 Semiconductor Science and Technology 27 124003
Google Scholar
[11] Wilczek F 2009 Nature Physics 5 614
Google Scholar
[12] Franz M 2013 Nat. Nanotechnol. 8 149
Google Scholar
[13] Read N, Green D 2000 Phys. Rev. B 61 10267
Google Scholar
[14] Ivanov D A 2001 Phys. Rev. Lett. 86 268
Google Scholar
[15] Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083
Google Scholar
[16] Freedman M, Kitaev A, Larsen M, Wang Z 2003 Bulletin of the American Mathematical Society 40 31
Google Scholar
[17] Das Sarma S, Freedman M, Nayak C 2005 Phys. Rev. Lett. 94 166802
Google Scholar
[18] Sarma S D, Freedman M, Nayak C 2006 Phys. Today 59 32
Google Scholar
[19] Kitaev A 2003 Ann. Phys. 303 2
Google Scholar
[20] Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407
Google Scholar
[21] Sau J D, Lutchyn R M, Tewari S, Das Sarma S 2010 Phys. Rev. Lett. 104 040502
Google Scholar
[22] Alicea J 2010 Phys. Rev. B 81 125318
Google Scholar
[23] Lutchyn R M, Sau J D, Das Sarma S 2010 Phys. Rev. Lett. 105 077001
Google Scholar
[24] Oreg Y, Refael G, von Oppen F 2010 Phys. Rev. Lett. 105 177002
Google Scholar
[25] Hosur P, Ghaemi P, Mong R S K, Vishwanath A 2011 Phys. Rev. Lett. 107 097001
Google Scholar
[26] Pientka F, Keselman A, Berg E, Yacoby A, Stern A, Halperin B I 2017 Phys. Rev. X 7 021032
Google Scholar
[27] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003
Google Scholar
[28] Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602
Google Scholar
[29] Sun H H, Zhang K W, Hu L H, et al. 2016 Phys. Rev. Lett. 116 257003
Google Scholar
[30] He Q L, Pan L, Stern A L, et al. 2017 Science 357 294
Google Scholar
[31] Zhang P, Yaji K, Hashimoto T, et al. 2018 Science 360 182
Google Scholar
[32] Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H, Gao H J 2018 Science 362 333
Google Scholar
[33] Fornieri A, Whiticar A M, Setiawan F, Portolés E, Drachmann A C C, Keselman A, Gronin S, Thomas C, Wang T, Kallaher R, et al. 2019 Nature 569 89
Google Scholar
[34] Ren H, Pientka F, Hart S, et al. 2019 Nature 569 93
Google Scholar
[35] Jäck B, Xie Y, Li J, Jeon S, Bernevig B A, Yazdani A 2019 Science 364 1255
Google Scholar
[36] van Heck B, Akhmerov A R, Hassler F, Burrello M, Beenakker C W J 2012 New J. Phys. 14 035019
Google Scholar
[37] Aasen D, Hell M, Mishmash R V, Higginbotham A, Danon J, Leijnse M, Jespersen T S, Folk J A, Marcus C M, Flensberg K, Alicea J 2016 Phys. Rev. X 6 031016
Google Scholar
[38] Vijay S, Fu L 2016 Phys. Rev. B 94 235446
Google Scholar
[39] Karzig T, Knapp C, Lutchyn R M, Bonderson P, Hastings M B, Nayak C, Alicea J, Flensberg K, Plugge S, Oreg Y, Marcus C M, Freedman M H 2017 Phys. Rev. B 95 235305
Google Scholar
[40] Schrade C, Fu L 2018. arXiv: 1807.06620 [cond-mat.mes-hall]
[41] Stern A, Berg E 2019 Phys. Rev. Lett. 122 107701
Google Scholar
[42] Wang Z 2010 Topological Quantum Computation (Santa Barbara: American Mathematical Soc.)
[43] Zhang L, Liu X J 2018 Spin-orbit Coupling and Topological Phases for Ultracold Atoms (Chap. 1) (Singapore: World Scientific) pp1–87
[44] Sau J D, Tewari S, Lutchyn R M, Stanescu T D, Das Sarma S 2010 Phys. Rev. B 82 214509
Google Scholar
[45] Potter A C, Lee P A 2011 Phys. Rev. B 83 184520
Google Scholar
[46] Sau J D, Tewari S, Das Sarma S 2012 Phys. Rev. B 85 064512
Google Scholar
[47] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414
Google Scholar
[48] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H 2012 Nat. Phys. 8 887
Google Scholar
[49] Finck A D K, Van Harlingen D J, Mohseni P K, Jung K, Li X 2013 Phys. Rev. Lett. 110 126406
Google Scholar
[50] Churchill H O H, Fatemi V, Grove-Rasmussen K, Deng M T, Caroff P, Xu H Q, Marcus C M 2013 Phys. Rev. B 87 241401
Google Scholar
[51] Law K T, Lee P A, Ng T K 2009 Phys. Rev. Lett. 103 237001
Google Scholar
[52] Flensberg K 2010 Phys. Rev. B 82 180516
Google Scholar
[53] Wimmer M, Akhmerov A R, Dahlhaus J P, Beenakker C W J 2011 New J. Phys. 13 053016
Google Scholar
[54] Lutchyn R M, Bakkers E P A M, Kouwenhoven L P, Krogstrup P, Marcus C M, Oreg Y 2018 Nat. Rev.s Mater. 3 52
Google Scholar
[55] Liu X J, Lobos A M 2013 Phys. Rev. B 87 060504
Google Scholar
[56] Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045
Google Scholar
[57] Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057
Google Scholar
[58] Fu L, Kane C L 2009 Phys. Rev. B 79 161408
Google Scholar
[59] Scharf B, Pientka F, Ren H, Yacoby A, Hankiewicz E M 2019 Phys. Rev. B 99 214503
