-
量子计算机在解决某些复杂问题方面具有经典计算机无法比拟的优势. 实现大规模量子计算需建立具有通用性、可扩展性和容错性的硬件平台. 连续变量光学系统具有独特的优势, 是实现大规模量子计算的一种可行途径, 近年来受到了广泛关注. 基于测量的连续变量量子计算通过对大规模高斯簇态(cluster态)的测量和测量结果的前馈来实现计算, 为实现量子计算提供了一条可行的途径. 量子纠错是量子计算和量子通信中保护量子信息的重要环节. 本文简要介绍了基于cluster态的单向量子计算、基于光学薛定谔猫态的量子计算和连续变量量子纠错的基本原理和研究进展, 并讨论了连续变量量子计算面临的问题和挑战.Quantum computation presents incomparable advantages over classical computer in solving some complex problems. To realize large-scale quantum computation, it is required to establish a hardware platform that is universal, scalable and fault tolerant. Continuous-variable optical system, which has unique advantages, is a feasible way to realize large-scale quantum computation and has attracted much attention in recent years. Measurement-based continuous-variable quantum computation realizes the computation by performing the measurement and feedforward of measurement results in large-scale Gaussian cluster states, and it provides an efficient method to realize quantum computation. Quantum error correction is an important part in quantum computation and quantum communication to protect quantum information. This review briefly introduces the basic principles and research advances in one-way quantum computation based on cluster states, quantum computation based on optical Schrödinger cat states and quantum error correction with continuous variables, and discusses the problems and challenges that the continuous-variable quantum computation is facing.
-
Keywords:
- quantum computation /
- continuous variables /
- cluster states /
- Schrödinger cat states /
- quantum error correction
[1] Shor P W 1994 Proceedings 35th Annual Symposium on Foundations of Computer Science Santa Fe, American, November 20–22, 1994
[2] Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar
[3] Lloyd S 1993 Science 261 1569Google Scholar
[4] Lloyd S 1994 Science 263 695Google Scholar
[5] Rarity J G, Ownes P C M, Tapster P R 1994 J. Mod. Opt. 41 2435Google Scholar
[6] Devoret M H, Schoelkopf R J 2013 Science 339 1169Google Scholar
[7] Gambetta J M, Chow J M, Steffen M 2017 NPJ Quantum Inf. 3 2Google Scholar
[8] Li Z Y, Yu H F, Tan X S, Zhao S P, Yu Y 2019 Chin. Phys. B 28 098505Google Scholar
[9] Gong M, Wang S, Zha C, et al. 2021 Science 372 948Google Scholar
[10] Huang H L, Wu D, Fan D, Zhu X 2020 Sci. Chin. Inf. Sci. 63 180501Google Scholar
[11] Pagano G, Bapat A, Becker P, Collins K S, De A, Hess P W, Kaplan H B, Kyprianidis A, Tan W L, Baldwin C, Brady L T, Deshpande A, Liu F, Jordan S, Gorshkov A V, Monroe C 2020 Proc. Natl. Acad. Sci. 117 25396Google Scholar
[12] Pino J M, Dreiling J M, Figgatt C, et al. 2021 Nature 592 209Google Scholar
[13] Watson T F, Philips S G J, Kawakami E, et al. 2018 Nature 555 633Google Scholar
[14] Hendrickx N W, Lawrie W I L, Russ M, et al. 2021 Nature 591 580Google Scholar
[15] Arrazola J M, Bergholm V, Brádler K, et al. 2021 Nature 591 54Google Scholar
