-
相比于量子门电路模型, 基于测量的量子计算模型为实现普适量子计算提供了另一途径, 且经过近二十年的发展其内涵已得到了极大丰富. 本文对基于测量的量子计算模型的研究历史和现状进行综述. 首先简要介绍该模型的基本理论, 包括量子图态等资源态的概念和工作原理、模型的计算普适性和经典模拟方法、在相关量子信息处理领域的应用等. 接着从量子物理特性的角度概括基于测量的量子计算模型和量子多体系统之间的紧密联系, 包括量子纠缠、互文性、量子关联、对称保护拓扑序和量子物质相等作为计算资源所发挥的独特作用. 然后, 总结实现基于测量的量子计算模型的不同技术路线和实验成果. 这些理论和实验方面的进展是不断推动可扩展容错量子计算机研制的力量源泉. 最后, 对该领域未来的研究方向进行讨论和展望, 希望能启发读者进一步学习和探索相关课题.Compared with the quantum gate circuit model, the measurement-based quantum computing model provides an alternative way to realize universal quantum computation, and relevant contents have been greatly enriched after nearly two decades of research and exploration. In this article, we review the research history and status of the measurement-based quantum computing model. First, we briefly introduce the basic theories of this model, including the concept and working principles of quantum graph states as resource states, the model’s computational universality and classical simulation methods, and relevant applications in the field of quantum information processing such as designing quantum algorithms and fault-tolerant error correction schemes. Then, from the perspective of quantum physical properties, which include the specific roles of quantum entanglement, contextuality, quantum correlations, symmetry-protected topological order, and quantum phases of matter as computing resources, the close relationship between measurement-based quantum computing model and quantum many-body system is presented. For example, a type of measurement-based computing model for exploiting quantum correlations can show a quantum advantage over the classical local hidden variable models, or certain symmetry-protected topological order states enable the universal quantum computation to be conducted by using only the measurements of single-qubit Pauli operators. Next, a variety of different technical routes and experimental progress of realizing the measurement-based quantum computing model are summarized, such as photonic systems, ion traps, superconducting circuits, etc. These achievements in various physical areas lay the foundation for future scalable and fault-tolerant quantum computers. Finally, we discuss and prospect the future research directions in this field thereby inspiring readers to further study and explore the relevant subjects.
-
Keywords:
- quantum computation /
- quantum entanglement /
- quantum correlations /
- symmetry-protected topological order
[1] Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (New York: Cambridge University Press) pp1−12
[2] Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P, Sleator T, Smolin J A, Weinfurter H 1995 Phys. Rev. A 52 3457
Google Scholar
[3] Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188
Google Scholar
[4] Raussendorf R, Browne D E, Briegel H J 2003 Phys. Rev. A 68 022312
Google Scholar
[5] Prevedel R, Walther P, Tiefenbacher F, Böhi P, Kaltenbaek R, Jennewein T, Zeilinger A 2007 Nature 445 65
Google Scholar
[6] Lanyon B, Jurcevic P, Zwerger M, Hempel C, Martinez E, Dür W, Briegel H, Blatt R, Roos C F 2013 Phys. Rev. Lett. 111 210501
Google Scholar
[7] Tame M, Özdemir Ş, Koashi M, Imoto N, Kim M 2009 Phys. Rev. A 79 020302
Google Scholar
[8] Tame M S, Prevedel R, Paternostro M, Böhi P, Kim M, Zeilinger A 2007 Phys. Rev. Lett. 98 140501
Google Scholar
[9] Tame M, Kim M 2010 Phys. Rev. A 82 030305
Google Scholar
[10] Tame M S, Bell B A, Di Franco C, Wadsworth W J, Rarity J G 2014 Phys. Rev. Lett. 113 200501
Google Scholar
[11] Bell B, Herrera-Martí D, Tame M, Markham D, Wadsworth W, Rarity J 2014 Nat. Commun. 5 3658
Google Scholar
[12] Pathumsoot P, Matsuo T, Satoh T, Hajdušek M, Suwanna S, Van Meter R 2020 Phys. Rev. A 101 052301
Google Scholar
[13] Hein M, Eisert J, Briegel H J 2004 Phys. Rev. A 69 062311
Google Scholar
[14] Briegel H J, Browne D E, Dür W, Raussendorf R, Van den Nest M 2009 Nat. Phys. 5 19