Google Scholar
[60] Setiawan F, Stern A, Berg E 2019 Phys. Rev. B 99 220506
Google Scholar
[61] Stone M, Roy R 2004 Physical Review B 69 184511
Google Scholar
[62] Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803
Google Scholar
[63] Fu L, Kane C L 2009 Phys. Rev. Lett. 102 216403
Google Scholar
[64] Akhmerov A R, Nilsson J, Beenakker C W J 2009 Phys. Rev. Lett. 102 216404
Google Scholar
[65] Tanaka Y, Yokoyama T, Nagaosa N 2009 Phys. Rev. Lett. 103 107002
Google Scholar
[66] Linder J, Tanaka Y, Yokoyama T, Sudbø A, Nagaosa N 2010 Phys. Rev. B 81 184525
Google Scholar
[67] Zhang C, Tewari S, Lutchyn R M, Das Sarma S 2008 Phys. Rev. Lett. 101 160401
Google Scholar
[68] Sato M, Takahashi Y, Fujimoto S 2009 Phys. Rev. Lett. 103 020401
Google Scholar
[69] Wang M X, Liu C, Xu J P, et al. 2012 Science 336 52
Google Scholar
[70] He J J, Ng T K, Lee P A, Law K T 2014 Phys. Rev. Lett. 112 037001
Google Scholar
[71] Xu J P, Liu C, Wang M X, Ge J, Liu Z L, Yang X, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C, Jia J F 2014 Phys. Rev. Lett. 112 217001
Google Scholar
[72] Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001
Google Scholar
[73] Wang Z, Zhang P, Xu G, Zeng L K, Miao H, Xu X, Qian T, Weng H, Richard P, Fedorov A V, Ding H, Dai X, Fang Z 2015 Phys. Rev. B 92 115119
Google Scholar
[74] Xu G, Lian B, Tang P, Qi X L, Zhang S C 2016 Phys. Rev. Lett. 117 047001
Google Scholar
[75] Kong L, Zhu S, Papaj M, et al. 2019 Nat. Phys. 15 1181
Google Scholar
[76] König E J, Coleman P 2019 Phys. Rev. Lett. 122 207001
Google Scholar
[77] Zhang P, Wang Z, Wu X, Yaji K, Ishida Y, Kohama Y, Dai G, Sun Y, Bareille C, Kuroda K, et al. 2018 Nat. Phys. 15 41
Google Scholar
[78] Zhou X, Gordon K N, Jin K H, Li H, Narayan D, Zhao H, Zheng H, Huang H, Cao G, Zhigadlo N D, Liu F, Dessau D S 2019 Phys. Rev. B 100 184511
Google Scholar
[79] Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T, Tamegai T 2019 Nat. Mater. 18 811
Google Scholar
[80] Yan Z, Bi R, Wang Z 2017 Phys. Rev. Lett. 118 147003
Google Scholar
[81] Chan C, Zhang L, Poon T F J, He Y P, Wang Y Q, Liu X J 2017 Phys. Rev. Lett. 119 047001
Google Scholar
[82] Teo J C Y, Kane C L 2010 Phys. Rev. B 82 115120
Google Scholar
[83] Chan C, Liu X J 2017 Phys. Rev. Lett. 118 207002
Google Scholar
[84] Qi X L, Hughes T L, Zhang S C 2010 Phys. Rev. B 82 184516
Google Scholar
[85] Chung S B, Qi X L, Maciejko J, Zhang S C 2011 Phys. Rev. B 83 100512
Google Scholar
[86] Wang J, Zhou Q, Lian B, Zhang S C 2015 Phys. Rev. B 92 064520
Google Scholar
[87] Lian B, Wang J, Zhang S C 2016 Phys. Rev. B 93 161401
Google Scholar
[88] Kayyalha M, Xiao D, Zhang R, Shin J, Jiang J, Wang F, Zhao Y F, Xiao R, Zhang L, Fijalkowski K M, Mandal P, Winnerlein M, Gould C, Li Q, Molenkamp L W, Chan M H W, Samarth N, Chang C Z 2020 Science 367 64
Google Scholar
[89] Deng M T, Vaitiekenas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygård J, Krogstrup P, Marcus C M 2016 Science 354 1557
Google Scholar
[90] Nichele F, Drachmann A C, Whiticar A M, et al. 2017 Phys. Rev. Lett. 119 136803
Google Scholar
[91] Gül O, Zhang H, Bommer J D S, et al. 2018 Nat. Nanotechnol. 13 192
Google Scholar
[92] Feldman B E, Randeria M T, Li J, Jeon S, Xie Y, Wang Z, Drozdov I K, Bernevig B A, Yazdani A 2017 Nat. Phys. 13 286
Google Scholar
[93] Jeon S, Xie Y, Li J, Wang Z, Bernevig B A, Yazdani A 2017 Science 358 772
Google Scholar
[94] Laroche D, Bouman D, van Woerkom D J, et al. 2019 Nat. Commun. 10 245
Google Scholar
[95] Rokhinson L P, Liu X, Furdyna J K 2012 Nat. Phys. 8 795
Google Scholar
[96] Beenakker C W J 2019. arXiv: 1907.06497 [cond-mat]
[97] Bonderson P, Gurarie V, Nayak C 2011 Phys. Rev. B 83 075303
Google Scholar
[98] Teo J C Y, Kane C L 2010 Phys. Rev. Lett. 104 046401
Google Scholar
[99] Freedman M, Hastings M B, Nayak C, Qi X L, Walker K, Wang Z 2011 Phys. Rev. B 83 115132
Google Scholar
[100] Freedman M, Hastings M B, Nayak C, Qi X L 2011 Phys. Rev. B 84 245119
Google Scholar
[101] Alicea J, Oreg Y, Refael G, von Oppen F, Fisher M P A 2011 Nat. Phys. 7 412
Google Scholar
[102] Feynman R P 1982 Intern. J. Theoretical Phys. 21 467
Google Scholar
[103] Shor P W 1994 In Proceedings 35th Annual Symposium on Foundations of Computer Science (Ieee), pp124–134
[104] Grover L K 1997 Phys. Rev. Lett. 79 325
Google Scholar
[105] Lloyd S 1996 Science 273 1073
Google Scholar