[16] Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C L, Klimeck G, Rogge S, Coppersmith S N, Eriksson M A 2013 Rev. Mod. Phys. 85 961Google Scholar
[17] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar
[18] Yan Z, Zhang Y R, Gong M, et al. 2019 Science 364 753Google Scholar
[19] Wu Y, Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501Google Scholar
[20] Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460Google Scholar
[21] Zhong H S, Deng Y H, Qin J, et al. 2021 Phys. Rev. Lett. 127 180502Google Scholar
[22] van Loock P 2011 Laser Photonics Rev. 5 167Google Scholar
[23] Andersen U L, Neergaard-Nielsen J S, van Loock P, Furusawa A 2015 Nat. Phys. 11 713Google Scholar
[24] Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513Google Scholar
[25] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621Google Scholar
[26] Huh J, Guerreschi G G, Peropadre B, McClean J R, Aspuru-Guzik A 2015 Nat. Photonics 9 615Google Scholar
[27] Hamilton C S, Kruse R, Sansoni L, Barkhofen S, Silberhorn C, Jex I 2017 Phys. Rev. Lett. 119 170501Google Scholar
[28] Arrazola J M, Bromley T R 2018 Phys. Rev. Lett. 121 030503Google Scholar
[29] Banchi L, Fingerhuth M, Babej T, Ing C, Arrazola J M 2020 Sci. Adv. 6 eaax1950Google Scholar
[30] Lau H K, Pooser R, Siopsis G, Weedbrook C 2017 Phys. Rev. Lett. 118 080501Google Scholar
[31] Schuld M, Killoran N 2019 Phys. Rev. Lett. 122 040504Google Scholar
[32] Killoran N, Bromley T R, Arrazola J M, Schuld M, Quesada N, Lloyd S 2019 Phys. Rev. Res. 1 033063Google Scholar
[33] Kalajdzievski T, Weedbrook C, Rebentrost P 2018 Phys. Rev. A 97 062311Google Scholar
[34] Arrazola J M, Kalajdzievski T, Weedbrook C, Lloyd S 2019 Phys. Rev. A 100 032306Google Scholar
[35] Adesso G, Illuminati F 2007 J. Phys. A:Math. Theor. 40 7821Google Scholar
[36] 苏晓龙, 贾晓军, 彭堃墀 2016 物理学进展 36 101
Su X L, Jia X J, Peng K C 2016 Process phys. 36 101 (in Chinese)
[37] Fukui K, Takeda S 2022 J. Phys. B:At. Mol. Opt. Phys. 55 012001Google Scholar
[38] Gu M, Weedbrook C, Menicucci N C, Ralph T C, van Loock P 2009 Phys. Rev. A 79 062318Google Scholar
[39] Furusawa A, van Loock P 2011 Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing (Hoboken: Wiley) p16
[40] Lloyd S, Braunstein S L 1999 Phys. Rev. Lett. 82 1784Google Scholar
[41] Furusawa A, van Loock P 2011 Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing (Hoboken: Wiley) p58
[42] Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188Google Scholar
[43] Menicucci N C, van Loock P, Gu M, Weedbrook C, Ralph T C, Nielsen M A 2006 Phys. Rev. Lett. 97 110501Google Scholar
[44] Zhang J, Braunstein S L 2006 Phys. Rev. A 73 032318Google Scholar
[45] Hao S, Deng X, Liu Y, Su X, Xie C, Peng K 2021 Chin. Phys. B 30 060312Google Scholar
[46] 苏晓龙, 贾晓军, 谢常德, 彭堃墀 2010 物理 39 746
Su X L, Jia X J, Xie C D, Peng K C 2010 Physics 39 746
[47] 彭堃墀, 苏晓龙, 贾晓军, 谢常德 2012 山西大学学报 35 231Google Scholar