Google Scholar
[15] Preskill J 2018 Quantum 2 79
Google Scholar
[16] Gühne O, Tóth G 2009 Phys. Rep. 474 1
Google Scholar
[17] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895
Google Scholar
[18] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575
Google Scholar
[19] Gottesman D, Chuang I L 1999 Nature 402 390
Google Scholar
[20] Perdrix S 2005 Int. J. Quantum Inf. 3 219
Google Scholar
[21] Jorrand P, Perdrix S 2005 Proc. SPIE 5833 44
Google Scholar
[22] Gross D, Eisert J 2007 Phys. Rev. Lett. 98 220503
Google Scholar
[23] Gross D, Eisert J, Schuch N, Perez-Garcia D 2007 Phys. Rev. A 76 052315
Google Scholar
[24] Danos V, Kashefi E 2006 Phys. Rev. A 74 052310
Google Scholar
[25] van den Nest M, Dür W, Miyake A, Briegel H 2007 New J. Phys. 9 204
Google Scholar
[26] Danos V, Kashefi E, Panangaden P 2007 J. ACM 54 8
Google Scholar
[27] Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910
Google Scholar
[28] Hein M, Dür W, Eisert J, Raussendorf R, Nest M, Briegel H J 2006 arXiv: 0602096 [quant-ph]
[29] Walther P, Resch K J, Rudolph T, et al. 2005 Nature 434 169
Google Scholar
[30] Lu C Y, Zhou X Q, Gühne O, Gao W B, Zhang J, Yuan Z S, Goebel A, Yang T, Pan J W 2007 Nat. Phys. 3 91
Google Scholar
[31] Van den Nest M, Miyake A, Dür W, Briegel H J 2006 Phys. Rev. Lett. 97 150504
Google Scholar
[32] Nielsen M A 2006 Rep. Math. Phys. 57 147
Google Scholar
[33] Browne D E, Rudolph T 2005 Phys. Rev. Lett. 95 010501
Google Scholar
[34] Bell B, Tame M, Clark A, Nock R, Wadsworth W, Rarity J G 2013 New J. Phys. 15 053030
Google Scholar
[35] Leung D W 2004 Int. J. Quantum Inf. 2 33
Google Scholar
[36] Aliferis P, Leung D W 2004 Phys. Rev. A 70 062314
Google Scholar
[37] Childs A M, Leung D W, Nielsen M A 2005 Phys. Rev. A 71 032318
Google Scholar
[38] Verstraete F, Cirac J I 2004 Phys. Rev. A 70 060302
Google Scholar
[39] Nielsen M A 2004 Phys. Rev. Lett. 93 040503
Google Scholar
[40] Zwerger M, Briegel H, Dür W 2014 Sci. Rep. 4 5364
Google Scholar
[41] Vidal G 2003 Phys. Rev. Lett. 91 147902
Google Scholar
[42] Markov I L, Shi Y 2008 SIAM J. Comput. 38 963
Google Scholar
[43] Jozsa R 2006 arXiv: 0603163 [quant-ph]
[44] Shi Y Y, Duan L M, Vidal G 2006 Phys. Rev. A 74 022320
Google Scholar
[45] van den Nest M, Dür W, Vidal G, Briegel H J 2007 Phys. Rev. A 75 012337
Google Scholar
[46] Yoran N, Short A J 2006 Phys. Rev. Lett. 96 170503
Google Scholar
[47] Bravyi S, Raussendorf R 2007 Phys. Rev. A 76 022304
Google Scholar
[48] Zhang S, Zhang Y, Sun Y, Sun H, Zhang X 2019 Opt. Express 27 436
Google Scholar
[49] Chen M C, Li R, Gan L, Zhu X, Yang G, Lu C Y, Pan J W 2020 Phys. Rev. Lett. 124 080502
Google Scholar
[50] Chen K, Li C M, Zhang Q, Chen Y A, Goebel A, Chen S, Mair A, Pan J W 2007 Phys. Rev. Lett. 99 120503
Google Scholar
[51] Raussendorf R 2013 Phys. Rev. A 88 022322
Google Scholar
[52] Oestereich A L, Galvão E F 2017 Phys. Rev. A 96 062305
Google Scholar
[53] Raussendorf R, Briegel H J 2002 Quantum Inf. Comput. 2 443
[54] Broadbent A, Kashefi E 2009 Theor. Comput. Sci. 410 2489
Google Scholar
[55] Browne D, Kashefi E, Perdrix S 2010 Conference on Quantum Computation, Communication, and Cryptography Leeds, UK, April 2010 pp35−46
[56] Raussendorf R 2003 Ph. D. Dissertation (Munich: LMU)
[57] Nielsen M A, Dawson C M 2005 Phys. Rev. A 71 042323
Google Scholar
[58] Dawson C M, Haselgrove H L, Nielsen M A 2006 Phys. Rev. Lett. 96 020501
Google Scholar
[59] Raussendorf R, Harrington J, Goyal K 2006 Ann. Phys. 321 2242
Google Scholar
[60] Raussendorf R, Harrington J, Goyal K 2007 New J. Phys. 9 199
Google Scholar
[61] Raussendorf R, Harrington J 2007 Phys. Rev. Lett. 98 190504
Google Scholar
[62] Devitt S J, Fowler A G, Stephens A M, Greentree A D, Hollenberg L C, Munro W J, Nemoto K 2009 New J. Phys. 11 083032
Google Scholar