[106] Deutsch D 1985 Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 400 97
Google Scholar
[107] Lo H K, Spiller T, Popescu S 1998 Introduction to quantum computation and information (World Scientific)
[108] DiVincenzo D P 2000 Fortschritte der Physik: Progress of Physics 48 771
Google Scholar
[109] Sarma S D, Freedman M, Nayak C 2015 npj Quantum Information 1 15001
Google Scholar
[110] Lahtinen V, Pachos J 2017 SciPost Physics 3 021
Google Scholar
[111] Kitaev A Y 1997 Uspekhi Matematicheskikh Nauk 52 53
Google Scholar
[112] Dawson C M, Nielsen M A 2005. arXiv: 0505030 [quant-ph]
[113] Bravyi S, Kitaev A 2005 Phys. Rev. A 71 022316
Google Scholar
[114] Bravyi S 2006 Phys. Rev. A 73 042313
Google Scholar
[115] Freedman M, Nayak C, Walker K 2006 Phys. Rev. B 73 245307
Google Scholar
[116] Bonderson P, Clarke D J, Nayak C, Shtengel K 2010 Phys. Rev. Lett. 104 180505
Google Scholar
[117] Karzig T, Oreg Y, Refael G, Freedman M H 2016 Phys. Rev. X 6 031019
Google Scholar
[118] Cheng M, Galitski V, Das Sarma S 2011 Phys. Rev. B 84 104529
Google Scholar
[119] Bauer B, Karzig T, Mishmash R, Antipov A, Alicea J 2018 Sci. Post Phys. 5 004
Google Scholar
[120] Sau J D, Clarke D J, Tewari S 2011 Phys. Rev. B 84 094505
Google Scholar
[121] Clarke D J, Sau J D, Tewari S 2011 Phys. Rev. B 84 035120
Google Scholar
[122] Halperin B I, Oreg Y, Stern A, Refael G, Alicea J, von Oppen F 2012 Phys. Rev. B 85 144501
Google Scholar
[123] Amorim C S, Ebihara K, Yamakage A, Tanaka Y, Sato M 2015 Phys. Rev. B 91 174305
Google Scholar
[124] Liu X, Li X, Deng D L, Liu X J, Das Sarma S 2016 Phys. Rev. B 94 014511
Google Scholar
[125] Bonderson P, Freedman M, Nayak C 2008 Phys. Rev. Lett. 101 010501
Google Scholar
[126] Bonderson P 2013 Phys. Rev. B 87 035113
Google Scholar
[127] Preskill J 2004 http://www.theory.caltech.edu/preskill/ talks/Preskill Biedenharn4.pdf
[128] Luo X J, He Y P, Poon T F J, Liu X, Liu X J 2018. arXiv: 1803.02173 [cond-mat.mes-hall]
[129] Chiu C K, Das Sarma S 2019 Phys. Rev. B 99 035312
Google Scholar
[130] Jiang L, Pekker D, Alicea J, Refael G, Oreg Y, von Oppen F 2011 Phys. Rev. Lett. 107 236401
Google Scholar
[131] Yang G, Lyu Z, Zhang X, Qu F, Lu L 2019 Chin. Phys. B 28 127402
Google Scholar
[132] Stenger J P T, Hatridge M, Frolov S M, Pekker D 2019 Phys. Rev. B 99 035307
Google Scholar
[133] Plugge S, Rasmussen A, Egger R, Flensberg K 2017 New J. Phys. 19 012001
Google Scholar
[134] Liu D E, Cheng M, Lutchyn R M 2015 Phys. Rev. B 91 081405
Google Scholar
[135] Barthel C, Reilly D J, Marcus C M, Hanson M P, Gossard A C 2009 Phys. Rev. Lett. 103 160503
Google Scholar
[136] Medford J, Beil J, Taylor J M, Bartlett S D, Doherty A C, Rashba E I, DiVincenzo D P, Lu H, Gossard A C, Marcus C M 2013 Nat. Nanotechnol. 8 654
Google Scholar
[137] Eng K, Ladd T D, Smith A, Borselli M G, Kiselev A A, Fong B H, Holabird K S, Hazard T M, Huang B, Deelman P W, Milosavljevic I, Schmitz A E, Ross R S, Gyure M F, Hunter A T 2015 Sci. Advances 1 1500214
Google Scholar
[138] Fu L 2010 Phys. Rev. Lett. 104 056402
Google Scholar
[139] Schrade C, Fu L 2018 Phys. Rev. Lett. 121 267002
Google Scholar
[140] Knapp C 2019 Ph.D. Dissertation (UC Santa Barbara)
[141] Qi X L, Hughes T L, Raghu S, Zhang S C 2009 Phys. Rev. Lett. 102 187001
Google Scholar
[142] Schnyder A P, Brydon P M R, Manske D, Timm C 2010 Phys. Rev. B 82 184508
Google Scholar
[143] Beenakker C W J, Dahlhaus J P, Wimmer M, Akhmerov A R 2011 Phys. Rev. B 83 085413
Google Scholar
[144] Deng S, Viola L, Ortiz G 2012 Phys. Rev. Lett. 108 036803
Google Scholar
[145] Nakosai S, Tanaka Y, Nagaosa N 2012 Phys. Rev. Lett. 108 147003
Google Scholar
[146] Wong C L M, Law K T 2012 Phys. Rev. B 86 184516
Google Scholar
[147] Zhang F, Kane C L, Mele E J 2013 Phys. Rev. Lett. 111 056402
Google Scholar
[148] Keselman A, Fu L, Stern A, Berg E 2013 Phys. Rev. Lett. 111 116402
Google Scholar
[149] Kim Y, Liu D E, Gaidamauskas E, Paaske J, Flensberg K, Lutchyn R M 2016 Phys. Rev. B 94 075439
Google Scholar
[150] Fang C, Gilbert M J, Bernevig B A 2014 Phys. Rev. Lett. 112 106401
Google Scholar
[151] Liu X J, He J J, Law K T 2014 Phys. Rev. B 90 235141
Google Scholar
[152] Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005
Google Scholar
[153] Snyder R A, Trimble C J, Rong C C, Folkes P A, Taylor P J, Williams J R 2018 Phys. Rev. Lett. 121 097701
Google Scholar
[154] Trifunovic L, Brouwer P W 2019 Phys. Rev. X 9 011012
