-
Since the physical limit of Moore's law is being approached, many alternative computing methods have been proposed, among which quantum computing is the most concerned and widely studied. Owing to the non closeability of quantum system, the uncontrollable external factors will lead to quantum dissipation and decoherence. In order to avoid the decoherence of quantum superposition state, the fabrication of robust quantum bits has become one of the key factors. Majorana zero mode (MZM) is a quasi-particle emerging in the topological and superconducting hybrid system. It has non-Abelian statistical properties. Therefore, the topological qubit constructed by MZM has natural robustness to quantum decoherence. Despite the arduous exploration by various experimental groups, the experimental verification of MZM is still lacking. This paper reviews the history and main technical routes of quantum computing, focusing on the theory of topological superconductors, observable experimental phenomena, and the latest experimental progress. Furthermore we discuss and analyze the present status of the topological superconductor research. Finally, we prospect the future experiments and applications of topological superconductors in quantum computing.
-
Keywords:
- quantum computing /
- topological superconductor
[1] Park J 1970 Found. Phys. 1 23
Google Scholar
[2] Wootters W, Zurek W 1982 Nature 299 802
Google Scholar
[3] Bennett C 1973 IBM J. Res. Dev. 17 525
Google Scholar
[4] Benioff P 1980 J. Stat. Phys. 22 563
Google Scholar
[5] Manin Y I 1980 Sov. Radio 13
[6] Deutsch D, Jozsa R 1992 Proc. R. Soc. London, Ser. A 439 553
Google Scholar
[7] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895
Google Scholar
[8] Shor P W 1994 Proceedings 35th Annual Symposium on Foundations of Computer Science Santa Fe, NM, USA, November 20–22, 1994 pp124–134
[9] Monroe C, Meekhof D M, King B E, Itano W M, Wineland D J 1995 Phys. Rev. Lett. 75 4714
Google Scholar
[10] Divincenzo D P 1997 Mesoscopic Electron Transport NATO ASI Series p345 (Dordrecht: Springer)
[11] Grover L K 1996 In Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing, Association for Computing Machinery New York, NY, USA, May 22–24, 1996 p212
[12] Kitaev A Y 2003 Ann. Phys. 303 2
Google Scholar
[13] Chuang I L, Gershenfeld N, Kubinec M 1998 Phys. Rev. Lett. 80 3408
Google Scholar
[14] Pati A K, Braunstein S L 2000 Nature 404 164
[15] Knill E, Laflamme R, Milburn G J 2001 Nature 409 46
Google Scholar
[16] Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188
Google Scholar
[17] Pittman T B, Fitch M J, Jacobs B C, Franson J D 2003 Phys. Rev. A 68 032316
Google Scholar
[18] O'Brien J L, Pryde G J, White A G, Ralph T C, Branning D 2003 Nature 426 264
Google Scholar
[19] Riebe M, Häffner H, Roos C F, Hänsel W, Benhelm J, Lancaster G P T, Körber T W, Becher C, Schmidt-Kaler F, James D F V, Blatt R 2004 Nature 429 734
Google Scholar
[20] Chanelière T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B, Kuzmich A 2005 Nature 438 833
Google Scholar
[21] Hijlkema M, Weber B, Specht H P, Webster S C, Kuhn A, Rempe G 2007 Nat. Phys. 3 253
Google Scholar
[22] Menicucci N C, Flammia S T, Pfister O 2008 Phys. Rev. Lett. 101 130501
Google Scholar
[23] Harrow A W, Hassidim A, Lloyd S 2009 Phys. Rev. Lett. 103 150502
Google Scholar
[24] DiCarlo L, Chow J M, Gambetta J M, Bishop L S, Johnson B R, Schuster D I, Majer J, Blais A, Frunzio L, Girvin S M, Schoelkopf R J 2009 Nature 460 240
Google Scholar
[25] Politi A, Matthews J C F, O'Brien J L 2009 Science 325 1221
Google Scholar
[26] Devitt S J, Fowler A G, Stephens A M, Greentree A D, Hollenberg L C L, Munro W J, Nemoto K 2009 New J. Phys. 11 1221
[27] Schneider C, Enderlein M, Huber T, Schaetz T 2010 Nat. Photonics 4 772
Google Scholar
[28] Monz T, Schindler P, Barreiro J T, Chwalla M, Nigg D, Coish W A, Harlander M, Hänsel W, Hennrich M, Blatt R 2011 Phys. Rev. Lett. 106 130506
Google Scholar
[29] Aaronson S, Arkhipov A 2011 The Computational Complexity of Linear Optics (New York: ACM Press) p333
[30] Saeedi K, Simmons S, Salvail J Z, Dluhy P, Riemann H, Abrosimov N V, Becker P, Pohl H, Lorton J J L, Thewalt M W 2013 Science 342 830
Google Scholar
[31] Devitt S, Stephens A M, Munro W J, Nemoto K 2013 Nat. Commun. 4 2524
Google Scholar
[32] Nemoto K, Trupke M, Devitt S J, Stephens A M, Scharfenberger M, Buczak K, Nöbauer T, Everitt M S, Schmiedmayer J, Munro W J 2014 Phys. Rev. X 4 031022
[33] Pfaff W, Jensen B H, Bernien H, Van Dam S B, Blok M S, Taminiau T H, Tiggelman M J, Schouten R N, Markham M, Twitchen D J, Hanson R 2014 Science 345 532
Google Scholar
[34] Monz T, Nigg D, Martinez E A, Brandl M F, Schindler P, Rines R, Wang S X, Chuang I L, Blatt R 2016 Science 351 1068
Google Scholar
[35] Devitt S J 2016 Phys. Rev. A 94 032329
Google Scholar
[36] O'Malley P J J 2016 Phys. Rev. X 6 031007
[37] Kues M, Reimer C, Roztocki P, Cortés L R, Sciara S, Wetzel B, Zhang Y, Cino A, Chu S T, Little B E, Moss D J, Caspani L, Azaña J, Morandotti R 2017 Nature 546 622
Google Scholar
[38] Cao Y, Li Y, Cao Z, Yin J, Chen Y, Yin H, Chen T, Ma X, Peng C, Pan J 2017 Proc. Natl. Acad. Sci. U.S.A. 114 4920
Google Scholar
[39] Liang Q Y, Venkatramani A V, Cantu S H, Nicholson T L, Hullans M J, Gorshkov A V, Thompson J D, Chin C, Lukin M D, Vuletic V 2018 Science 359 783
Google Scholar
[40] Watson T F, Philips S G J, Kawakami E, Ward D R, Scarlino P, Veldhorst M, Savage D E, Lagally M G, Friesen M, Coppersmith S N, Eriksson M A, Vandersypen L M K 2018 Nature 555 633
Google Scholar
[41] Lenzini F, Janousek J, Thearle O, Villa M, Haylock B, Kasture S, Cui L, Phan H P, Dao D V, Yonezawa H, Lam P K, Huntington E H, Lobino M 2018 Sci. Adv. 4 eaat9331
Google Scholar
[42] Kokail C, Maier C, van Bijnen R, Brydges T, Joshi M K, Jurcevic P, Muschik C A, Silvi P, Blatt R, Roos C F, Zoller P 2019 Nature 569 355
Google Scholar
[43] Wang H, Qin J, Ding X, Chen M, Chen S, You X, He Y, Jiang X, You L, Wang Z, Schneider C, Renema J J, Höfling S, Lu C, Pan J 2019 Phys. Rev. Lett. 123 250503
Google Scholar
[44] Mukai H, Sakata K, Devitt S J, Wang R, Zhou Y, Nakajima Y, Tsai J S 2020 New J. Phys. 22 043013
Google Scholar
[45] Bienfait A, Zhong Y P, Chang H S, Chou M H, Conner C R, Dumur E, Grebel J, Peairs G A, Povey R G, Satzinger K J, Cleland A N 2020 Phys. Rev. X 10 021055
[46] Google AI Quantum Collaborators, Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Boixo S, Broughton M, Buckley B B, Buell D A, Burkett B, Bushnell N, Chen Y, Chen Z, Chiaro B, Collins R, Courtney W, Demura S, Dunsworth A, Eppens D, Farhi E, Fowler A, Foxen B, Gidney C, Giustina M, Graff R, Habegger S, Harrigan M P, Ho A, Hong S, Huang T, Huggins W J, Ioffe L, Isakov S V, Jeffrey E, Jiang Z, Jones C, Kafri D, Kechedzhi K, Kelly J, Kim S, Klimov P V, Korotkov A, Kostritsa F, Landhuis D, Laptev P, Lindmark M, Lucero E, Martin E, Martinis J M, McClean J R, McEwen M, Megrant A, Mi X, Mohseni M, Mruczkiewicz W, Mutus J, Naaman O, Neeley M, Neill C, Neven H, Niu M, O'Brien T E, Ostby E, Petukhov A, Putterman H, Quintana C, Roushan P, Rubin N C, Sank D, Satzinger K J, Smelyanskiy V, Strain D, Sung K J, Szalay M, Takeshita T Y, Vainsencher A, White T, Wiebe N, Yao Z, Yeh P, Zalcman A 2020 Science 369 1084