[63] Herrera-Martí D A, Fowler A G, Jennings D, Rudolph T 2010 Phys. Rev. A 82 032332
Google Scholar
[64] Yao X C, Wang T X, Chen H Z, et al. 2012 Nature 482 489
Google Scholar
[65] Fukui K, Asavanant W, Furusawa A 2020 Phys. Rev. A 102 032614
Google Scholar
[66] Broadbent A, Fitzsimons J, Kashefi E 2009 Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science pp517−526
[67] Barz S, Kashefi E, Broadbent A, Fitzsimons J F, Zeilinger A, Walther P 2012 Science 335 303
Google Scholar
[68] 田宇玲, 冯田峰, 周晓祺 2019 68 110302
Google Scholar
Tian Y L, Feng T F, Zhou X Q 2019 Acta Phys. Sin. 68 110302
Google Scholar
[69] Prevedel R, Stefanov A, Walther P, Zeilinger A 2007 New J. Phys. 9 205
Google Scholar
[70] Azuma K, Tamaki K, Lo H K 2015 Nat. Commun. 6 6787
Google Scholar
[71] Matsuo T, Satoh T, Nagayama S, Van Meter R 2018 Phys. Rev. A 97 062328
Google Scholar
[72] van den Nest M, Dür W, Briegel H J 2008 Phys. Rev. Lett. 100 110501
Google Scholar
[73] de las Cuevas G, Cubitt T S 2016 Science 351 1180
Google Scholar
[74] Bermejo-Vega J, Hangleiter D, Schwarz M, Raussendorf R, Eisert J 2018 Phys. Rev. X 8 021010
Google Scholar
[75] Miller J, Miyake A 2016 npj Quantum Inform. 2 16036
Google Scholar
[76] Demirel B, Weng W, Thalacker C, Hoban M, Barz S 2021 npj Quantum Inform. 7 29
Google Scholar
[77] Chen X, Zeng B, Gu Z C, Yoshida B, Chuang I L 2009 Phys. Rev. Lett. 102 220501
Google Scholar
[78] Cai J, Miyake A, Dür W, Briegel H J 2010 Phys. Rev. A 82 052309
Google Scholar
[79] Chen J, Chen X, Duan R, Ji Z, Zeng B 2011 Phys. Rev. A 83 050301
Google Scholar
[80] Cai J M, Dür W, van den Nest M, Miyake A, Briegel H 2009 Phys. Rev. Lett. 103 050503
Google Scholar
[81] Rossi M, Huber M, Bruß D, Macchiavello C 2013 New J. Phys. 15 113022
Google Scholar
[82] Qu R, Wang J, Li Z S, Bao Y R 2013 Phys. Rev. A 87 022311
Google Scholar
[83] Gachechiladze M, Budroni C, Gühne O 2016 Phys. Rev. Lett. 116 070401
Google Scholar
[84] Gross D, Flammia S T, Eisert J 2009 Phys. Rev. Lett. 102 190501
Google Scholar
[85] Bremner M J, Mora C, Winter A 2009 Phys. Rev. Lett. 102 190502
Google Scholar
[86] Morimae T 2017 Phys. Rev. A 96 052308
Google Scholar
[87] Brunner N, Cavalcanti D, Pironio S, Scarani V, Wehner S 2014 Rev. Mod. Phys. 86 419
Google Scholar
[88] Howard M, Wallman J, Veitch V, Emerson J 2014 Nature 510 351
Google Scholar
[89] Anders J, Browne D E 2009 Phys. Rev. Lett. 102 050502
Google Scholar
[90] Hoban M J, Wallman J J, Anwar H, Usher N, Raussendorf R, Browne D E 2014 Phys. Rev. Lett. 112 140505
Google Scholar
[91] Hoban M J, Campbell E T, Loukopoulos K, Browne D E 2011 New J. Phys. 13 023014
Google Scholar
[92] Abramsky S, Barbosa R S, Mansfield S 2017 Phys. Rev. Lett. 119 050504
Google Scholar
[93] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505
Google Scholar
[94] Gu Z C, Wen X G 2009 Phys. Rev. B 80 155131
Google Scholar
[95] Pollmann F, Berg E, Turner A M, Oshikawa M 2012 Phys. Rev. B 85 075125
Google Scholar
[96] Chen X, Gu Z C, Liu Z X, Wen X G 2012 Science 338 1604
Google Scholar
[97] Chen X, Gu Z C, Liu Z X, Wen X G 2013 Phys. Rev. B 87 155114
Google Scholar
[98] Else D V, Schwarz I, Bartlett S D, Doherty A C 2012 Phys. Rev. Lett. 108 240505
Google Scholar
[99] Miller J, Miyake A 2015 Phys. Rev. Lett. 114 120506
Google Scholar
[100] Raussendorf R, Wang D S, Prakash A, Wei T C, Stephen D T 2017 Phys. Rev. A 96 012302
Google Scholar
[101] Nautrup H P, Wei T C 2015 Phys. Rev. A 92 052309
Google Scholar
[102] Chen Y, Prakash A, Wei T C 2018 Phys. Rev. A 97 022305
Google Scholar
[103] Raussendorf R, Okay C, Wang D S, Stephen D T, Nautrup H P 2019 Phys. Rev. Lett. 122 090501
Google Scholar
[104] Stephen D T, Nautrup H P, Bermejo-Vega J, Eisert J, Raussendorf R 2019 Quantum 3 142
Google Scholar
[105] Daniel A K, Alexander R N, Miyake A 2020 Quantum 4 228
Google Scholar