Google Scholar
[155] Liu X J, Wong C L M, Law K T 2014 Phys. Rev. X 4 021018
Google Scholar
[156] Gao P, He Y P, Liu X J 2016 Phys. Rev. B 94 224509
Google Scholar
[157] Wölms K, Stern A, Flensberg K 2014 Phys. Rev. Lett. 113 246401
Google Scholar
[158] Wölms K, Stern A, Flensberg K 2016 Phys. Rev. B 93 045417
Google Scholar
[159] McGinley M, Cooper N R 2018 Phys. Rev. Lett. 121 090401
Google Scholar
[160] Zhang F, Kane C L 2014 Phys. Rev. B 90 020501
Google Scholar
-
图 1 Kitaev链的两个拓扑相 (a)和(b) Majorana基矢下的哈密顿量示意图. 图(a)中
$\mu\neq0, \varDelta=t=0$ , 只有第一项$ (1+ {\rm{i}}\gamma_{x, B}\gamma_{x, A})$ 不为零, 每一个格点上的两个马约拉纳算符耦合在一起, 不存在空间分离的MZM. 图(b)中$\mu=0, \varDelta=t$ , 只有第二项$\gamma_{x, B}\gamma_{x+1, A}$ 不为零, 相邻格点的两个马约拉纳算符耦合在一起, 超导链的两端各自剩下一个MZM. (c)$\varDelta=0$ 时的色散关系. (d) Kitaev链的拓扑相图. 当化学势穿过能带时, 体系处在拓扑相, 由(d) 中的橙色区域描述; 反之, 体系处在平庸相, 由(d)中的白色区域描述Figure 1. Two topological phases of the Kiteaev chain. (a) Sche-matic illustration of the Hamiltonian in Majorana basis. In (a)
$\mu\neq0$ ,$\varDelta=t=0$ , only the first term$(1+ {\rm{i}}\gamma_{x, B}\gamma_{x, A})$ survives thus Majoranas couple at the same site leaving no seperate MZMs left. In (b)$\mu=0, \varDelta=t$ , only the second term$\gamma_{x, B}\gamma_{x+1, A}$ survives thus Majoranas couple at adjacent sites, leaving one MZM at each end of the chain. (c) Energy dispersion for$\varDelta=0$ . (d) Topological phase diagram of Kitaev chain. When the chemical potential crosses the nomal spectrum the system is in topological phase, as described by the orange region in (d); otherwise the system is trivial, as described by the white region in (d).图 2 在一维SOC纳米线中实现马约拉纳零模激发[8] (a)装置简图; (b)一维SOC纳米线的色散关系. 在无外加塞曼场时, 系统具有时间反演对称性, 体系有偶数个费米面(红色和蓝色曲线); 在外加塞曼场时, 时间反演对称性被破坏,
$k=0$ 处被打开能隙(黑色曲线). 若化学势位于能隙中间, 该体系只有一个费米面, 其低能哈密顿量等效为Kitaev链. (c)体系的拓扑相图, 其中相边界由$h^{2}= \varDelta^{2}+\mu^{2}$ 给出, 橙色(白色)表示拓扑(平庸)区Figure 2. Realizing MZMs in a 1D SOC nanowire[8]. (a) Sketch of the basic setup. (b) Energy dispersion for the 1D SOC nanowire. When Zeeman field is absent, the system is time-reversal symmetric(TRS) and possesses even number of Fermi surfaces (red and blue curves); when Zeeman field is introduced, TRS is broken and a gap is opened at
$k=0$ (black curves). Given that the chemical potential lies within gap, the system possesses only one Fermi surface, and the low-energy Hamilitonian is equivalent to that of the Kitaev chain. (c) Topological phase diagram of the system with the phase boundary given by$h^{2}= \varDelta^{2}+ \mu^{2}$ . Orange (white) denotes topological (trivial) region.图 3 MZM交换示意图 (a)含有4个空间分离足够远的MZM
$\gamma_{1, 2, 3, 4}$ 的体系, 其中$\gamma_{1}$ 和$\gamma_{2}$ 、$\gamma_{3}$ 和$\gamma_{4}$ 分别构成两个费米子.$\gamma_{2}$ 和$\gamma_{3}$ 顺时针交换一次,$\gamma_{2}$ 会跨越$\gamma_{3}$ 所在涡旋的相位割线获得一个负号, 而$\gamma_{3}$ 并未跨越$\gamma_{2}$ 所在涡旋的相位割线不获得负号. 因此结果是$\gamma_{2}\rightarrow-\gamma_{3}, \gamma_{3}\rightarrow\gamma_{2}$ . (b)描述4个MZM的时间-空间(x; t)轨迹的世界线.$\gamma_{2}$ 和$\gamma_{3}$ 被编织一次, 因此它们的世界线缠绕一次. 系统由初态$|\varPhi_{\rm i}\rangle=|00\rangle$ 演化到$|\varPhi_{\rm f}\rangle=|00\rangle+ {\rm{i}}|11\rangle$ Figure 3. Skecth of a MZM braiding operation. (a) A system consists of 4 MZMs far enough apart, with
$\gamma_{1}$ and$\gamma_{2}$ ,$\gamma_{3}$ and$\gamma_{4}$ forming 2 fermions$f_{1}$ and$f_{2}$ .$\gamma_{2}$ and$\gamma_{3}$ are braided once clockwise. γ2 crosses the branch cut of the votex hosting γ3 and gains a minus sign, while γ3 doesn't cross the branch cut of the votex hosting γ2 and doesn't gain a minus sign. Hence the result is given by γ2 → –γ3, γ3 → γ2. (b) Worldlines in a space-time (x; t) diagram, describing four MZMs.$\gamma_{2}$ and$\gamma_{3}$ are braided once, hence their worldlines winds each other once. The initial state$|\varPhi_{\rm i}\rangle=|00\rangle$ evolves into$|\varPhi_{\rm f}\rangle=|00\rangle+ {\rm{i}}|11\rangle$ .图 5 T-型结进行编织操作以及键盘门的操作方式[101]. T- 型结由两条水平链和一条竖直链组成, 深蓝色部分为拓扑相, 浅蓝色部分为平凡相, 超导体上向上和向右的箭头分别代表
$\phi= \text{π}/2$ 和$\phi=0$ , 用向左和向下的箭头代表$\phi=\text{π}$ 和$\phi=3\text{π}/2$ . T-型结外的箭头代表MZM运动的方向. 黑色和灰色方块分别代表局域门的关闭和打开状态, 对应平凡相和拓扑相. (a)—(d) 给出$\gamma_{1}$ 先运动到竖直链上, 然后$\gamma_{2}$ 从水平链右端运动到左端, 最后$\gamma_{1}$ 运动到右端的过程, 过程结束后箭头反向. (e) 中局域门的存在可以保证在不关闭能隙的前提下逐渐移动MZMFigure 5. A T-junction allows for braiding process and the keyboard gates[101]. The T-junction consists of two horizontal segments and one vertical segment. Dark blue segments are in topological phase, and light blue lines trivial phase.