Google Scholar
[47] Joshi S K, Aktas D, Wengerowsky S, Loncaric M, Neumann S P, Liu B, Scheidl T, Lorenzo G C, Samec Z, Kling L, Qiu A, Razavi M, Stipcevic M, Rarity J, Ursin R 2020 Sci. Adv. 6 eaba0959
Google Scholar
[48] Zhong H, Wang H, Deng Y, Chen M, Peng L, Luo Y, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X, Zhang W, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N, Lu C, Pan J 2020 Science 370 1460
Google Scholar
[49] Chen Y, Zhang Q, Chen T, Cai W, Liao S, Zhang J, Chen K, Yin J, Ren J, Chen Z, Han S, Yu Q, Liang K, Zhou F, Yuan X, Zhao M, Wang T, Jiang X, Zhang L, Liu W, Li Y, Shen Q, Cao Y, Lu C, Shu R, Wang J, Li L, Liu N, Xu F, Wang X, Peng C, Pan J 2021 Nature 589 214
Google Scholar
[50] Liu H, Tian X, Gu C, Fan P, Ni X, Yang R, Zhang J, Hu M, Guo J, Cao X, Hu X, Zhao G, Lu Y, Gong Y, Xie Z, Zhu S 2021 Phys. Rev. Lett. 126 020503
Google Scholar
[51] Daiss S, Langenfeld S, Welte S, Distante E, Thomas P, Hartung L, Morin O, Rempe G 2021 Science 371 614
Google Scholar
[52] Pogorelov I, Feldker T, Marciniak C D, Postler L, Jacob G, Krieglsteiner O, Podlesnic V, Meth M, Negnevitsky V, Stadler M, Höfer B, Wächter C, Lakhmanskiy K, Blatt R, Schindler P, Monz T 2021 PRX Quantum 2 020343
Google Scholar
[53] Ebadi S, Wang T T, Levine H, Keesling A, Semeghini G, Omran A, Bluvstein D, Samajdar R, Pichler H, Ho W, Choi S, Sachdev S, Greiner M, Vuletić V, Lukin M D 2021 Nature 595 227
Google Scholar
[54] Scholl P, Schuler M, Williams H J, Eberharter A A, Barredo D, Schymik K, Lienhard V, Henry L, Lang T C, Lahaye T, Läuchli A M, Browaeys A 2021 Nature 595 233
Google Scholar
[55] Atas Y Y, Zhang J, Lewis R, Jahanpour A, Haase J F, Muschik C A 2021 Nat. Commun. 12 6499
Google Scholar
[56] Schrödinger E 1936 Proc. Cambridge Philos. Soc. 32 446
Google Scholar
[57] Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, Sergienko A V, Shih Y 1995 Phys. Rev. Lett. 75 4337
Google Scholar
[58] Aharonovich I, Englund D, Toth M 2016 Nat. Photonics 10 631
Google Scholar
[59] Bouwmeester D, Pan J, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575
Google Scholar
[60] Takeda S, Mizuta T, Fuwa M, van Loock P, Furusawa A 2013 Nature 500 315
Google Scholar
[61] 王吉林, 刘建设, 陈培毅 2009 微纳电子技术 46 321
Google Scholar
Wang J, Liu J, Chen P 2009 Micronanoelectron. Technol. 46 321
Google Scholar
[62] Nakamura Y, Pashkin Y A, Tsai J S 1999 Nature 398 786
Google Scholar
[63] Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Fernando G. S. L. Brandao F G S L, Buell D A, Burkett B, Chen Y, Chen Z, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Guerin K, Habegger S, Harrigan M P, Hartmann M J, Ho A, Hoffmann M, Huang T, Humble T S, Isakov S V, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Kelly J, Klimov P V, Knysh S, Korotkov A, Kostritsa F, Landhuis D, Lindmark M, Lucero E, Lyakh D, Mandrà S, McClean J R, McEwen M, Megrant A, Mi X, Michielsen K, Mohseni M, Mutus J, Naaman O, Neeley M, Neill C, Niu M, Ostby E, Petukhov A, Platt J C, Quintana C, Rieffel E G, Roushan P, Rubin N C, Sank D, Satzinger K J, Smelyanskiy V, Sung K J, Trevithick M D, Vainsencher A, Villalonga B, White T, Yao Z, Yeh P, Zalcman A, Neven H, Martinis J M 2019 Nature 574 505
Google Scholar
[64] Gong M, Wang S, Zha C, Chen M C, Huang H L, Wu Y, Zhu Q, Zhao Y, Li S, Guo S, Qian H, Ye Y, Chen F, Ying C, Yu J, Fan D, Wu D, Su H, Deng H, Rong H, Zhang K, Cao S, Lin J, Xu Y, Sun L, Guo C, Li N, Liang F, Bastidas V M, Nemoto K, Munro W J, Huo Y H, Lu C Y, Peng C Z, Zhu X, Pan J W 2021 Science 372 948
Google Scholar
[65] Guo Q, Cheng C, Li H, Xu S, Zhang P, Wang Z, Song C, Liu W, Ren W, Dong H, Mondaini R, Wang H 2021 Phys. Rev. Lett. 127 240502
Google Scholar
[66] Zhang X, Li H, Cao G, Xiao M, Guo G C, Guo G P National Sci. Rev. 6 32
[67] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P, Gossard A C 2005 Science 309 2180
Google Scholar
[68] Wang Z 2010 Topological Quantum Computation (Rhode Island: American Mathematical Soc) p112
[69] Fowler A G, Mariantoni M, Martinis J M, Cleland A N 2012 Phys. Rev. A 86 032324
Google Scholar
[70] Hile S J, Fricke L, House M G, Peretz E, Chen C Y, Wang Y, Broome M, Gorman S K, Keizer J G, Rahman R, Simmons M Y 2018 Sci. adv. 4 1459
[71] Morello A, Pla J J, Zwanenburg F A, Chan K W, Tan K Y, Huebl H, Möttönen M, Nugroho C D, Yang C, van Donkelaar J A, Alves A D C, Jamieson D N, Escott C C, Hollenberg L C L, Clark R G, Dzurak A S 2010 Nature 467 687
Google Scholar
[72] Harvey-Collard P, D’Anjou B, Rudolph M, Jacobson N T, Dominguez J, Eyck G A T, Wendt J R, Pluym T, Lilly M P, Coish W A, Pioro-Ladrière M, Carroll M S 2018 Phys. Rev. X 8 021046
[73] Yoneda J, Takeda K, Otsuka T, Nakajima T, Delbecq M R, Allison G, Honda T, Kodera T, Oda S, Hoshi Y, Usami N, Itoh K M, Tarucha S 2018 Nat. Nanotechnol. 13 102
Google Scholar
[74] Muhonen J T, Dehollain J P, Laucht A, Hudson F E, Kalra R, Sekiguchi T, Itoh K M, Jamieson D N, McCallum J C, Dzurak A S, Morello A 2014 Nat. Nanotechnol. 9 986
Google Scholar
[75] Huang W, Yang C H, Chan K W, Tanttu T, Hensen B, Leon R C C, Fogarty M A, Hwang J C C, Hudson F E, Itoh K M, Morello A, Laucht A, Dzurak A S 2019 Nature 569 532
Google Scholar
[76] Blume-Kohout R, Gamble J K, Nielsen E, Rudinger K, Mizrahi J, Fortier K, Maunz P 2017 Nat. Commun. 8 1
Google Scholar
[77] Mądzik M T, Asaad S, Youssry A, Joecker B, Rudinger K M, Nielsen E, Young K C, Proctor T J, Baczewski A D, Laucht A, Schmitt V, Hudson F E, Itoh K M, Jakob A M, Johnson B C, Jamieson D N, Dzurak A S, Ferrie C, Blume-Kohout R, Morello A 2022 Nature 601 348
Google Scholar
[78] Noiri A, Takeda K, Nakajima T, Kobayashi T, Sammak A, Scappucci G, Tarucha S 2022 Nature 601 338
Google Scholar
[79] Xue X, Russ M, Samkharadze N, Undseth B, Sammak A, Scappucci G, Vandersypen L M K 2022 Nature 601 343
Google Scholar
[80] Monz T, Kim K, Villar A S, Schindler P, Chwalla M, Riebe M. Roos C F, Haffner H, Hansel W, Hennrich M, Blatt R 2009 Phys. Rev. Lett. 103 200503
Google Scholar
[81] Wilk T, Webster S C, Kuhn A, Rempe G 2007 Science 317 488
Google Scholar
[82] DeMille D 2002 Phys. Rev. Lett. 88 067901
Google Scholar
[83] Jaksch D, Bruder C, Cirac J I, Gardiner C W, Zoller P 1998 Phys. Rev. Lett. 81 3108
Google Scholar
[84] Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39
Google Scholar
[85] Cirac J I, Zoller P 2004 Phys. Today 57 38
[86] Pu Y F, Zhang S, Wu Y K, Jiang N, Chang W, Li C, Duan L M 2021 Nat. Photonics 15 374