[106] Choo K, Von Keyserlingk C, Regnault N, Neupert T 2018 Phys. Rev. Lett. 121 086808
Google Scholar
[107] Azses D, Haenel R, Naveh Y, Raussendorf R, Sela E, Dalla Torre E G 2020 Phys. Rev. Lett. 125 120502
Google Scholar
[108] Tokunaga Y, Kuwashiro S, Yamamoto T, Koashi M, Imoto N 2008 Phys. Rev. Lett. 100 210501
Google Scholar
[109] Gao W B, Xu P, Yao X C, et al. 2010 Phys. Rev. Lett. 104 020501
Google Scholar
[110] Vallone G, Pomarico E, De Martini F, Mataloni P 2008 Phys. Rev. A 78 042335
Google Scholar
[111] Barz S, Vasconcelos R, Greganti C, Zwerger M, Dür W, Briegel H J, Walther P 2014 Phys. Rev. A 90 042302
Google Scholar
[112] Gao W B, Yao X C, Cai J M, Lu H, Xu P, Yang T, Lu C Y, Chen Y A, Chen Z B, Pan J W 2011 Nat. Photonics 5 117
Google Scholar
[113] Reimer C, Sciara S, Roztocki P, et al. 2019 Nat. Phys. 15 148
Google Scholar
[114] Ciampini M A, Orieux A, Paesani S, et al. 2016 Light Sci. Appl. 5 e16064
Google Scholar
[115] Adcock J C, Vigliar C, Santagati R, Silverstone J W, Thompson M G 2019 Nat. Commun. 10 3528
Google Scholar
[116] Knill E, Laflamme R, Milburn G J 2001 Nature 409 46
Google Scholar
[117] Huang Y F, Ren X F, Zhang Y S, Duan L M, Guo G C 2004 Phys. Rev. Lett. 93 240501
Google Scholar
[118] Xiang G Y, Li J, Guo G C 2005 Phys. Rev. A 71 044304
Google Scholar
[119] Gao W B, Goebel A M, Lu C Y, et al. 2010 P. Nalt. Acad. Sci. 107 20869
Google Scholar
[120] Su X, Tan A, Jia X, Zhang J, Xie C, Peng K 2007 Phys. Rev. Lett. 98 070502
Google Scholar
[121] Su X, Hao S, Deng X, Ma L, Wang M, Jia X, Xie C, Peng K 2013 Nat. Commun. 4 2828
Google Scholar
[122] Su X, Jia X, Xie C, Peng K 2014 Sci. China Phys. Mech. 57 1210
Google Scholar
[123] Qin Z, Gessner M, Ren Z, Deng X, Han D, Li W, Su X, Smerzi A, Peng K 2019 NPJ Quantum Inf. 5 3
Google Scholar
[124] Ukai R, Iwata N, Shimokawa Y, et al. 2011 Phys. Rev. Lett. 106 240504
Google Scholar
[125] Yokoyama S, Ukai R, Armstrong S C, et al. 2013 Nat. Photonics 7 982
Google Scholar
[126] Yoshikawa J I, Yokoyama S, Kaji T, et al. 2016 APL Photonics 1 060801
Google Scholar
[127] Cirac J I, Zoller P 1995 Phys. Rev. Lett. 74 4091
Google Scholar
[128] Wunderlich H, Wunderlich C, Singer K, Schmidt-Kaler F 2009 Phys. Rev. A 79 052324
Google Scholar
[129] Stock R, James D F 2009 Phys. Rev. Lett. 102 170501
Google Scholar
[130] Lanyon B P, Zwerger M, Jurcevic P, Hempel C, Dür W, Briegel H J, Blatt R, Roos C 2014 Phys. Rev. Lett. 112 100403
Google Scholar
[131] You J, Wang X B, Tanamoto T, Nori F 2007 Phys. Rev. A 75 052319
Google Scholar
[132] Zhang X, Gao K, Feng M 2006 Phys. Rev. A 74 024303
Google Scholar
[133] Xue Z Y, Wang Z 2007 Phys. Rev. A 75 064303
Google Scholar
[134] Xue Z Y, Zhang G, Dong P, Yi Y M, Cao Z L 2006 Eur. Phys. J. B 52 333
Google Scholar
[135] Gong M, Chen M C, Zheng Y, et al. 2019 Phys. Rev. Lett. 122 110501
Google Scholar
[136] Mooney G J, Hill C D, Hollenberg L C 2019 Sci. Rep. 9 13465
Google Scholar
[137] Albarrán-Arriagada F, Barrios G A, Sanz M, et al. 2018 Phys. Rev. A 97 032320
Google Scholar
[138] Vaucher B, Nunnenkamp A, Jaksch D 2008 New J. Phys. 10 023005
Google Scholar
[139] Mamaev M, Blatt R, Ye J, Rey A M 2019 Phys. Rev. Lett. 122 160402
Google Scholar
[140] Economou S E, Lindner N, Rudolph T 2010 Phys. Rev. Lett. 105 093601
Google Scholar
[141] Gimeno-Segovia M, Rudolph T, Economou S E 2019 Phys. Rev. Lett. 123 070501
Google Scholar
[142] Ju C, Zhu J, Peng X, Chong B, Zhou X, Du J 2010 Phys. Rev. A 81 012322
Google Scholar
[143] Blythe P, Varcoe B 2006 New J. Phys. 8 231
Google Scholar
[144] Takeuchi Y, Morimae T, Hayashi M 2019 Sci. Rep. 9 13585
Google Scholar
[145] Gachechiladze M, Gühne O, Miyake A 2019 Phys. Rev. A 99 052304
Google Scholar
[146] Mansfield S, Kashefi E 2018 Phys. Rev. Lett. 121 230401
Google Scholar
[147] Frembs M, Roberts S, Bartlett S D 2018 New J. Phys. 20 103011