$\phi=0$ or$\text{π}/2$ is represented with rightward or upward pointing arrows, while$\phi=\text{π}$ or$3\text{π}/2$ represents the leftward or downward pointing arrows. MZMs are transported according to the arrows around the T-junction. Black and gray blocks denote different states of tunable gates in accordance with trivial and topological phases. (a)–(d) sketch the process which$\gamma_{1}$ is transported to vertical line firstly, then$\gamma_{2}$ travels from the right end to the left end and at last$\gamma_{1}$ is transported to the right end. After this process, the arrow points to the opposite direction. Local gates in (e) ensure that the MZMs can be manipulated gradually without closing the gap.图 6 通过转动铁磁体的磁化方向实现铁磁体两端的MZM[128] (a)交换世界带两次在拓扑上等价于世界带各自扭转
$2\text{π}$ . 箭头表示MZM的自旋; 世界带的红蓝边界标记MZM的内部自由度的时间演化. (b) SC/QSH/FI异质结装置中的MZM. 黄色(红色)箭头表示MZM的局域自旋方向(铁磁磁化方向). 下方的红色箭头转$\text{π}$ 角,$\gamma_{1}$ 和$\gamma_{2}$ 编织一次; 转$2\text{π}$ 角,$\gamma_{1}$ 和$\gamma_{2}$ 编织两次. 逆方向转动代表逆交换.Figure 6. Braiding operation via winding FI magnetization[128]. (a) The monodromy operator can be realized by either braiding two MZMs or twisting each worldribbons by
$2\text{π}$ . The arrows indicate the MZM spin. The blue and red edges of the ribbon denote the evolution of internal degree of freedom. (b) MZMs in the SC/QSH/FI hybrid system. The yellow (red) arrows represent the directions of local spin polari-zations for MZMs (FI magnetization). Winding the red arrow at the bottom by$\text{π}$ ,$\gamma_{1}$ and$\gamma_{2}$ are braided once; by$2\text{π}$ they are braided twice. A reverse rotation leads to an inverse braiding operation.图 7 约瑟夫森结的量子比特读出装置[129] (a)为MZM约瑟夫森结的示意图. 结两端各自存在一个MZM. 蓝色区域为一维拓扑超导区, 绿色区域为绝缘体区. 拓扑区的长度足够长, 使得两个MZM通过拓扑区的耦合可以忽略.
$\gamma_{1}$ 和$\gamma_{2}$ 通过足够短的绝缘区耦合起来, 形成一个能量非零的费米子. 通过改变通过线圈的磁场通量$\varPhi$ 可以改变结两端的超导相位差$\phi$ . (b) 直流分数约瑟夫森电流随$\phi$ 的变化关系. 其中红色虚线代表空占据态$|0\rangle$ , 蓝色实线代表占据态$|1\rangle$ . 和传统的以$2{\text{π}}$ 周期的约瑟夫森电流不同的是, 分数约瑟夫森电流关于$\phi$ 的变化周期是$4{\text{π}}$ . 量子比特$|0\rangle$ 和$|1\rangle$ 相对应的电流方向相反, 因此通过测量直流约瑟夫森电流可以读出MZM量子比特Figure 7. Basic set-up for qubit readout using a Josephson junction(JJ)[129]. (a) The schematic of a JJ with 2 MZMs residing at the junction. The blue region denotes 1d TSC and the green denoted trivial insulator. The TSC region should be long enough so that the coupling of the MZMs through TSC is negligible.
$\gamma_{1}$ and$\gamma_{2}$ couple weakly at the junction, forming a non-zero energy fermion. The phase difference$\phi$ can be varied by changing the magnetic flux$\varPhi$ . (b) The d.c. fractional Josephson current flowing across the junction versus$\phi$ . Instead of conventional$2{\text{π}}$ -periodic JJ current induced by Cooper pair tunneling, the fractional JJ current induced by MZMs exhibits$4{\text{π}}$ periodicity. The red dashed line denotes$|0\rangle$ and the blue solid line denotes$|1\rangle$ . The direction of the current is inverse for the qubit$|0\rangle$ and$|1\rangle$ , which enables the readout of the qubit by measuring the direct Josephson current.图 9 马约拉纳干涉仪装置[38] (a)电流从上方经过两个MZM也即一个拓扑量子比特, 从下方经过相位相干长度足够长的金属, 电路中间穿过可调节的磁通. 两条路径的相位差由电子的传输相移以及穿过线路的磁通决定. (b)通过测量干涉后的电导可以得到拓扑量子比特的宇称信息. 实线和虚线分别对应宇称为1和–1的量子比特的电导信号
Figure 9. Majorana inferometry[38]. (a) One path goes through two MZMs i.e. a topological qubit while the other path goes through a normal metal with a sufficiently long phase-coherence length.
$\varPsi$ is the applied magnetic flux enclosed by the two paths. The phase difference of two paths is determined by the phase transition shift and the magnetic flux, which can be measured by the conductance. (b) Majorana interferometer provides a projective measurement of the fermion parity. Solid line and dotted line represent the conductance signals corresponding to qubits with parity 1 and –1 respectively.图 10 时间反演对称性保护的编织过程及非阿贝尔统计的结果[156] (a) 时间反演不变的拓扑超导体两wlxb 端各有一对MZM, 以T-型结的方案完成编织. (b), (c) 不同的无序强度
$W_{0}$ 下经过完整编织后MKP的演化结果, 在不同条件下均有$\eta(t)=\langle\gamma_{1}(0)|\gamma_{1}(t)\rangle|_{t=2 T}=-1$ , 满足非阿贝尔统计. 经过一个周期后$\zeta(nT)=\displaystyle\sum\limits_{j=1, 2}[|\langle\gamma_{1}(nT) |\gamma_{j}(0)\rangle|^{2} + |\langle\gamma_{1}(nT)|\tilde{\gamma}_{j}(0)\rangle|^{2}]=1$ 给出绝热演化的条件Figure 10. Time-reversal symmetry protected braiding process and the results of non-Abelian statistics[156]. The TSC in (a) hosts a pair of MZMs at each end, and the braiding is fulfilled by the T-junction scheme. (b), (c) The evoluation of MKPs after the full braiding in the presence of different disorder strengh
$W_{0}$ . The non-Abelian statistics is confirmed by$\eta(t)=\langle\gamma_{1}(0)|\gamma_{1}(t)\rangle|_{t=2 T}=-1$ . The adiabatic condition is satisfied in that$\zeta(nT)= \displaystyle\sum\limits_{j=1, 2}[|\langle\gamma_{1}(nT)|\gamma_{j}(0)\rangle|^{2} + |\langle\gamma_{1}(nT)|\tilde{\gamma}_{j}(0)\rangle|^{2}]=1$ . -