Google Scholar
[87] Hartke T, Oreg B, Jia N, Zwierlein M 2022 Nature 601 537
Google Scholar
[88] Singh K, Anand S, Pocklington A, Kemp J T, Bernien H 2022 Phys. Rev. X 12 011040
[89] Gao W B, Lu C Y, Yao X C, Xu P, Guhne O, Goebel A, Chen Y A, Peng C Z, Chen Z B, Pan J W 2010 Nat. Phys. 6 331
Google Scholar
[90] Mair A, Vaziri A, Weihs G, Zeilinger A 2001 Nature 412 313
Google Scholar
[91] Prechtel J H, Kuhlmann A V, Houel J, Greuter L, Ludwig A, Reuter D, Wieck A D, Warburton R J 2013 Phys. Rev. X 3 041006
[92] Jayakumar H, Predojevic A, Huber T, Kauten T, Solomon G S, Weihs G 2013 Phys. Rev. Lett. 110 135505
Google Scholar
[93] Crespi A, Osellame R, Ramponi R, Brod D J, Galvão E F, Spagnolo N, Vitelli C, Maiorino E, Mataloni P, Sciarrino F 2013 Nat. Photonics 7 545
Google Scholar
[94] Spring J B, Metcalf B J, Humphreys P C, Kolthammer W S, Jin X M, Barbieri M, Datta A, Thomas-Peter N, Langford N K, Kundys D, Gates J C, Smith B J, Smith P G R 2012 Science 339 798
[95] Tillmann M, Dakić B, Heilmann R, Nolte S, Szameit A, Walther P 2013 Nat. Photonics 7 540
Google Scholar
[96] Broome M A, Fedrizzi A, Rahimi-Keshari S, Dove J, Aaronson S, Ralph T C, White A G 2013 Science 339 794
Google Scholar
[97] Wang H, He Y, Li Y H, Su Z E, Li B, Huang H L, Ding X, Chen M C, Liu C, Qin J, Li J P He Y M, Schneider C, Kamp M, Peng C Z, Hofling S, Lu C Y, Pan J W 2017 Nat. Photonics 11 361
Google Scholar
[98] Tang H, Lin X F, Feng Z, Chen J Y, Gao J, Sun K, Wang C Y, Lai P C, Xu X Y, Wang Y, Qiao L F, Yang A L, Jin X M 2018 Sci. Adv. 4 3174
Google Scholar
[99] Kashiwazaki T, Yamashima T, Takanashi N, Inoue A, Umeki T, Furusawa A 2021 Appl. Phys. Lett. 119 251104
Google Scholar
[100] Ashida Y, Zongping G, Masahito U 2020 Adv. Phys. 69 249
[101] Zhao X M, Guo C X, Kou S P, Zhuang L, Liu W M 2021 Phys. Rev. B 104 205131
Google Scholar
[102] Zhao X M, Guo C X, Yang M L, Wang H, Liu W M, Kou S P 2021 Phys. Rev. B 104 214502
Google Scholar
[103] Jing D Y, Wang H Y, Liu W M 2022 J. Phys. Condens. Matter 34 195401
Google Scholar
[104] De Gennes P G 1999 Superconductivity of metals and alloys (Boca Raton: CRC Press)
[105] Avron J E, Seiler R, Simon B 1983 Phys. Rev. Lett. 51 51
Google Scholar
[106] Kitaev A Y 2001 Phys. Usp. 44 131
Google Scholar
[107] Lahtinen V, Pachos J 2017 SciPost Phys. 3 021
Google Scholar
[108] Sarma S D, Freedman M, Nayak C 2015 NPJ Quantum Inf. 1 1
[109] Read N, Green D 2000 Phys. Rev. B 61 10267
Google Scholar
[110] Fu L, Berg E 2010 Phys. Rev. Lett. 105 097001
Google Scholar
[111] Cho G Y, Bardarson J H, Lu Y M, Moore J E 2012 Phys. Rev. B 86 214514
Google Scholar
[112] Kobayashi S, Sato M 2015 Phys. Rev. Lett. 115 187001
Google Scholar
[113] Fu L, Kane C L 2008 Phys. Rev. Lett. 10 096407
[114] Sato M, Takahashi Y, Fujimoto S 2009 Phys. Rev. Lett. 103 020401
Google Scholar
[115] Langbehn J, Peng Y, Trifunovic L, von Oppen F, Brouwer P W 2017 Phys. Rev. Lett. 119 246401
Google Scholar
[116] Song Z, Fang Z, Fang C 2017 Phys. Rev. Lett. 119 246402
Google Scholar
[117] Benalcazar W A, Bernevig B A, Hughes T L 2017 Phys. Rev. B 96 245115
Google Scholar
[118] Schindler F 2018 Sci. Adv. 4 0346
[119] Zhu X 2019 Phys. Rev. Lett. 122 236401
Google Scholar
[120] Yan Z 2019 Phys. Rev. B 100 205406
Google Scholar
[121] Hsu C H, Stano P, Klinovaja J, Loss D 2018 Phys. Rev. Lett. 121 196801
Google Scholar
[122] Zhang P 2018 Science 360 182
Google Scholar
[123] Hassler F 2014 Majorana qubits arXiv: 1404.0897
[124] Law K T, Lee P A, Ng T K 2009 Phys. Rev. Lett. 103 237001
Google Scholar
[125] Yamakage A, Yada K, Sato M, Tanaka Y 2012 Phys. Rev. B 85 180509
Google Scholar
[126] Sato M, Ando Y 2017 Rep. Prog. Phys. 80 076501
Google Scholar
[127] Wang Z, Qi X, Zhang S 2011 Phys. Rev. B 84 014527
Google Scholar
[128] Marra P, Citro R, Braggio A 2016 Phys. Rev. B 93 220507
Google Scholar
[129] Chung S B, Horowitz J, Qi X L 2013 Phys. Rev. B 88 214514
Google Scholar
[130] Yamakage A, Sato M, Yada K, Kashiwaya S, Tanaka Y 2013 Phys. Rev. B 87 100510
Google Scholar
[131] Sato M 2010 Phys. Rev. B 81 220504
Google Scholar
[132] Fu L, Berg E 2010 Phys. Rev. Lett. 105 097001
[133] Berezinskii V L 1974 JETP Lett. 20 287
[134] Asano Y, Tanaka Y 2013 Phys. Rev. B 87 104513
Google Scholar
[135] Hor Y S, Williams A J, Checkelsky J G, Roushan P, Seo J, Xu Q, Zandbergen H W, Yazdani A, Ong N P, Cava R J 2010 Phys. Rev. Lett. 104 057001
Google Scholar
[136] Wray L A, Xu S, Xia Y, Hor Y S, Qian D, Fedorov A V, Lin H, Bansil A, Cava R J, Hasan M Z 2010 Nat. Phys. 6 855
Google Scholar
[137] Sasaki S, Kriener M, Segawa K, Yada K, Tanaka Y, Sato M, Ando Y 2011 Phys. Rev. Lett. 107 217001
Google Scholar
[138] Matano K, Kriener M, Segawa K, Ando Y, Zheng G 2016 Nat. Phys. 12 852
Google Scholar
[139] Yonezawa S, Tajiri K, Nakata S, Nagai Y, Wang Z, Segawa K, Ando Y, Maeno Y 2017 Nat. Phys. 13 123
Google Scholar
[140] Liu Z, Yao X, Shao J, Zuo M, Pi L, Tan S, Zhang C, Zhang Y 2015 J. Am. Chem. Soc. 137 10512
Google Scholar
[141] Asaba T, Lawson B J, Tinsman C, Chen L, Corbae P, Li G, Qiu Y, Hor Y S, Fu L, Li L 2017 Phys. Rev. X 7 011009
[142] Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H, Shin S 2018 Science 360 182
[143] Zhang P, Richard P, Xu N, Xu Y M, Ma J, Qian T, Fedorov A V, Denlinger J D, Gu G D, Ding H 2014 Appl. Phys. Lett. 105 172601
Google Scholar
[144] Wang Z, Zhang P, Xu G, Zeng L K, Miao H, Xu X, Qian T, Weng H, Richard P, Fedorov A V, Ding H, Dai X, Fang Z 2015 Phys. Rev. B 92 115119
Google Scholar
[145] Wu X, Qin S, Liang Y, Fan H, Hu J 2016 Phys. Rev. B 93 115129
Google Scholar
[146] Shi X, Han Z, Richard P, Wu X, Peng X, Qian T, Wang S, Hu J, Sun Y, Ding H 2017 Sci. Bull. 62 503
Google Scholar
[147] Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H, Gao H 2018 Science 362 333
Google Scholar
[148] Zhu S, Kong L, Cao L, Chen H, Papaj M, Du S, Xing Y, Liu W, Wang D, Shen C, Yang F, Schneeloch J, Zhong R, Gu G, Fu L, Zhang Y, Ding H, Gao H 2020 Science 367 189
Google Scholar
[149] Kong L, Zhu S, Papaj M, Chen H, Cao L, Isobe H, Xing Y, Liu W, Wang D, Fan P, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Gao H, Ding H 2019 Nat. Phys. 15 1181
Google Scholar
[150] Jiang D, Pan Y, Wang S, Lin Y, Holland C M, Kirtley J R, Chen X, Zhao J, Chen L, Yin S, Wang Y 2021 Sci. Bull. 66 425
Google Scholar
[151] Zhang P, Wang Z, Wu X, Yaji K, Ishida Y, Kohama Y, Dai G, Sun Y, Bareille C, Kuroda K, Kondo T, Okazaki K, Kindo K, Wang X, Jin C, Hu J, Thomale R, Sumida K, Wu S, Miyamoto K, Okuda T, Ding H, Gu G D, Tamegai T, Kawakami T, Sato M, Shin S 2019 Nat. Phys. 15 41
Google Scholar
[152] Liu Q, Chen C, Zhang T, Peng R, Yan Y, Wen C, Lou X, Huang Y, Tian J, Dong X, Wang G, Bao W, Wang Q, Yin Z, Zhao Z, Feng D 2018 Phys. Rev. X 8 041056
[153] Chen C, Liu Q, Zhang T Z, Li D, Shen P P, Dong X L, Zhao Z X, Zhang T, Feng D L 2019 Chin. Phys. Lett. 36 057403