Google Scholar
[148] Hu F, Lamata L, Wang C, Chen X, Solano E, Sanz M 2020 Phys. Rev. Appl. 13 054062
Google Scholar
[149] Yan S, Qi H, Cui W 2020 Phys. Rev. A 102 052421
Google Scholar
[150] Devakul T, Williamson D J 2018 Phys. Rev. A 98 022332
Google Scholar
[151] Wei T C, Affleck I, Raussendorf R 2011 Phys. Rev. Lett. 106 070501
Google Scholar
-
图 2 单向量子计算执行量子门操作 (a)输入态
$ \left| + \right\rangle $ 经过${R_z}( - \alpha )$ 旋转和Hadamard门作用; (b)以测量纠缠态的方式等价地实现(a); (c)为(b)的扩展, 制备并测量4-qubit线性簇态以实现任意的单量子比特旋转门; (d)以4-qubit星形簇态执行CNOT门Fig. 2. Realization of quantum gates in the 1 WQC model: (a) Input state
$ \left| + \right\rangle $ undergoes a${R_z}( - \alpha )$ rotation and a Hadamard gate; (b) a circuit equivalent to (a) by measuring an entangled state; (c) a generalization of (b) to prepare and measure a 4-qubit linear cluster state for implementing arbitrary single-qubit rotation gates; (d) a circuit performing the CNOT gate via a star cluster state.图 3 基于传态的方案实现单量子比特门 (a)一方远程制备态
$U\left| \alpha \right\rangle $ 并通过Bell测量和泡利修正传给另一方, 注意U和Bell测量可以直接合并成新的联合测量; (b)利用制备好的资源态$(I \otimes U)\left| {{\beta _{{\text{00}}}}} \right\rangle $ 来间接执行$U\left| \alpha \right\rangle $ Fig. 3. Teleportation-based scheme for implementing any sing-qubit gate: (a) State
$U\left| \alpha \right\rangle $ is remotely prepared at one site and teleported to another site via Bell measurement and Pauli corrections, note here U and Bell measurement can be directly combined into a new joint measurement; (b) the scheme to indirectly implement$U\left| \alpha \right\rangle $ via a prepared resource state$(I \otimes U)\left| {{\beta _{{\text{00}}}}} \right\rangle $ .图 4 利用关联的计算模型. 经典控制计算机提供k个测量设置中的1个作为对关联多方资源态中个体的经典输入(蓝色箭头), 并且接收l个测量结果中的1个(红色箭头)作为输出
Fig. 4. A computational model exploiting correlations. The classical control computer provides one of k measurement settings as the classical input (blue arrows) to each of the parties in the correlated resource state and receives one of l possible measurement results (red arrows) as the output.
-
[1] Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (New York: Cambridge University Press) pp1−12
[2] Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P, Sleator T, Smolin J A, Weinfurter H 1995 Phys. Rev. A 52 3457
Google Scholar
[3] Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188
Google Scholar
[4] Raussendorf R, Browne D E, Briegel H J 2003 Phys. Rev. A 68 022312
Google Scholar
[5] Prevedel R, Walther P, Tiefenbacher F, Böhi P, Kaltenbaek R, Jennewein T, Zeilinger A 2007 Nature 445 65
Google Scholar
[6] Lanyon B, Jurcevic P, Zwerger M, Hempel C, Martinez E, Dür W, Briegel H, Blatt R, Roos C F 2013 Phys. Rev. Lett. 111 210501
Google Scholar
[7] Tame M, Özdemir Ş, Koashi M, Imoto N, Kim M 2009 Phys. Rev. A 79 020302
Google Scholar
[8] Tame M S, Prevedel R, Paternostro M, Böhi P, Kim M, Zeilinger A 2007 Phys. Rev. Lett. 98 140501
Google Scholar
[9] Tame M, Kim M 2010 Phys. Rev. A 82 030305
Google Scholar
[10] Tame M S, Bell B A, Di Franco C, Wadsworth W J, Rarity J G 2014 Phys. Rev. Lett. 113 200501
Google Scholar
[11] Bell B, Herrera-Martí D, Tame M, Markham D, Wadsworth W, Rarity J 2014 Nat. Commun. 5 3658
Google Scholar
[12] Pathumsoot P, Matsuo T, Satoh T, Hajdušek M, Suwanna S, Van Meter R 2020 Phys. Rev. A 101 052301
Google Scholar
[13] Hein M, Eisert J, Briegel H J 2004 Phys. Rev. A 69 062311
Google Scholar
[14] Briegel H J, Browne D E, Dür W, Raussendorf R, Van den Nest M 2009 Nat. Phys. 5 19
Google Scholar
[15] Preskill J 2018 Quantum 2 79
Google Scholar
[16] Gühne O, Tóth G 2009 Phys. Rep. 474 1
Google Scholar
[17] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895
Google Scholar
[18] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575
Google Scholar
[19] Gottesman D, Chuang I L 1999 Nature 402 390
Google Scholar