[1] Majorana E 1937 Nuovo Cim. 14 171
Google Scholar
[2] Schechter J, Valle J W F 1982 Phys. Rev. D 25 2951
Google Scholar
[3] Keung W Y, Senjanović G 1983 Phys. Rev. Lett. 50 1427
Google Scholar
[4] Atre A, Han T, Pascoli S, Zhang B 2009 J. High Energy Phys. 2009 030
Google Scholar
[5] Rodejohann W 2011 Inter. J. Mod. Phys. E 20 1833
Google Scholar
[6] de Gouvêa A, Vogel P 2013 Progress in Particle and Nuclear Physics 71 75
Google Scholar
[7] Kitaev A Y 2001 Physics-Uspekhi 44 131
Google Scholar
[8] Alicea J 2012 Rep. Prog. Phys. 75 076501
Google Scholar
[9] Elliott S R, Franz M 2015 Rev. Mod. Phys. 87 137
Google Scholar
[10] Leijnse M, Flensberg K 2012 Semiconductor Science and Technology 27 124003
Google Scholar
[11] Wilczek F 2009 Nature Physics 5 614
Google Scholar
[12] Franz M 2013 Nat. Nanotechnol. 8 149
Google Scholar
[13] Read N, Green D 2000 Phys. Rev. B 61 10267
Google Scholar
[14] Ivanov D A 2001 Phys. Rev. Lett. 86 268
Google Scholar
[15] Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083
Google Scholar
[16] Freedman M, Kitaev A, Larsen M, Wang Z 2003 Bulletin of the American Mathematical Society 40 31
Google Scholar
[17] Das Sarma S, Freedman M, Nayak C 2005 Phys. Rev. Lett. 94 166802
Google Scholar
[18] Sarma S D, Freedman M, Nayak C 2006 Phys. Today 59 32
Google Scholar
[19] Kitaev A 2003 Ann. Phys. 303 2
Google Scholar
[20] Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407
Google Scholar
[21] Sau J D, Lutchyn R M, Tewari S, Das Sarma S 2010 Phys. Rev. Lett. 104 040502
Google Scholar
[22] Alicea J 2010 Phys. Rev. B 81 125318
Google Scholar
[23] Lutchyn R M, Sau J D, Das Sarma S 2010 Phys. Rev. Lett. 105 077001
Google Scholar
[24] Oreg Y, Refael G, von Oppen F 2010 Phys. Rev. Lett. 105 177002
Google Scholar
[25] Hosur P, Ghaemi P, Mong R S K, Vishwanath A 2011 Phys. Rev. Lett. 107 097001
Google Scholar
[26] Pientka F, Keselman A, Berg E, Yacoby A, Stern A, Halperin B I 2017 Phys. Rev. X 7 021032
Google Scholar
[27] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003
Google Scholar
[28] Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602
Google Scholar
[29] Sun H H, Zhang K W, Hu L H, et al. 2016 Phys. Rev. Lett. 116 257003
Google Scholar
[30] He Q L, Pan L, Stern A L, et al. 2017 Science 357 294
Google Scholar
[31] Zhang P, Yaji K, Hashimoto T, et al. 2018 Science 360 182
Google Scholar
[32] Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H, Gao H J 2018 Science 362 333
Google Scholar
[33] Fornieri A, Whiticar A M, Setiawan F, Portolés E, Drachmann A C C, Keselman A, Gronin S, Thomas C, Wang T, Kallaher R, et al. 2019 Nature 569 89
Google Scholar
[34] Ren H, Pientka F, Hart S, et al. 2019 Nature 569 93
Google Scholar
[35] Jäck B, Xie Y, Li J, Jeon S, Bernevig B A, Yazdani A 2019 Science 364 1255
Google Scholar
[36] van Heck B, Akhmerov A R, Hassler F, Burrello M, Beenakker C W J 2012 New J. Phys. 14 035019
Google Scholar
[37] Aasen D, Hell M, Mishmash R V, Higginbotham A, Danon J, Leijnse M, Jespersen T S, Folk J A, Marcus C M, Flensberg K, Alicea J 2016 Phys. Rev. X 6 031016
Google Scholar
[38] Vijay S, Fu L 2016 Phys. Rev. B 94 235446
Google Scholar
[39] Karzig T, Knapp C, Lutchyn R M, Bonderson P, Hastings M B, Nayak C, Alicea J, Flensberg K, Plugge S, Oreg Y, Marcus C M, Freedman M H 2017 Phys. Rev. B 95 235305
Google Scholar
[40] Schrade C, Fu L 2018. arXiv: 1807.06620 [cond-mat.mes-hall]
[41] Stern A, Berg E 2019 Phys. Rev. Lett. 122 107701
Google Scholar
[42] Wang Z 2010 Topological Quantum Computation (Santa Barbara: American Mathematical Soc.)
[43] Zhang L, Liu X J 2018 Spin-orbit Coupling and Topological Phases for Ultracold Atoms (Chap. 1) (Singapore: World Scientific) pp1–87
[44] Sau J D, Tewari S, Lutchyn R M, Stanescu T D, Das Sarma S 2010 Phys. Rev. B 82 214509
Google Scholar
[45] Potter A C, Lee P A 2011 Phys. Rev. B 83 184520
Google Scholar
[46] Sau J D, Tewari S, Das Sarma S 2012 Phys. Rev. B 85 064512
Google Scholar
[47] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414
Google Scholar
[48] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H 2012 Nat. Phys. 8 887
Google Scholar
[49] Finck A D K, Van Harlingen D J, Mohseni P K, Jung K, Li X 2013 Phys. Rev. Lett. 110 126406
Google Scholar
[50] Churchill H O H, Fatemi V, Grove-Rasmussen K, Deng M T, Caroff P, Xu H Q, Marcus C M 2013 Phys. Rev. B 87 241401
Google Scholar
[51] Law K T, Lee P A, Ng T K 2009 Phys. Rev. Lett. 103 237001
Google Scholar
[52] Flensberg K 2010 Phys. Rev. B 82 180516
Google Scholar
[53] Wimmer M, Akhmerov A R, Dahlhaus J P, Beenakker C W J 2011 New J. Phys. 13 053016
Google Scholar
[54] Lutchyn R M, Bakkers E P A M, Kouwenhoven L P, Krogstrup P, Marcus C M, Oreg Y 2018 Nat. Rev.s Mater. 3 52
Google Scholar
[55] Liu X J, Lobos A M 2013 Phys. Rev. B 87 060504
Google Scholar