Google Scholar
[154] Zhang T, Bao W, Chen C, Li D, Lu Z, Hu Y, Yang W, Zhao D, Yan Y, Dong X, Wang Q, Zhang T, Feng D 2021 Phys. Rev. Lett. 126 127001
Google Scholar
[155] Novak M, Sasaki S, Kriener M, Segawa K, Ando Y 2013 Phys. Rev. B 88 140502
Google Scholar
[156] Sasaki S, Ren Z, Taskin A A, Segawa K, Fu L, Ando Y 2012 Phys. Rev. Lett. 109 217004
Google Scholar
[157] Sato T, Tanaka Y, Nakayama K, Souma S, Takahashi T, Sasaki S, Ren Z, Taskin A A, Segawa K, Ando Y 2013 Phys. Rev. Lett. 110 206804
Google Scholar
[158] Nie S, Xing L, Jin R, Xie W, Wang Z, Prinz F B 2018 Phys. Rev. B 98 125143
Google Scholar
[159] Chen C, Liang A, Liu S, Nie S, Huang J, Wang M, Li Y, Pei D, Yang H, Zheng H, Zhang Y, Lu D, Hashimoto M, Barinov A, Jozwiak C, Bostwick A, Rotenberg E, Kou X, Yang L, Guo Y, Wang Z, Yuan H, Liu Z, Chen Y 2020 Matter 3 2055
Google Scholar
[160] Liu S, Nie S, Qi Y, Guo Y, Yuan H, Yang L, Chen Y, Wang M, Liu Z 2021 Chin. Phys. Lett. 38 077302
Google Scholar
[161] Fang Y, Pan J, Zhang D, Wang D, Hirose H T, Terashima T, Uji S, Yuan Y, Li W, Tian Z, Xue J, Ma Y, Zhao W, Xue Q, Mu G, Zhang H, Huang F 2019 Adv. Mater. 31 1901942
[162] Yuan Y, Pan J, Wang X, Fang Y, Song C, Wang L, He K, Ma X, Zhang H, Huang F, Li W, Xue Q 2019 Nat. Phys. 15 1046
Google Scholar
[163] Sato M, Fujimoto S 2009 Phys. Rev. B 79 094504
Google Scholar
[164] Yang X, Bao J, Lou Z, Li P, Jiang C, Wang J, Sun T, Liu Y, Guo W, Ramakrishnan S, Kotla S R, Tolkiehn M, Paulmann C, Cao G, Nie Y, Li, Yang Liu W, van Smaalen S, Lin X, Xu Z 2022 Adv. Mater. 34 2108550
Google Scholar
[165] Bian G, Chang T R, Sankar R, Xu S Y, Zheng H, Neupert T, Chiu C K, Huang S M, Chang G, Belopolski I, Sanchez D S, Neupane M, Alidoust N, Liu C, Wang B, Lee C C, Jeng H T, Zhang C, Yuan Z, Jia S, Bansil A, Chou F, Lin H, Hasan M Z 2016 Nat. Commun. 7 10556
Google Scholar
[166] Guan S Y, Chen P J, Chu M W, Sankar R, Chou F, Jeng H T, Chang C S, Chuang T M 2016 Sci. Adv. 2 1600894
Google Scholar
[167] Le T, Sun Y, Jin H, Che L, Yin L, Li J, Pang G M, Xu C Q, Zhao L X, Kittaka S, Sakakibara T, Machida K, Sankar R, Yuan H Q, Chen G F, Xu X, Li S, Zhou Y, Lu X 2020 Sci. Bull. 65 1349
Google Scholar
[168] Sakano M, Okawa K, Kanou M, Sanjo H, Okuda T, Sasagawa T, Ishizaka K 2015 Nat. Commun. 6 8595
Google Scholar
[169] Lv Y F, Wang W L, Zhang Y M, Ding H, Li W, Wang L, He K, Song C L, Ma X C, Xue Q K 2017 Sci. Bull. 62 852
Google Scholar
[170] Guan J Y, Kong L, Zhou L Q, Zhong Y G, Li H, Liu H J, Tang C Y, Yan D Y, Yang F Z, Huang Y B, Shi Y G, Qian T, Weng H M, Sun Y J Ding H 2019 Sci. Bull. 64 1215
Google Scholar
[171] Wu S, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Jarillo-Herrero P 2018 Science 359 76
Google Scholar
[172] Wang Y, Liu E, Liu H, Pan Y, Zhang L, Zeng J, Fu Y, Wang M, Xu K, Huang Z, Wang Z, Lu H, Xing D, Wang B, Wan X, Miao F 2016 Nat. Commun. 7 13142
Google Scholar
[173] Peng L, Yuan Y, Li G, Yang X, Xian J, Yi C, Shi Y, Fu Y 2017 Nat. Commun. 8 659
Google Scholar
[174] Fatemi V, Wu S, Cao Y, Bretheau L, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Jarillo-Herrero P 2018 Science 362 926
Google Scholar
[175] Sajadi E, Palomaki T, Fei Z, Zhao W, Bement P, Olsen C, Luescher S, Xu X, Folk J A, Cobden D H 2018 Science 362 922
Google Scholar
[176] Pan X, Chen X, Liu H, Feng Y, Wei Z, Zhou Y, Chi Z, Pi L, Yen F, Song F, Wan X, Yang Z, Wang B, Wang G, Zhang Y 2015 Nat. Commun. 6 7805
Google Scholar
[177] Kang D, Zhou Y, Yi W, Yang C, Guo J, Shi Y, Zhang S, Wang Z, Zhang C, Jiang S, Li A, Yang K, Wu Q, Zhang G, Sun L, Zhao Z 2015 Nat. Commun. 6 7804
Google Scholar
[178] Zhu L, Li Q Y, Lü Y Y, Li S, Zhu X Y, Jia Z Y, Chen Y B, Wen J, Li S C 2018 Nano Lett. 18 6585
Google Scholar
[179] Wang M X, Liu C, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F, Xue Q K 2012 Science 336 52
Google Scholar
[180] Xu J P, Liu C, Wang M X, Ge J, Liu Z L, Yang X, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C, Jia J F 2014 Phys. Rev. Lett. 112 217001
Google Scholar
[181] Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001
Google Scholar
[182] Oreg Y, Refael G, von Oppen F 2010 Phys. Rev. Lett. 105 177002
Google Scholar
[183] Lutchyn R M, Sau J D, Das Sarma S 2010 Phys. Rev. Lett. 105 077001
Google Scholar
[184] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003
Google Scholar
[185] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414
Google Scholar
[186] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H 2012 Nat. Phys. 8 887
Google Scholar
[187] Deng M T, Vaitiekenas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygard J, Krogstrup P, Marcus C M 2016 Science 354 1557
Google Scholar
[188] Gazibegovic S, Car D, Zhang H, Balk S C, Logan J A, de Moor M W A, Cassidy M C, Schmits R, Xu D, Wang G, Krogstrup P, Op het Veld R L M, Zuo K, Vos Y, Shen J, Bouman D, Shojaei B, Pennachio D, Lee J S, van Veldhoven P J, Koelling S, Verheijen M A, Kouwenhoven L P, Palmstrøm C J, Bakkers E P A M 2017 Nature 548 434
Google Scholar
[189] Pientka F, Keselman A, Berg E, Yacoby A, Stern A, Halperin B I 2017 Phys. Rev. X 7 021032
[190] Ren H, Pientka F, Hart S, Pierce A T, Kosowsky M, Lunczer L, Schlereth R, Scharf B, Hankiewicz E M, Molenkamp L W, Halperin B I, Yacoby A 2019 Nature 569 93
Google Scholar
[191] Alicea J, Oreg Y, Refael G, von Oppen F, Fisher M P A 2011 Nat. Phys. 7 412
Google Scholar
-
图 5 (a), (b), (c)展示了在x方向为有限边界而y方向为周期性边界时的能级结构, 从(a)到(c)缓慢增加磁场h的大小, 当满足
$ {\psi }_{s}^{2}+ϵ{\left(\mathrm{0, 0}\right)}^{2} < {h}^{2} < {\psi }_{s}^{2}+ϵ{\left(0, \mathrm{\pi }\right)}^{2} $ 时, 即(c), 边界涌现了两个无能隙的边界模, 表明发生了拓扑相变[114]Figure 5. (a), (b), and (c) The band energy of the lattice Hamiltonian with edges at x direction. The magnetic field increases from Figure (a) to Figure (c). The red thin line indicates a gapless chiral edge mode localized on the one side and green thick line a gapless chiral edge mode on the other side. They appear for
$ {\psi }_{s}^{2}+ϵ{\left(\mathrm{0, 0}\right)}^{2} < {h}^{2} < {\psi }_{s}^{2}+ϵ{\left(0, \mathrm{\pi }\right)}^{2} $ at Figure (c), which indicates the occurrence of topological phase transition[114].图 11 Fe1+ySexTe1–x上马约拉纳零能模的近量子化电导平台特征 (a) 扫描隧道显微镜示意图[148]; (b) 小图中涡旋的线界面图[148]; (c) 微分电导谱[148]; (d) 三维微分电导谱[148]; (e) 图(c)的彩色图[148]; (f), 图(e)在零偏置是的水平切线[148]; (g) 图(e)在高偏置是的水平切线[148]
Figure 11. Zero-bias conductance plateau observed on Fe1+ySexTe1–x: (a) Schematic of variable tunnel coupling STM/S method[148]; (b) a line-cut intensity plot along the dashed white arrow in the inset[148]; (c) an overlapping plot of dI/dV spectra[148]; (d) 3D plot of tunnel coupling dependent measurement, dI/dV (E, GN) [148]; (e) color-scale plot of Figure (c) [148]; (f) horizontal line-cut at the zero-bias from Figure (e)[148]; (g) horizaontal line-cuts at high-bias from Figure (e)[148].