[20] Perdrix S 2005 Int. J. Quantum Inf. 3 219
Google Scholar
[21] Jorrand P, Perdrix S 2005 Proc. SPIE 5833 44
Google Scholar
[22] Gross D, Eisert J 2007 Phys. Rev. Lett. 98 220503
Google Scholar
[23] Gross D, Eisert J, Schuch N, Perez-Garcia D 2007 Phys. Rev. A 76 052315
Google Scholar
[24] Danos V, Kashefi E 2006 Phys. Rev. A 74 052310
Google Scholar
[25] van den Nest M, Dür W, Miyake A, Briegel H 2007 New J. Phys. 9 204
Google Scholar
[26] Danos V, Kashefi E, Panangaden P 2007 J. ACM 54 8
Google Scholar
[27] Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910
Google Scholar
[28] Hein M, Dür W, Eisert J, Raussendorf R, Nest M, Briegel H J 2006 arXiv: 0602096 [quant-ph]
[29] Walther P, Resch K J, Rudolph T, et al. 2005 Nature 434 169
Google Scholar
[30] Lu C Y, Zhou X Q, Gühne O, Gao W B, Zhang J, Yuan Z S, Goebel A, Yang T, Pan J W 2007 Nat. Phys. 3 91
Google Scholar
[31] Van den Nest M, Miyake A, Dür W, Briegel H J 2006 Phys. Rev. Lett. 97 150504
Google Scholar
[32] Nielsen M A 2006 Rep. Math. Phys. 57 147
Google Scholar
[33] Browne D E, Rudolph T 2005 Phys. Rev. Lett. 95 010501
Google Scholar
[34] Bell B, Tame M, Clark A, Nock R, Wadsworth W, Rarity J G 2013 New J. Phys. 15 053030
Google Scholar
[35] Leung D W 2004 Int. J. Quantum Inf. 2 33
Google Scholar
[36] Aliferis P, Leung D W 2004 Phys. Rev. A 70 062314
Google Scholar
[37] Childs A M, Leung D W, Nielsen M A 2005 Phys. Rev. A 71 032318
Google Scholar
[38] Verstraete F, Cirac J I 2004 Phys. Rev. A 70 060302
Google Scholar
[39] Nielsen M A 2004 Phys. Rev. Lett. 93 040503
Google Scholar
[40] Zwerger M, Briegel H, Dür W 2014 Sci. Rep. 4 5364
Google Scholar
[41] Vidal G 2003 Phys. Rev. Lett. 91 147902
Google Scholar
[42] Markov I L, Shi Y 2008 SIAM J. Comput. 38 963
Google Scholar
[43] Jozsa R 2006 arXiv: 0603163 [quant-ph]
[44] Shi Y Y, Duan L M, Vidal G 2006 Phys. Rev. A 74 022320
Google Scholar
[45] van den Nest M, Dür W, Vidal G, Briegel H J 2007 Phys. Rev. A 75 012337
Google Scholar
[46] Yoran N, Short A J 2006 Phys. Rev. Lett. 96 170503
Google Scholar
[47] Bravyi S, Raussendorf R 2007 Phys. Rev. A 76 022304
Google Scholar
[48] Zhang S, Zhang Y, Sun Y, Sun H, Zhang X 2019 Opt. Express 27 436
Google Scholar
[49] Chen M C, Li R, Gan L, Zhu X, Yang G, Lu C Y, Pan J W 2020 Phys. Rev. Lett. 124 080502
Google Scholar
[50] Chen K, Li C M, Zhang Q, Chen Y A, Goebel A, Chen S, Mair A, Pan J W 2007 Phys. Rev. Lett. 99 120503
Google Scholar
[51] Raussendorf R 2013 Phys. Rev. A 88 022322
Google Scholar
[52] Oestereich A L, Galvão E F 2017 Phys. Rev. A 96 062305
Google Scholar
[53] Raussendorf R, Briegel H J 2002 Quantum Inf. Comput. 2 443
[54] Broadbent A, Kashefi E 2009 Theor. Comput. Sci. 410 2489
Google Scholar
[55] Browne D, Kashefi E, Perdrix S 2010 Conference on Quantum Computation, Communication, and Cryptography Leeds, UK, April 2010 pp35−46
[56] Raussendorf R 2003 Ph. D. Dissertation (Munich: LMU)
[57] Nielsen M A, Dawson C M 2005 Phys. Rev. A 71 042323
Google Scholar
[58] Dawson C M, Haselgrove H L, Nielsen M A 2006 Phys. Rev. Lett. 96 020501
Google Scholar
[59] Raussendorf R, Harrington J, Goyal K 2006 Ann. Phys. 321 2242
Google Scholar
[60] Raussendorf R, Harrington J, Goyal K 2007 New J. Phys. 9 199
Google Scholar
[61] Raussendorf R, Harrington J 2007 Phys. Rev. Lett. 98 190504
Google Scholar
[62] Devitt S J, Fowler A G, Stephens A M, Greentree A D, Hollenberg L C, Munro W J, Nemoto K 2009 New J. Phys. 11 083032
Google Scholar
[63] Herrera-Martí D A, Fowler A G, Jennings D, Rudolph T 2010 Phys. Rev. A 82 032332
Google Scholar
[64] Yao X C, Wang T X, Chen H Z, et al. 2012 Nature 482 489
Google Scholar
[65] Fukui K, Asavanant W, Furusawa A 2020 Phys. Rev. A 102 032614
Google Scholar
[66] Broadbent A, Fitzsimons J, Kashefi E 2009 Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science pp517−526