[56] Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045
Google Scholar
[57] Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057
Google Scholar
[58] Fu L, Kane C L 2009 Phys. Rev. B 79 161408
Google Scholar
[59] Scharf B, Pientka F, Ren H, Yacoby A, Hankiewicz E M 2019 Phys. Rev. B 99 214503
Google Scholar
[60] Setiawan F, Stern A, Berg E 2019 Phys. Rev. B 99 220506
Google Scholar
[61] Stone M, Roy R 2004 Physical Review B 69 184511
Google Scholar
[62] Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803
Google Scholar
[63] Fu L, Kane C L 2009 Phys. Rev. Lett. 102 216403
Google Scholar
[64] Akhmerov A R, Nilsson J, Beenakker C W J 2009 Phys. Rev. Lett. 102 216404
Google Scholar
[65] Tanaka Y, Yokoyama T, Nagaosa N 2009 Phys. Rev. Lett. 103 107002
Google Scholar
[66] Linder J, Tanaka Y, Yokoyama T, Sudbø A, Nagaosa N 2010 Phys. Rev. B 81 184525
Google Scholar
[67] Zhang C, Tewari S, Lutchyn R M, Das Sarma S 2008 Phys. Rev. Lett. 101 160401
Google Scholar
[68] Sato M, Takahashi Y, Fujimoto S 2009 Phys. Rev. Lett. 103 020401
Google Scholar
[69] Wang M X, Liu C, Xu J P, et al. 2012 Science 336 52
Google Scholar
[70] He J J, Ng T K, Lee P A, Law K T 2014 Phys. Rev. Lett. 112 037001
Google Scholar
[71] Xu J P, Liu C, Wang M X, Ge J, Liu Z L, Yang X, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C, Jia J F 2014 Phys. Rev. Lett. 112 217001
Google Scholar
[72] Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001
Google Scholar
[73] Wang Z, Zhang P, Xu G, Zeng L K, Miao H, Xu X, Qian T, Weng H, Richard P, Fedorov A V, Ding H, Dai X, Fang Z 2015 Phys. Rev. B 92 115119
Google Scholar
[74] Xu G, Lian B, Tang P, Qi X L, Zhang S C 2016 Phys. Rev. Lett. 117 047001
Google Scholar
[75] Kong L, Zhu S, Papaj M, et al. 2019 Nat. Phys. 15 1181
Google Scholar
[76] König E J, Coleman P 2019 Phys. Rev. Lett. 122 207001
Google Scholar
[77] Zhang P, Wang Z, Wu X, Yaji K, Ishida Y, Kohama Y, Dai G, Sun Y, Bareille C, Kuroda K, et al. 2018 Nat. Phys. 15 41
Google Scholar
[78] Zhou X, Gordon K N, Jin K H, Li H, Narayan D, Zhao H, Zheng H, Huang H, Cao G, Zhigadlo N D, Liu F, Dessau D S 2019 Phys. Rev. B 100 184511
Google Scholar
[79] Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T, Tamegai T 2019 Nat. Mater. 18 811
Google Scholar
[80] Yan Z, Bi R, Wang Z 2017 Phys. Rev. Lett. 118 147003
Google Scholar
[81] Chan C, Zhang L, Poon T F J, He Y P, Wang Y Q, Liu X J 2017 Phys. Rev. Lett. 119 047001
Google Scholar
[82] Teo J C Y, Kane C L 2010 Phys. Rev. B 82 115120
Google Scholar
[83] Chan C, Liu X J 2017 Phys. Rev. Lett. 118 207002
Google Scholar
[84] Qi X L, Hughes T L, Zhang S C 2010 Phys. Rev. B 82 184516
Google Scholar
[85] Chung S B, Qi X L, Maciejko J, Zhang S C 2011 Phys. Rev. B 83 100512
Google Scholar
[86] Wang J, Zhou Q, Lian B, Zhang S C 2015 Phys. Rev. B 92 064520
Google Scholar
[87] Lian B, Wang J, Zhang S C 2016 Phys. Rev. B 93 161401
Google Scholar
[88] Kayyalha M, Xiao D, Zhang R, Shin J, Jiang J, Wang F, Zhao Y F, Xiao R, Zhang L, Fijalkowski K M, Mandal P, Winnerlein M, Gould C, Li Q, Molenkamp L W, Chan M H W, Samarth N, Chang C Z 2020 Science 367 64
Google Scholar
[89] Deng M T, Vaitiekenas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygård J, Krogstrup P, Marcus C M 2016 Science 354 1557
Google Scholar
[90] Nichele F, Drachmann A C, Whiticar A M, et al. 2017 Phys. Rev. Lett. 119 136803
Google Scholar
[91] Gül O, Zhang H, Bommer J D S, et al. 2018 Nat. Nanotechnol. 13 192
Google Scholar
[92] Feldman B E, Randeria M T, Li J, Jeon S, Xie Y, Wang Z, Drozdov I K, Bernevig B A, Yazdani A 2017 Nat. Phys. 13 286
Google Scholar
[93] Jeon S, Xie Y, Li J, Wang Z, Bernevig B A, Yazdani A 2017 Science 358 772
Google Scholar
[94] Laroche D, Bouman D, van Woerkom D J, et al. 2019 Nat. Commun. 10 245
Google Scholar
[95] Rokhinson L P, Liu X, Furdyna J K 2012 Nat. Phys. 8 795
Google Scholar
[96] Beenakker C W J 2019. arXiv: 1907.06497 [cond-mat]
[97] Bonderson P, Gurarie V, Nayak C 2011 Phys. Rev. B 83 075303
Google Scholar
[98] Teo J C Y, Kane C L 2010 Phys. Rev. Lett. 104 046401
Google Scholar
[99] Freedman M, Hastings M B, Nayak C, Qi X L, Walker K, Wang Z 2011 Phys. Rev. B 83 115132
Google Scholar
[100] Freedman M, Hastings M B, Nayak C, Qi X L 2011 Phys. Rev. B 84 245119
Google Scholar
[101] Alicea J, Oreg Y, Refael G, von Oppen F, Fisher M P A 2011 Nat. Phys. 7 412
Google Scholar
[102] Feynman R P 1982 Intern. J. Theoretical Phys. 21 467
Google Scholar
[103] Shor P W 1994 In Proceedings 35th Annual Symposium on Foundations of Computer Science (Ieee), pp124–134
[104] Grover L K 1997 Phys. Rev. Lett. 79 325
Google Scholar
[105] Lloyd S 1996 Science 273 1073
Google Scholar
[106] Deutsch D 1985 Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 400 97
Google Scholar