图 12 超导抗磁性在Fe1+ySexTe1–x薄片中的分布 (a) 样品光学显微镜照片[150]; (b), (c) 样品的抗磁和磁化强度sSQUID扫描图[150]; (d)—(g) 随温度变化的抗磁sSQUID扫描图[150]; (h) 图(d)中r箭头指向的不同温度抗磁曲线[150]; (i) 根据图(h)做出的彩图[150]; (j) 在图(d)中1和2两点处提取的随温度变化的超流密度[150]
Figure 12. Distinctive edge features in susceptometry of Fe1+ySexTe1–x flake: (a) Optical image of the sample[150]; (b), (c) the susceptometry and magnetometry images of the sample, respectively[150]; (d)–(g) susceptometry images of the sample at various T[150]; (h) line cuts of the susceptometry images at various T along the vector direction (r) as labeled by the arrow in Figure (d) [150]; (i) interpolated image from the line cuts in Figure (h) [150]; (j) superfluid densities as a function of T extracted from point 1 and 2 in Figure (d)[151]
图 13 Li(Fe, Co)As的电子结构 (a) Li(Fe, Co)As的晶体结构[151]; (b) LiFeAs随ΓM和ΓZ的能带色散[151]; (c), (b) Cut D处的面内能带结构[151]; (d) LiFeAs (001)面的表面谱[151]; (e) 15 K时LiFe1–xCoxAs (x = 3%)的ARPES谱[151]; (f) 10 K时LiFe1–xCoxAs (x = 9%)的ARPES谱[151]
Figure 13. Electronic structure of Li(Fe, Co)As: (a) Crystal structure of Li(Fe, Co)As[151]; (b) zoomed-in view of the LiFeAs band dispersion along ΓM and ΓZ[151]; (c) in-plane band structure at Cut D in Figure(b) [151]; (d) (001) surface spectrum of LiFeAs[151]; (e) ARPES intensity plot of LiFe1–xCoxAs (x = 3%) at 15 K[151]; (f) ARPES intensity plot of LiFe1–xCoxAs (x = 9%) at 10 K[151].
图 19 分子束外延β-Bi2Pd薄膜的拓扑超导电性和马约拉纳零能模 (a) 扫描隧道显微镜的扫描图[169]; (b) β-Bi2Pd 的微分电导谱[169]; (c) 归一化的零偏置电导峰分布图[169]; (d) 隧穿电导谱[169]; (e) 涡旋核心附近的归一化微分电导谱[169]
Figure 19. Topological superconductivity and MZM in β-Bi2Pd film grown by MBE: (a) STM topography[169]; (b) Differential conductance dI/dV spectrum[169]; (c) normalized zero-bias conductance map[169]; (d) tunneling conductance dI/dV spectrum[169]; (e) normalized dI/dV spectra measured at location with radial distance r from the vortex center[169].
图 21 Bi2Te3/NbSe2上的零偏置电导峰劈裂 (a) 电导曲线[181]; (b) 通过图(a)做出的彩色图[181]; (c)—(g) 2—6层的电导彩色图[181]; (h) 劈裂点随层数变化曲线[181]
Figure 21. (a) A series of dI/dV curves[181]; (b) the color image of Figure (a) [181]; (c)–(g) the experimental results for 2-6QL samples, following the similar data process of Figure (b) [181]; (h) summary of the start points of the peak split [181].
-
[1] Park J 1970 Found. Phys. 1 23
Google Scholar
[2] Wootters W, Zurek W 1982 Nature 299 802
Google Scholar
[3] Bennett C 1973 IBM J. Res. Dev. 17 525
Google Scholar
[4] Benioff P 1980 J. Stat. Phys. 22 563
Google Scholar
[5] Manin Y I 1980 Sov. Radio 13
[6] Deutsch D, Jozsa R 1992 Proc. R. Soc. London, Ser. A 439 553
Google Scholar
[7] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895
Google Scholar
[8] Shor P W 1994 Proceedings 35th Annual Symposium on Foundations of Computer Science Santa Fe, NM, USA, November 20–22, 1994 pp124–134
[9] Monroe C, Meekhof D M, King B E, Itano W M, Wineland D J 1995 Phys. Rev. Lett. 75 4714
Google Scholar
[10] Divincenzo D P 1997 Mesoscopic Electron Transport NATO ASI Series p345 (Dordrecht: Springer)
[11] Grover L K 1996 In Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing, Association for Computing Machinery New York, NY, USA, May 22–24, 1996 p212
[12] Kitaev A Y 2003 Ann. Phys. 303 2
Google Scholar
[13] Chuang I L, Gershenfeld N, Kubinec M 1998 Phys. Rev. Lett. 80 3408
Google Scholar
[14] Pati A K, Braunstein S L 2000 Nature 404 164
[15] Knill E, Laflamme R, Milburn G J 2001 Nature 409 46
Google Scholar
[16] Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188
Google Scholar
[17] Pittman T B, Fitch M J, Jacobs B C, Franson J D 2003 Phys. Rev. A 68 032316
Google Scholar
[18] O'Brien J L, Pryde G J, White A G, Ralph T C, Branning D 2003 Nature 426 264
Google Scholar
[19] Riebe M, Häffner H, Roos C F, Hänsel W, Benhelm J, Lancaster G P T, Körber T W, Becher C, Schmidt-Kaler F, James D F V, Blatt R 2004 Nature 429 734
Google Scholar
[20] Chanelière T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B, Kuzmich A 2005 Nature 438 833
Google Scholar
[21] Hijlkema M, Weber B, Specht H P, Webster S C, Kuhn A, Rempe G 2007 Nat. Phys. 3 253
Google Scholar
[22] Menicucci N C, Flammia S T, Pfister O 2008 Phys. Rev. Lett. 101 130501
Google Scholar
[23] Harrow A W, Hassidim A, Lloyd S 2009 Phys. Rev. Lett. 103 150502
Google Scholar
[24] DiCarlo L, Chow J M, Gambetta J M, Bishop L S, Johnson B R, Schuster D I, Majer J, Blais A, Frunzio L, Girvin S M, Schoelkopf R J 2009 Nature 460 240
Google Scholar
[25] Politi A, Matthews J C F, O'Brien J L 2009 Science 325 1221
Google Scholar
[26] Devitt S J, Fowler A G, Stephens A M, Greentree A D, Hollenberg L C L, Munro W J, Nemoto K 2009 New J. Phys. 11 1221
[27] Schneider C, Enderlein M, Huber T, Schaetz T 2010 Nat. Photonics 4 772
Google Scholar
[28] Monz T, Schindler P, Barreiro J T, Chwalla M, Nigg D, Coish W A, Harlander M, Hänsel W, Hennrich M, Blatt R 2011 Phys. Rev. Lett. 106 130506
Google Scholar
[29] Aaronson S, Arkhipov A 2011 The Computational Complexity of Linear Optics (New York: ACM Press) p333
[30] Saeedi K, Simmons S, Salvail J Z, Dluhy P, Riemann H, Abrosimov N V, Becker P, Pohl H, Lorton J J L, Thewalt M W 2013 Science 342 830
Google Scholar
[31] Devitt S, Stephens A M, Munro W J, Nemoto K 2013 Nat. Commun. 4 2524
Google Scholar
[32] Nemoto K, Trupke M, Devitt S J, Stephens A M, Scharfenberger M, Buczak K, Nöbauer T, Everitt M S, Schmiedmayer J, Munro W J 2014 Phys. Rev. X 4 031022
[33] Pfaff W, Jensen B H, Bernien H, Van Dam S B, Blok M S, Taminiau T H, Tiggelman M J, Schouten R N, Markham M, Twitchen D J, Hanson R 2014 Science 345 532
Google Scholar
[34] Monz T, Nigg D, Martinez E A, Brandl M F, Schindler P, Rines R, Wang S X, Chuang I L, Blatt R 2016 Science 351 1068
Google Scholar
[35] Devitt S J 2016 Phys. Rev. A 94 032329
Google Scholar
[36] O'Malley P J J 2016 Phys. Rev. X 6 031007
[37] Kues M, Reimer C, Roztocki P, Cortés L R, Sciara S, Wetzel B, Zhang Y, Cino A, Chu S T, Little B E, Moss D J, Caspani L, Azaña J, Morandotti R 2017 Nature 546 622
Google Scholar
[38] Cao Y, Li Y, Cao Z, Yin J, Chen Y, Yin H, Chen T, Ma X, Peng C, Pan J 2017 Proc. Natl. Acad. Sci. U.S.A. 114 4920
Google Scholar
[39] Liang Q Y, Venkatramani A V, Cantu S H, Nicholson T L, Hullans M J, Gorshkov A V, Thompson J D, Chin C, Lukin M D, Vuletic V 2018 Science 359 783
Google Scholar
[40] Watson T F, Philips S G J, Kawakami E, Ward D R, Scarlino P, Veldhorst M, Savage D E, Lagally M G, Friesen M, Coppersmith S N, Eriksson M A, Vandersypen L M K 2018 Nature 555 633
Google Scholar
[41] Lenzini F, Janousek J, Thearle O, Villa M, Haylock B, Kasture S, Cui L, Phan H P, Dao D V, Yonezawa H, Lam P K, Huntington E H, Lobino M 2018 Sci. Adv. 4 eaat9331
Google Scholar
[42] Kokail C, Maier C, van Bijnen R, Brydges T, Joshi M K, Jurcevic P, Muschik C A, Silvi P, Blatt R, Roos C F, Zoller P 2019 Nature 569 355