[67] Barz S, Kashefi E, Broadbent A, Fitzsimons J F, Zeilinger A, Walther P 2012 Science 335 303
Google Scholar
[68] 田宇玲, 冯田峰, 周晓祺 2019 68 110302
Google Scholar
Tian Y L, Feng T F, Zhou X Q 2019 Acta Phys. Sin. 68 110302
Google Scholar
[69] Prevedel R, Stefanov A, Walther P, Zeilinger A 2007 New J. Phys. 9 205
Google Scholar
[70] Azuma K, Tamaki K, Lo H K 2015 Nat. Commun. 6 6787
Google Scholar
[71] Matsuo T, Satoh T, Nagayama S, Van Meter R 2018 Phys. Rev. A 97 062328
Google Scholar
[72] van den Nest M, Dür W, Briegel H J 2008 Phys. Rev. Lett. 100 110501
Google Scholar
[73] de las Cuevas G, Cubitt T S 2016 Science 351 1180
Google Scholar
[74] Bermejo-Vega J, Hangleiter D, Schwarz M, Raussendorf R, Eisert J 2018 Phys. Rev. X 8 021010
Google Scholar
[75] Miller J, Miyake A 2016 npj Quantum Inform. 2 16036
Google Scholar
[76] Demirel B, Weng W, Thalacker C, Hoban M, Barz S 2021 npj Quantum Inform. 7 29
Google Scholar
[77] Chen X, Zeng B, Gu Z C, Yoshida B, Chuang I L 2009 Phys. Rev. Lett. 102 220501
Google Scholar
[78] Cai J, Miyake A, Dür W, Briegel H J 2010 Phys. Rev. A 82 052309
Google Scholar
[79] Chen J, Chen X, Duan R, Ji Z, Zeng B 2011 Phys. Rev. A 83 050301
Google Scholar
[80] Cai J M, Dür W, van den Nest M, Miyake A, Briegel H 2009 Phys. Rev. Lett. 103 050503
Google Scholar
[81] Rossi M, Huber M, Bruß D, Macchiavello C 2013 New J. Phys. 15 113022
Google Scholar
[82] Qu R, Wang J, Li Z S, Bao Y R 2013 Phys. Rev. A 87 022311
Google Scholar
[83] Gachechiladze M, Budroni C, Gühne O 2016 Phys. Rev. Lett. 116 070401
Google Scholar
[84] Gross D, Flammia S T, Eisert J 2009 Phys. Rev. Lett. 102 190501
Google Scholar
[85] Bremner M J, Mora C, Winter A 2009 Phys. Rev. Lett. 102 190502
Google Scholar
[86] Morimae T 2017 Phys. Rev. A 96 052308
Google Scholar
[87] Brunner N, Cavalcanti D, Pironio S, Scarani V, Wehner S 2014 Rev. Mod. Phys. 86 419
Google Scholar
[88] Howard M, Wallman J, Veitch V, Emerson J 2014 Nature 510 351
Google Scholar
[89] Anders J, Browne D E 2009 Phys. Rev. Lett. 102 050502
Google Scholar
[90] Hoban M J, Wallman J J, Anwar H, Usher N, Raussendorf R, Browne D E 2014 Phys. Rev. Lett. 112 140505
Google Scholar
[91] Hoban M J, Campbell E T, Loukopoulos K, Browne D E 2011 New J. Phys. 13 023014
Google Scholar
[92] Abramsky S, Barbosa R S, Mansfield S 2017 Phys. Rev. Lett. 119 050504
Google Scholar
[93] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505
Google Scholar
[94] Gu Z C, Wen X G 2009 Phys. Rev. B 80 155131
Google Scholar
[95] Pollmann F, Berg E, Turner A M, Oshikawa M 2012 Phys. Rev. B 85 075125
Google Scholar
[96] Chen X, Gu Z C, Liu Z X, Wen X G 2012 Science 338 1604
Google Scholar
[97] Chen X, Gu Z C, Liu Z X, Wen X G 2013 Phys. Rev. B 87 155114
Google Scholar
[98] Else D V, Schwarz I, Bartlett S D, Doherty A C 2012 Phys. Rev. Lett. 108 240505
Google Scholar
[99] Miller J, Miyake A 2015 Phys. Rev. Lett. 114 120506
Google Scholar
[100] Raussendorf R, Wang D S, Prakash A, Wei T C, Stephen D T 2017 Phys. Rev. A 96 012302
Google Scholar
[101] Nautrup H P, Wei T C 2015 Phys. Rev. A 92 052309
Google Scholar
[102] Chen Y, Prakash A, Wei T C 2018 Phys. Rev. A 97 022305
Google Scholar
[103] Raussendorf R, Okay C, Wang D S, Stephen D T, Nautrup H P 2019 Phys. Rev. Lett. 122 090501
Google Scholar
[104] Stephen D T, Nautrup H P, Bermejo-Vega J, Eisert J, Raussendorf R 2019 Quantum 3 142
Google Scholar
[105] Daniel A K, Alexander R N, Miyake A 2020 Quantum 4 228
Google Scholar
[106] Choo K, Von Keyserlingk C, Regnault N, Neupert T 2018 Phys. Rev. Lett. 121 086808
Google Scholar
[107] Azses D, Haenel R, Naveh Y, Raussendorf R, Sela E, Dalla Torre E G 2020 Phys. Rev. Lett. 125 120502
Google Scholar
[108] Tokunaga Y, Kuwashiro S, Yamamoto T, Koashi M, Imoto N 2008 Phys. Rev. Lett. 100 210501
Google Scholar
[109] Gao W B, Xu P, Yao X C, et al. 2010 Phys. Rev. Lett. 104 020501