[107] Lo H K, Spiller T, Popescu S 1998 Introduction to quantum computation and information (World Scientific)
[108] DiVincenzo D P 2000 Fortschritte der Physik: Progress of Physics 48 771
Google Scholar
[109] Sarma S D, Freedman M, Nayak C 2015 npj Quantum Information 1 15001
Google Scholar
[110] Lahtinen V, Pachos J 2017 SciPost Physics 3 021
Google Scholar
[111] Kitaev A Y 1997 Uspekhi Matematicheskikh Nauk 52 53
Google Scholar
[112] Dawson C M, Nielsen M A 2005. arXiv: 0505030 [quant-ph]
[113] Bravyi S, Kitaev A 2005 Phys. Rev. A 71 022316
Google Scholar
[114] Bravyi S 2006 Phys. Rev. A 73 042313
Google Scholar
[115] Freedman M, Nayak C, Walker K 2006 Phys. Rev. B 73 245307
Google Scholar
[116] Bonderson P, Clarke D J, Nayak C, Shtengel K 2010 Phys. Rev. Lett. 104 180505
Google Scholar
[117] Karzig T, Oreg Y, Refael G, Freedman M H 2016 Phys. Rev. X 6 031019
Google Scholar
[118] Cheng M, Galitski V, Das Sarma S 2011 Phys. Rev. B 84 104529
Google Scholar
[119] Bauer B, Karzig T, Mishmash R, Antipov A, Alicea J 2018 Sci. Post Phys. 5 004
Google Scholar
[120] Sau J D, Clarke D J, Tewari S 2011 Phys. Rev. B 84 094505
Google Scholar
[121] Clarke D J, Sau J D, Tewari S 2011 Phys. Rev. B 84 035120
Google Scholar
[122] Halperin B I, Oreg Y, Stern A, Refael G, Alicea J, von Oppen F 2012 Phys. Rev. B 85 144501
Google Scholar
[123] Amorim C S, Ebihara K, Yamakage A, Tanaka Y, Sato M 2015 Phys. Rev. B 91 174305
Google Scholar
[124] Liu X, Li X, Deng D L, Liu X J, Das Sarma S 2016 Phys. Rev. B 94 014511
Google Scholar
[125] Bonderson P, Freedman M, Nayak C 2008 Phys. Rev. Lett. 101 010501
Google Scholar
[126] Bonderson P 2013 Phys. Rev. B 87 035113
Google Scholar
[127] Preskill J 2004 http://www.theory.caltech.edu/preskill/ talks/Preskill Biedenharn4.pdf
[128] Luo X J, He Y P, Poon T F J, Liu X, Liu X J 2018. arXiv: 1803.02173 [cond-mat.mes-hall]
[129] Chiu C K, Das Sarma S 2019 Phys. Rev. B 99 035312
Google Scholar
[130] Jiang L, Pekker D, Alicea J, Refael G, Oreg Y, von Oppen F 2011 Phys. Rev. Lett. 107 236401
Google Scholar
[131] Yang G, Lyu Z, Zhang X, Qu F, Lu L 2019 Chin. Phys. B 28 127402
Google Scholar
[132] Stenger J P T, Hatridge M, Frolov S M, Pekker D 2019 Phys. Rev. B 99 035307
Google Scholar
[133] Plugge S, Rasmussen A, Egger R, Flensberg K 2017 New J. Phys. 19 012001
Google Scholar
[134] Liu D E, Cheng M, Lutchyn R M 2015 Phys. Rev. B 91 081405
Google Scholar
[135] Barthel C, Reilly D J, Marcus C M, Hanson M P, Gossard A C 2009 Phys. Rev. Lett. 103 160503
Google Scholar
[136] Medford J, Beil J, Taylor J M, Bartlett S D, Doherty A C, Rashba E I, DiVincenzo D P, Lu H, Gossard A C, Marcus C M 2013 Nat. Nanotechnol. 8 654
Google Scholar
[137] Eng K, Ladd T D, Smith A, Borselli M G, Kiselev A A, Fong B H, Holabird K S, Hazard T M, Huang B, Deelman P W, Milosavljevic I, Schmitz A E, Ross R S, Gyure M F, Hunter A T 2015 Sci. Advances 1 1500214
Google Scholar
[138] Fu L 2010 Phys. Rev. Lett. 104 056402
Google Scholar
[139] Schrade C, Fu L 2018 Phys. Rev. Lett. 121 267002
Google Scholar
[140] Knapp C 2019 Ph.D. Dissertation (UC Santa Barbara)
[141] Qi X L, Hughes T L, Raghu S, Zhang S C 2009 Phys. Rev. Lett. 102 187001
Google Scholar
[142] Schnyder A P, Brydon P M R, Manske D, Timm C 2010 Phys. Rev. B 82 184508
Google Scholar
[143] Beenakker C W J, Dahlhaus J P, Wimmer M, Akhmerov A R 2011 Phys. Rev. B 83 085413
Google Scholar
[144] Deng S, Viola L, Ortiz G 2012 Phys. Rev. Lett. 108 036803
Google Scholar
[145] Nakosai S, Tanaka Y, Nagaosa N 2012 Phys. Rev. Lett. 108 147003
Google Scholar
[146] Wong C L M, Law K T 2012 Phys. Rev. B 86 184516
Google Scholar
[147] Zhang F, Kane C L, Mele E J 2013 Phys. Rev. Lett. 111 056402
Google Scholar
[148] Keselman A, Fu L, Stern A, Berg E 2013 Phys. Rev. Lett. 111 116402
Google Scholar
[149] Kim Y, Liu D E, Gaidamauskas E, Paaske J, Flensberg K, Lutchyn R M 2016 Phys. Rev. B 94 075439
Google Scholar
[150] Fang C, Gilbert M J, Bernevig B A 2014 Phys. Rev. Lett. 112 106401
Google Scholar
[151] Liu X J, He J J, Law K T 2014 Phys. Rev. B 90 235141
Google Scholar
[152] Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005
Google Scholar
[153] Snyder R A, Trimble C J, Rong C C, Folkes P A, Taylor P J, Williams J R 2018 Phys. Rev. Lett. 121 097701
Google Scholar
[154] Trifunovic L, Brouwer P W 2019 Phys. Rev. X 9 011012
Google Scholar
[155] Liu X J, Wong C L M, Law K T 2014 Phys. Rev. X 4 021018
Google Scholar
[156] Gao P, He Y P, Liu X J 2016 Phys. Rev. B 94 224509
Google Scholar
[157] Wölms K, Stern A, Flensberg K 2014 Phys. Rev. Lett. 113 246401
Google Scholar
[158] Wölms K, Stern A, Flensberg K 2016 Phys. Rev. B 93 045417
Google Scholar
[159] McGinley M, Cooper N R 2018 Phys. Rev. Lett. 121 090401
Google Scholar
[160] Zhang F, Kane C L 2014 Phys. Rev. B 90 020501
Google Scholar
Catalog
Metrics
- Abstract views: 18759
- PDF Downloads: 1356
- Cited By: 0