Google Scholar
[43] Wang H, Qin J, Ding X, Chen M, Chen S, You X, He Y, Jiang X, You L, Wang Z, Schneider C, Renema J J, Höfling S, Lu C, Pan J 2019 Phys. Rev. Lett. 123 250503
Google Scholar
[44] Mukai H, Sakata K, Devitt S J, Wang R, Zhou Y, Nakajima Y, Tsai J S 2020 New J. Phys. 22 043013
Google Scholar
[45] Bienfait A, Zhong Y P, Chang H S, Chou M H, Conner C R, Dumur E, Grebel J, Peairs G A, Povey R G, Satzinger K J, Cleland A N 2020 Phys. Rev. X 10 021055
[46] Google AI Quantum Collaborators, Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Boixo S, Broughton M, Buckley B B, Buell D A, Burkett B, Bushnell N, Chen Y, Chen Z, Chiaro B, Collins R, Courtney W, Demura S, Dunsworth A, Eppens D, Farhi E, Fowler A, Foxen B, Gidney C, Giustina M, Graff R, Habegger S, Harrigan M P, Ho A, Hong S, Huang T, Huggins W J, Ioffe L, Isakov S V, Jeffrey E, Jiang Z, Jones C, Kafri D, Kechedzhi K, Kelly J, Kim S, Klimov P V, Korotkov A, Kostritsa F, Landhuis D, Laptev P, Lindmark M, Lucero E, Martin E, Martinis J M, McClean J R, McEwen M, Megrant A, Mi X, Mohseni M, Mruczkiewicz W, Mutus J, Naaman O, Neeley M, Neill C, Neven H, Niu M, O'Brien T E, Ostby E, Petukhov A, Putterman H, Quintana C, Roushan P, Rubin N C, Sank D, Satzinger K J, Smelyanskiy V, Strain D, Sung K J, Szalay M, Takeshita T Y, Vainsencher A, White T, Wiebe N, Yao Z, Yeh P, Zalcman A 2020 Science 369 1084
Google Scholar
[47] Joshi S K, Aktas D, Wengerowsky S, Loncaric M, Neumann S P, Liu B, Scheidl T, Lorenzo G C, Samec Z, Kling L, Qiu A, Razavi M, Stipcevic M, Rarity J, Ursin R 2020 Sci. Adv. 6 eaba0959
Google Scholar
[48] Zhong H, Wang H, Deng Y, Chen M, Peng L, Luo Y, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X, Zhang W, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N, Lu C, Pan J 2020 Science 370 1460
Google Scholar
[49] Chen Y, Zhang Q, Chen T, Cai W, Liao S, Zhang J, Chen K, Yin J, Ren J, Chen Z, Han S, Yu Q, Liang K, Zhou F, Yuan X, Zhao M, Wang T, Jiang X, Zhang L, Liu W, Li Y, Shen Q, Cao Y, Lu C, Shu R, Wang J, Li L, Liu N, Xu F, Wang X, Peng C, Pan J 2021 Nature 589 214
Google Scholar
[50] Liu H, Tian X, Gu C, Fan P, Ni X, Yang R, Zhang J, Hu M, Guo J, Cao X, Hu X, Zhao G, Lu Y, Gong Y, Xie Z, Zhu S 2021 Phys. Rev. Lett. 126 020503
Google Scholar
[51] Daiss S, Langenfeld S, Welte S, Distante E, Thomas P, Hartung L, Morin O, Rempe G 2021 Science 371 614
Google Scholar
[52] Pogorelov I, Feldker T, Marciniak C D, Postler L, Jacob G, Krieglsteiner O, Podlesnic V, Meth M, Negnevitsky V, Stadler M, Höfer B, Wächter C, Lakhmanskiy K, Blatt R, Schindler P, Monz T 2021 PRX Quantum 2 020343
Google Scholar
[53] Ebadi S, Wang T T, Levine H, Keesling A, Semeghini G, Omran A, Bluvstein D, Samajdar R, Pichler H, Ho W, Choi S, Sachdev S, Greiner M, Vuletić V, Lukin M D 2021 Nature 595 227
Google Scholar
[54] Scholl P, Schuler M, Williams H J, Eberharter A A, Barredo D, Schymik K, Lienhard V, Henry L, Lang T C, Lahaye T, Läuchli A M, Browaeys A 2021 Nature 595 233
Google Scholar
[55] Atas Y Y, Zhang J, Lewis R, Jahanpour A, Haase J F, Muschik C A 2021 Nat. Commun. 12 6499
Google Scholar
[56] Schrödinger E 1936 Proc. Cambridge Philos. Soc. 32 446
Google Scholar
[57] Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, Sergienko A V, Shih Y 1995 Phys. Rev. Lett. 75 4337
Google Scholar
[58] Aharonovich I, Englund D, Toth M 2016 Nat. Photonics 10 631
Google Scholar
[59] Bouwmeester D, Pan J, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575
Google Scholar
[60] Takeda S, Mizuta T, Fuwa M, van Loock P, Furusawa A 2013 Nature 500 315
Google Scholar
[61] 王吉林, 刘建设, 陈培毅 2009 微纳电子技术 46 321
Google Scholar
Wang J, Liu J, Chen P 2009 Micronanoelectron. Technol. 46 321
Google Scholar
[62] Nakamura Y, Pashkin Y A, Tsai J S 1999 Nature 398 786
Google Scholar
[63] Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Fernando G. S. L. Brandao F G S L, Buell D A, Burkett B, Chen Y, Chen Z, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Guerin K, Habegger S, Harrigan M P, Hartmann M J, Ho A, Hoffmann M, Huang T, Humble T S, Isakov S V, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Kelly J, Klimov P V, Knysh S, Korotkov A, Kostritsa F, Landhuis D, Lindmark M, Lucero E, Lyakh D, Mandrà S, McClean J R, McEwen M, Megrant A, Mi X, Michielsen K, Mohseni M, Mutus J, Naaman O, Neeley M, Neill C, Niu M, Ostby E, Petukhov A, Platt J C, Quintana C, Rieffel E G, Roushan P, Rubin N C, Sank D, Satzinger K J, Smelyanskiy V, Sung K J, Trevithick M D, Vainsencher A, Villalonga B, White T, Yao Z, Yeh P, Zalcman A, Neven H, Martinis J M 2019 Nature 574 505
Google Scholar
[64] Gong M, Wang S, Zha C, Chen M C, Huang H L, Wu Y, Zhu Q, Zhao Y, Li S, Guo S, Qian H, Ye Y, Chen F, Ying C, Yu J, Fan D, Wu D, Su H, Deng H, Rong H, Zhang K, Cao S, Lin J, Xu Y, Sun L, Guo C, Li N, Liang F, Bastidas V M, Nemoto K, Munro W J, Huo Y H, Lu C Y, Peng C Z, Zhu X, Pan J W 2021 Science 372 948
Google Scholar
[65] Guo Q, Cheng C, Li H, Xu S, Zhang P, Wang Z, Song C, Liu W, Ren W, Dong H, Mondaini R, Wang H 2021 Phys. Rev. Lett. 127 240502
Google Scholar
[66] Zhang X, Li H, Cao G, Xiao M, Guo G C, Guo G P National Sci. Rev. 6 32
[67] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P, Gossard A C 2005 Science 309 2180
Google Scholar
[68] Wang Z 2010 Topological Quantum Computation (Rhode Island: American Mathematical Soc) p112
[69] Fowler A G, Mariantoni M, Martinis J M, Cleland A N 2012 Phys. Rev. A 86 032324
Google Scholar
[70] Hile S J, Fricke L, House M G, Peretz E, Chen C Y, Wang Y, Broome M, Gorman S K, Keizer J G, Rahman R, Simmons M Y 2018 Sci. adv. 4 1459
[71] Morello A, Pla J J, Zwanenburg F A, Chan K W, Tan K Y, Huebl H, Möttönen M, Nugroho C D, Yang C, van Donkelaar J A, Alves A D C, Jamieson D N, Escott C C, Hollenberg L C L, Clark R G, Dzurak A S 2010 Nature 467 687
Google Scholar
[72] Harvey-Collard P, D’Anjou B, Rudolph M, Jacobson N T, Dominguez J, Eyck G A T, Wendt J R, Pluym T, Lilly M P, Coish W A, Pioro-Ladrière M, Carroll M S 2018 Phys. Rev. X 8 021046
[73] Yoneda J, Takeda K, Otsuka T, Nakajima T, Delbecq M R, Allison G, Honda T, Kodera T, Oda S, Hoshi Y, Usami N, Itoh K M, Tarucha S 2018 Nat. Nanotechnol. 13 102
Google Scholar
[74] Muhonen J T, Dehollain J P, Laucht A, Hudson F E, Kalra R, Sekiguchi T, Itoh K M, Jamieson D N, McCallum J C, Dzurak A S, Morello A 2014 Nat. Nanotechnol. 9 986
Google Scholar
[75] Huang W, Yang C H, Chan K W, Tanttu T, Hensen B, Leon R C C, Fogarty M A, Hwang J C C, Hudson F E, Itoh K M, Morello A, Laucht A, Dzurak A S 2019 Nature 569 532
Google Scholar
[76] Blume-Kohout R, Gamble J K, Nielsen E, Rudinger K, Mizrahi J, Fortier K, Maunz P 2017 Nat. Commun. 8 1