Google Scholar
[110] Vallone G, Pomarico E, De Martini F, Mataloni P 2008 Phys. Rev. A 78 042335
Google Scholar
[111] Barz S, Vasconcelos R, Greganti C, Zwerger M, Dür W, Briegel H J, Walther P 2014 Phys. Rev. A 90 042302
Google Scholar
[112] Gao W B, Yao X C, Cai J M, Lu H, Xu P, Yang T, Lu C Y, Chen Y A, Chen Z B, Pan J W 2011 Nat. Photonics 5 117
Google Scholar
[113] Reimer C, Sciara S, Roztocki P, et al. 2019 Nat. Phys. 15 148
Google Scholar
[114] Ciampini M A, Orieux A, Paesani S, et al. 2016 Light Sci. Appl. 5 e16064
Google Scholar
[115] Adcock J C, Vigliar C, Santagati R, Silverstone J W, Thompson M G 2019 Nat. Commun. 10 3528
Google Scholar
[116] Knill E, Laflamme R, Milburn G J 2001 Nature 409 46
Google Scholar
[117] Huang Y F, Ren X F, Zhang Y S, Duan L M, Guo G C 2004 Phys. Rev. Lett. 93 240501
Google Scholar
[118] Xiang G Y, Li J, Guo G C 2005 Phys. Rev. A 71 044304
Google Scholar
[119] Gao W B, Goebel A M, Lu C Y, et al. 2010 P. Nalt. Acad. Sci. 107 20869
Google Scholar
[120] Su X, Tan A, Jia X, Zhang J, Xie C, Peng K 2007 Phys. Rev. Lett. 98 070502
Google Scholar
[121] Su X, Hao S, Deng X, Ma L, Wang M, Jia X, Xie C, Peng K 2013 Nat. Commun. 4 2828
Google Scholar
[122] Su X, Jia X, Xie C, Peng K 2014 Sci. China Phys. Mech. 57 1210
Google Scholar
[123] Qin Z, Gessner M, Ren Z, Deng X, Han D, Li W, Su X, Smerzi A, Peng K 2019 NPJ Quantum Inf. 5 3
Google Scholar
[124] Ukai R, Iwata N, Shimokawa Y, et al. 2011 Phys. Rev. Lett. 106 240504
Google Scholar
[125] Yokoyama S, Ukai R, Armstrong S C, et al. 2013 Nat. Photonics 7 982
Google Scholar
[126] Yoshikawa J I, Yokoyama S, Kaji T, et al. 2016 APL Photonics 1 060801
Google Scholar
[127] Cirac J I, Zoller P 1995 Phys. Rev. Lett. 74 4091
Google Scholar
[128] Wunderlich H, Wunderlich C, Singer K, Schmidt-Kaler F 2009 Phys. Rev. A 79 052324
Google Scholar
[129] Stock R, James D F 2009 Phys. Rev. Lett. 102 170501
Google Scholar
[130] Lanyon B P, Zwerger M, Jurcevic P, Hempel C, Dür W, Briegel H J, Blatt R, Roos C 2014 Phys. Rev. Lett. 112 100403
Google Scholar
[131] You J, Wang X B, Tanamoto T, Nori F 2007 Phys. Rev. A 75 052319
Google Scholar
[132] Zhang X, Gao K, Feng M 2006 Phys. Rev. A 74 024303
Google Scholar
[133] Xue Z Y, Wang Z 2007 Phys. Rev. A 75 064303
Google Scholar
[134] Xue Z Y, Zhang G, Dong P, Yi Y M, Cao Z L 2006 Eur. Phys. J. B 52 333
Google Scholar
[135] Gong M, Chen M C, Zheng Y, et al. 2019 Phys. Rev. Lett. 122 110501
Google Scholar
[136] Mooney G J, Hill C D, Hollenberg L C 2019 Sci. Rep. 9 13465
Google Scholar
[137] Albarrán-Arriagada F, Barrios G A, Sanz M, et al. 2018 Phys. Rev. A 97 032320
Google Scholar
[138] Vaucher B, Nunnenkamp A, Jaksch D 2008 New J. Phys. 10 023005
Google Scholar
[139] Mamaev M, Blatt R, Ye J, Rey A M 2019 Phys. Rev. Lett. 122 160402
Google Scholar
[140] Economou S E, Lindner N, Rudolph T 2010 Phys. Rev. Lett. 105 093601
Google Scholar
[141] Gimeno-Segovia M, Rudolph T, Economou S E 2019 Phys. Rev. Lett. 123 070501
Google Scholar
[142] Ju C, Zhu J, Peng X, Chong B, Zhou X, Du J 2010 Phys. Rev. A 81 012322
Google Scholar
[143] Blythe P, Varcoe B 2006 New J. Phys. 8 231
Google Scholar
[144] Takeuchi Y, Morimae T, Hayashi M 2019 Sci. Rep. 9 13585
Google Scholar
[145] Gachechiladze M, Gühne O, Miyake A 2019 Phys. Rev. A 99 052304
Google Scholar
[146] Mansfield S, Kashefi E 2018 Phys. Rev. Lett. 121 230401
Google Scholar
[147] Frembs M, Roberts S, Bartlett S D 2018 New J. Phys. 20 103011
Google Scholar
[148] Hu F, Lamata L, Wang C, Chen X, Solano E, Sanz M 2020 Phys. Rev. Appl. 13 054062
Google Scholar
[149] Yan S, Qi H, Cui W 2020 Phys. Rev. A 102 052421
Google Scholar
[150] Devakul T, Williamson D J 2018 Phys. Rev. A 98 022332
Google Scholar
[151] Wei T C, Affleck I, Raussendorf R 2011 Phys. Rev. Lett. 106 070501
Google Scholar
计量
- 文章访问数: 11201
- PDF下载量: 783
- 被引次数: 0