Google Scholar
[77] Mądzik M T, Asaad S, Youssry A, Joecker B, Rudinger K M, Nielsen E, Young K C, Proctor T J, Baczewski A D, Laucht A, Schmitt V, Hudson F E, Itoh K M, Jakob A M, Johnson B C, Jamieson D N, Dzurak A S, Ferrie C, Blume-Kohout R, Morello A 2022 Nature 601 348
Google Scholar
[78] Noiri A, Takeda K, Nakajima T, Kobayashi T, Sammak A, Scappucci G, Tarucha S 2022 Nature 601 338
Google Scholar
[79] Xue X, Russ M, Samkharadze N, Undseth B, Sammak A, Scappucci G, Vandersypen L M K 2022 Nature 601 343
Google Scholar
[80] Monz T, Kim K, Villar A S, Schindler P, Chwalla M, Riebe M. Roos C F, Haffner H, Hansel W, Hennrich M, Blatt R 2009 Phys. Rev. Lett. 103 200503
Google Scholar
[81] Wilk T, Webster S C, Kuhn A, Rempe G 2007 Science 317 488
Google Scholar
[82] DeMille D 2002 Phys. Rev. Lett. 88 067901
Google Scholar
[83] Jaksch D, Bruder C, Cirac J I, Gardiner C W, Zoller P 1998 Phys. Rev. Lett. 81 3108
Google Scholar
[84] Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39
Google Scholar
[85] Cirac J I, Zoller P 2004 Phys. Today 57 38
[86] Pu Y F, Zhang S, Wu Y K, Jiang N, Chang W, Li C, Duan L M 2021 Nat. Photonics 15 374
Google Scholar
[87] Hartke T, Oreg B, Jia N, Zwierlein M 2022 Nature 601 537
Google Scholar
[88] Singh K, Anand S, Pocklington A, Kemp J T, Bernien H 2022 Phys. Rev. X 12 011040
[89] Gao W B, Lu C Y, Yao X C, Xu P, Guhne O, Goebel A, Chen Y A, Peng C Z, Chen Z B, Pan J W 2010 Nat. Phys. 6 331
Google Scholar
[90] Mair A, Vaziri A, Weihs G, Zeilinger A 2001 Nature 412 313
Google Scholar
[91] Prechtel J H, Kuhlmann A V, Houel J, Greuter L, Ludwig A, Reuter D, Wieck A D, Warburton R J 2013 Phys. Rev. X 3 041006
[92] Jayakumar H, Predojevic A, Huber T, Kauten T, Solomon G S, Weihs G 2013 Phys. Rev. Lett. 110 135505
Google Scholar
[93] Crespi A, Osellame R, Ramponi R, Brod D J, Galvão E F, Spagnolo N, Vitelli C, Maiorino E, Mataloni P, Sciarrino F 2013 Nat. Photonics 7 545
Google Scholar
[94] Spring J B, Metcalf B J, Humphreys P C, Kolthammer W S, Jin X M, Barbieri M, Datta A, Thomas-Peter N, Langford N K, Kundys D, Gates J C, Smith B J, Smith P G R 2012 Science 339 798
[95] Tillmann M, Dakić B, Heilmann R, Nolte S, Szameit A, Walther P 2013 Nat. Photonics 7 540
Google Scholar
[96] Broome M A, Fedrizzi A, Rahimi-Keshari S, Dove J, Aaronson S, Ralph T C, White A G 2013 Science 339 794
Google Scholar
[97] Wang H, He Y, Li Y H, Su Z E, Li B, Huang H L, Ding X, Chen M C, Liu C, Qin J, Li J P He Y M, Schneider C, Kamp M, Peng C Z, Hofling S, Lu C Y, Pan J W 2017 Nat. Photonics 11 361
Google Scholar
[98] Tang H, Lin X F, Feng Z, Chen J Y, Gao J, Sun K, Wang C Y, Lai P C, Xu X Y, Wang Y, Qiao L F, Yang A L, Jin X M 2018 Sci. Adv. 4 3174
Google Scholar
[99] Kashiwazaki T, Yamashima T, Takanashi N, Inoue A, Umeki T, Furusawa A 2021 Appl. Phys. Lett. 119 251104
Google Scholar
[100] Ashida Y, Zongping G, Masahito U 2020 Adv. Phys. 69 249
[101] Zhao X M, Guo C X, Kou S P, Zhuang L, Liu W M 2021 Phys. Rev. B 104 205131
Google Scholar
[102] Zhao X M, Guo C X, Yang M L, Wang H, Liu W M, Kou S P 2021 Phys. Rev. B 104 214502
Google Scholar
[103] Jing D Y, Wang H Y, Liu W M 2022 J. Phys. Condens. Matter 34 195401
Google Scholar
[104] De Gennes P G 1999 Superconductivity of metals and alloys (Boca Raton: CRC Press)
[105] Avron J E, Seiler R, Simon B 1983 Phys. Rev. Lett. 51 51
Google Scholar
[106] Kitaev A Y 2001 Phys. Usp. 44 131
Google Scholar
[107] Lahtinen V, Pachos J 2017 SciPost Phys. 3 021
Google Scholar
[108] Sarma S D, Freedman M, Nayak C 2015 NPJ Quantum Inf. 1 1
[109] Read N, Green D 2000 Phys. Rev. B 61 10267
Google Scholar
[110] Fu L, Berg E 2010 Phys. Rev. Lett. 105 097001
Google Scholar
[111] Cho G Y, Bardarson J H, Lu Y M, Moore J E 2012 Phys. Rev. B 86 214514
Google Scholar
[112] Kobayashi S, Sato M 2015 Phys. Rev. Lett. 115 187001
Google Scholar
[113] Fu L, Kane C L 2008 Phys. Rev. Lett. 10 096407
[114] Sato M, Takahashi Y, Fujimoto S 2009 Phys. Rev. Lett. 103 020401
Google Scholar
[115] Langbehn J, Peng Y, Trifunovic L, von Oppen F, Brouwer P W 2017 Phys. Rev. Lett. 119 246401
Google Scholar
[116] Song Z, Fang Z, Fang C 2017 Phys. Rev. Lett. 119 246402
Google Scholar
[117] Benalcazar W A, Bernevig B A, Hughes T L 2017 Phys. Rev. B 96 245115
Google Scholar
[118] Schindler F 2018 Sci. Adv. 4 0346
[119] Zhu X 2019 Phys. Rev. Lett. 122 236401
Google Scholar
[120] Yan Z 2019 Phys. Rev. B 100 205406
Google Scholar
[121] Hsu C H, Stano P, Klinovaja J, Loss D 2018 Phys. Rev. Lett. 121 196801
Google Scholar
[122] Zhang P 2018 Science 360 182
Google Scholar
[123] Hassler F 2014 Majorana qubits arXiv: 1404.0897
[124] Law K T, Lee P A, Ng T K 2009 Phys. Rev. Lett. 103 237001
Google Scholar
[125] Yamakage A, Yada K, Sato M, Tanaka Y 2012 Phys. Rev. B 85 180509
Google Scholar
[126] Sato M, Ando Y 2017 Rep. Prog. Phys. 80 076501
Google Scholar
[127] Wang Z, Qi X, Zhang S 2011 Phys. Rev. B 84 014527
Google Scholar
[128] Marra P, Citro R, Braggio A 2016 Phys. Rev. B 93 220507
Google Scholar
[129] Chung S B, Horowitz J, Qi X L 2013 Phys. Rev. B 88 214514
Google Scholar
[130] Yamakage A, Sato M, Yada K, Kashiwaya S, Tanaka Y 2013 Phys. Rev. B 87 100510
Google Scholar
[131] Sato M 2010 Phys. Rev. B 81 220504
Google Scholar
[132] Fu L, Berg E 2010 Phys. Rev. Lett. 105 097001
[133] Berezinskii V L 1974 JETP Lett. 20 287
[134] Asano Y, Tanaka Y 2013 Phys. Rev. B 87 104513
Google Scholar
[135] Hor Y S, Williams A J, Checkelsky J G, Roushan P, Seo J, Xu Q, Zandbergen H W, Yazdani A, Ong N P, Cava R J 2010 Phys. Rev. Lett. 104 057001
Google Scholar
[136] Wray L A, Xu S, Xia Y, Hor Y S, Qian D, Fedorov A V, Lin H, Bansil A, Cava R J, Hasan M Z 2010 Nat. Phys. 6 855
Google Scholar
[137] Sasaki S, Kriener M, Segawa K, Yada K, Tanaka Y, Sato M, Ando Y 2011 Phys. Rev. Lett. 107 217001
Google Scholar
[138] Matano K, Kriener M, Segawa K, Ando Y, Zheng G 2016 Nat. Phys. 12 852
Google Scholar
[139] Yonezawa S, Tajiri K, Nakata S, Nagai Y, Wang Z, Segawa K, Ando Y, Maeno Y 2017 Nat. Phys. 13 123
Google Scholar
[140] Liu Z, Yao X, Shao J, Zuo M, Pi L, Tan S, Zhang C, Zhang Y 2015 J. Am. Chem. Soc. 137 10512
Google Scholar
[141] Asaba T, Lawson B J, Tinsman C, Chen L, Corbae P, Li G, Qiu Y, Hor Y S, Fu L, Li L 2017 Phys. Rev. X 7 011009
[142] Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H, Shin S 2018 Science 360 182
[143] Zhang P, Richard P, Xu N, Xu Y M, Ma J, Qian T, Fedorov A V, Denlinger J D, Gu G D, Ding H 2014 Appl. Phys. Lett. 105 172601
Google Scholar
[144] Wang Z, Zhang P, Xu G, Zeng L K, Miao H, Xu X, Qian T, Weng H, Richard P, Fedorov A V, Ding H, Dai X, Fang Z 2015 Phys. Rev. B 92 115119
Google Scholar
[145] Wu X, Qin S, Liang Y, Fan H, Hu J 2016 Phys. Rev. B 93 115129
Google Scholar
[146] Shi X, Han Z, Richard P, Wu X, Peng X, Qian T, Wang S, Hu J, Sun Y, Ding H 2017 Sci. Bull. 62 503
Google Scholar
[147] Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H, Gao H 2018 Science 362 333
Google Scholar
[148] Zhu S, Kong L, Cao L, Chen H, Papaj M, Du S, Xing Y, Liu W, Wang D, Shen C, Yang F, Schneeloch J, Zhong R, Gu G, Fu L, Zhang Y, Ding H, Gao H 2020 Science 367 189
Google Scholar
[149] Kong L, Zhu S, Papaj M, Chen H, Cao L, Isobe H, Xing Y, Liu W, Wang D, Fan P, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Gao H, Ding H 2019 Nat. Phys. 15 1181
Google Scholar
[150] Jiang D, Pan Y, Wang S, Lin Y, Holland C M, Kirtley J R, Chen X, Zhao J, Chen L, Yin S, Wang Y 2021 Sci. Bull. 66 425
Google Scholar
[151] Zhang P, Wang Z, Wu X, Yaji K, Ishida Y, Kohama Y, Dai G, Sun Y, Bareille C, Kuroda K, Kondo T, Okazaki K, Kindo K, Wang X, Jin C, Hu J, Thomale R, Sumida K, Wu S, Miyamoto K, Okuda T, Ding H, Gu G D, Tamegai T, Kawakami T, Sato M, Shin S 2019 Nat. Phys. 15 41
Google Scholar
[152] Liu Q, Chen C, Zhang T, Peng R, Yan Y, Wen C, Lou X, Huang Y, Tian J, Dong X, Wang G, Bao W, Wang Q, Yin Z, Zhao Z, Feng D 2018 Phys. Rev. X 8 041056
[153] Chen C, Liu Q, Zhang T Z, Li D, Shen P P, Dong X L, Zhao Z X, Zhang T, Feng D L 2019 Chin. Phys. Lett. 36 057403
Google Scholar
[154] Zhang T, Bao W, Chen C, Li D, Lu Z, Hu Y, Yang W, Zhao D, Yan Y, Dong X, Wang Q, Zhang T, Feng D 2021 Phys. Rev. Lett. 126 127001
Google Scholar
[155] Novak M, Sasaki S, Kriener M, Segawa K, Ando Y 2013 Phys. Rev. B 88 140502
Google Scholar
[156] Sasaki S, Ren Z, Taskin A A, Segawa K, Fu L, Ando Y 2012 Phys. Rev. Lett. 109 217004
Google Scholar
[157] Sato T, Tanaka Y, Nakayama K, Souma S, Takahashi T, Sasaki S, Ren Z, Taskin A A, Segawa K, Ando Y 2013 Phys. Rev. Lett. 110 206804
Google Scholar
[158] Nie S, Xing L, Jin R, Xie W, Wang Z, Prinz F B 2018 Phys. Rev. B 98 125143
Google Scholar
[159] Chen C, Liang A, Liu S, Nie S, Huang J, Wang M, Li Y, Pei D, Yang H, Zheng H, Zhang Y, Lu D, Hashimoto M, Barinov A, Jozwiak C, Bostwick A, Rotenberg E, Kou X, Yang L, Guo Y, Wang Z, Yuan H, Liu Z, Chen Y 2020 Matter 3 2055
Google Scholar
[160] Liu S, Nie S, Qi Y, Guo Y, Yuan H, Yang L, Chen Y, Wang M, Liu Z 2021 Chin. Phys. Lett. 38 077302
Google Scholar
[161] Fang Y, Pan J, Zhang D, Wang D, Hirose H T, Terashima T, Uji S, Yuan Y, Li W, Tian Z, Xue J, Ma Y, Zhao W, Xue Q, Mu G, Zhang H, Huang F 2019 Adv. Mater. 31 1901942
[162] Yuan Y, Pan J, Wang X, Fang Y, Song C, Wang L, He K, Ma X, Zhang H, Huang F, Li W, Xue Q 2019 Nat. Phys. 15 1046
Google Scholar
[163] Sato M, Fujimoto S 2009 Phys. Rev. B 79 094504
Google Scholar
[164] Yang X, Bao J, Lou Z, Li P, Jiang C, Wang J, Sun T, Liu Y, Guo W, Ramakrishnan S, Kotla S R, Tolkiehn M, Paulmann C, Cao G, Nie Y, Li, Yang Liu W, van Smaalen S, Lin X, Xu Z 2022 Adv. Mater. 34 2108550
Google Scholar
[165] Bian G, Chang T R, Sankar R, Xu S Y, Zheng H, Neupert T, Chiu C K, Huang S M, Chang G, Belopolski I, Sanchez D S, Neupane M, Alidoust N, Liu C, Wang B, Lee C C, Jeng H T, Zhang C, Yuan Z, Jia S, Bansil A, Chou F, Lin H, Hasan M Z 2016 Nat. Commun. 7 10556
Google Scholar
[166] Guan S Y, Chen P J, Chu M W, Sankar R, Chou F, Jeng H T, Chang C S, Chuang T M 2016 Sci. Adv. 2 1600894
Google Scholar
[167] Le T, Sun Y, Jin H, Che L, Yin L, Li J, Pang G M, Xu C Q, Zhao L X, Kittaka S, Sakakibara T, Machida K, Sankar R, Yuan H Q, Chen G F, Xu X, Li S, Zhou Y, Lu X 2020 Sci. Bull. 65 1349
Google Scholar
[168] Sakano M, Okawa K, Kanou M, Sanjo H, Okuda T, Sasagawa T, Ishizaka K 2015 Nat. Commun. 6 8595
Google Scholar
[169] Lv Y F, Wang W L, Zhang Y M, Ding H, Li W, Wang L, He K, Song C L, Ma X C, Xue Q K 2017 Sci. Bull. 62 852
Google Scholar
[170] Guan J Y, Kong L, Zhou L Q, Zhong Y G, Li H, Liu H J, Tang C Y, Yan D Y, Yang F Z, Huang Y B, Shi Y G, Qian T, Weng H M, Sun Y J Ding H 2019 Sci. Bull. 64 1215
Google Scholar
[171] Wu S, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Jarillo-Herrero P 2018 Science 359 76
Google Scholar
[172] Wang Y, Liu E, Liu H, Pan Y, Zhang L, Zeng J, Fu Y, Wang M, Xu K, Huang Z, Wang Z, Lu H, Xing D, Wang B, Wan X, Miao F 2016 Nat. Commun. 7 13142
Google Scholar
[173] Peng L, Yuan Y, Li G, Yang X, Xian J, Yi C, Shi Y, Fu Y 2017 Nat. Commun. 8 659
Google Scholar
[174] Fatemi V, Wu S, Cao Y, Bretheau L, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Jarillo-Herrero P 2018 Science 362 926
Google Scholar
[175] Sajadi E, Palomaki T, Fei Z, Zhao W, Bement P, Olsen C, Luescher S, Xu X, Folk J A, Cobden D H 2018 Science 362 922
Google Scholar
[176] Pan X, Chen X, Liu H, Feng Y, Wei Z, Zhou Y, Chi Z, Pi L, Yen F, Song F, Wan X, Yang Z, Wang B, Wang G, Zhang Y 2015 Nat. Commun. 6 7805
Google Scholar
[177] Kang D, Zhou Y, Yi W, Yang C, Guo J, Shi Y, Zhang S, Wang Z, Zhang C, Jiang S, Li A, Yang K, Wu Q, Zhang G, Sun L, Zhao Z 2015 Nat. Commun. 6 7804
Google Scholar
[178] Zhu L, Li Q Y, Lü Y Y, Li S, Zhu X Y, Jia Z Y, Chen Y B, Wen J, Li S C 2018 Nano Lett. 18 6585
Google Scholar
[179] Wang M X, Liu C, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F, Xue Q K 2012 Science 336 52
Google Scholar
[180] Xu J P, Liu C, Wang M X, Ge J, Liu Z L, Yang X, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C, Jia J F 2014 Phys. Rev. Lett. 112 217001
Google Scholar
[181] Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001
Google Scholar
[182] Oreg Y, Refael G, von Oppen F 2010 Phys. Rev. Lett. 105 177002
Google Scholar
[183] Lutchyn R M, Sau J D, Das Sarma S 2010 Phys. Rev. Lett. 105 077001
Google Scholar
[184] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003
Google Scholar
[185] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414
Google Scholar
[186] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H 2012 Nat. Phys. 8 887
Google Scholar
[187] Deng M T, Vaitiekenas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygard J, Krogstrup P, Marcus C M 2016 Science 354 1557
Google Scholar
[188] Gazibegovic S, Car D, Zhang H, Balk S C, Logan J A, de Moor M W A, Cassidy M C, Schmits R, Xu D, Wang G, Krogstrup P, Op het Veld R L M, Zuo K, Vos Y, Shen J, Bouman D, Shojaei B, Pennachio D, Lee J S, van Veldhoven P J, Koelling S, Verheijen M A, Kouwenhoven L P, Palmstrøm C J, Bakkers E P A M 2017 Nature 548 434
Google Scholar
[189] Pientka F, Keselman A, Berg E, Yacoby A, Stern A, Halperin B I 2017 Phys. Rev. X 7 021032
[190] Ren H, Pientka F, Hart S, Pierce A T, Kosowsky M, Lunczer L, Schlereth R, Scharf B, Hankiewicz E M, Molenkamp L W, Halperin B I, Yacoby A 2019 Nature 569 93
Google Scholar
[191] Alicea J, Oreg Y, Refael G, von Oppen F, Fisher M P A 2011 Nat. Phys. 7 412
Google Scholar
Catalog
Metrics
- Abstract views: 12146
- PDF Downloads: 491
- Cited By: 0