Peng K C, Su X L, Jia X J, Xie C D 2012 J. Shanxi Univ. 35 231Google Scholar
[48] Wang Y, Tian C, Su Q, Wang M, Su X 2019 Sci. Chin. Inf. Sci. 62 72501Google Scholar
[49] Su X, Wang M, Yan Z, Jia X, Xie C, Peng K 2020 Sci. Chin. Inf. Sci. 63 180503Google Scholar
[50] Menicucci N C, Flammia S T, van Loock P 2011 Phys. Rev. A 83 042335Google Scholar
[51] Su X, Tan A, Jia X, Zhang J, Xie C, Peng K 2007 Phys. Rev. Lett. 98 070502Google Scholar
[52] Yukawa M, Ukai R, van Loock P, Furusawa A 2008 Phys. Rev. A 78 012301Google Scholar
[53] Tan A, Wang Y, Jin X, Su X, Jia X, Zhang J, Xie C, Peng K 2008 Phys. Rev. A 78 013828Google Scholar
[54] Su X, Zhao Y, Hao S, Jia X, Xie C, Peng K 2012 Opt. Lett. 37 5178Google Scholar
[55] Pysher M, Miwa Y, Shahrokhshahi R, Bloomer R, Pfister O 2011 Phys. Rev. Lett. 107 030505Google Scholar
[56] Chen M, Menicucci N C, Pfister O 2014 Phys. Rev. Lett. 112 120505Google Scholar
[57] Roslund J, de Araújo R M, Jiang S, Fabre C, Treps N 2014 Nat. Photonics. 8 109Google Scholar
[58] Cai Y, Roslund J, Ferrini G, Arzani F, Xu X, Fabre C, Treps N 2017 Nat. Commun. 8 15645Google Scholar
[59] Menicucci N C 2011 Phys. Rev. A 83 062314Google Scholar
[60] Yokoyama S, Ukai R, Armstrong S C, Sornphiphatphong C, Kaji T, Suzuki S, Yoshikawa J I, Yonezawa H, Menicucci N C, Furusawa A 2013 Nat. Photonics 7 982Google Scholar
[61] Yoshikawa J I, Yokoyama S, Kaji T, Sornphiphatphong C, Shiozawa Y, Makino K, Furusawa A 2016 APL Photonics 1 060801Google Scholar
[62] Larsen M V, Guo X, Breum C R, Neergaard-Nielsen J S, Andersen U L 2019 Science 366 369Google Scholar
[63] Asavanant W, Shiozawa Y, Yokoyama S, et al. 2019 Science 366 373Google Scholar
[64] Raussendorf R, Harrington J 2007 Phys. Rev. Lett. 98 190504Google Scholar
[65] Raussendorf R, Harrington J, Goyal K 2007 New J. Phys. 9 199Google Scholar
[66] Fukui K, Asavanant W, Furusawa A 2020 Phys. Rev. A 102 032614Google Scholar
[67] Yoshikawa J I, Hayashi T, Akiyama T, Takei N, Huck A, Andersen U L, Furusawa A 2007 Phys. Rev. A 76 060301Google Scholar
[68] Yoshikawa J I, Miwa Y, Huck A, Andersen U L, van Loock P, Furusawa A 2008 Phys. Rev. Lett. 101 250501Google Scholar
[69] Miwa Y, Yoshikawa J I, van Loock P, Furusawa A 2009 Phys. Rev. A 80 050303Google Scholar
[70] Ukai R, Yokoyama S, Yoshikawa J I, van Loock P, Furusawa A 2011 Phys. Rev. Lett. 107 250501Google Scholar
[71] Ukai R, Iwata N, Shimokawa Y, Armstrong S C, Politi A, Yoshikawa J I, van Loock P, Furusawa A 2011 Phys. Rev. Lett. 106 240504Google Scholar
[72] Wang Y, Su X, Shen H, Tan A, Xie C, Peng K 2010 Phys. Rev. A 81 022311Google Scholar
[73] Hao S, Deng X, Su X, Jia X, Xie C, Peng K 2014 Phys. Rev. A 89 032311Google Scholar
[74] Su X, Hao S, Deng X, Ma L, Wang M, Jia X, Xie C, Peng K 2013 Nat. Commun. 4 2828Google Scholar
[75] Asavanant W, Charoensombutamon B, Yokoyama S, et al. 2021 Phys. Rev. Appl. 16 034005Google Scholar
[76] Larsen M V, Guo X, Breum C R, Neergaard-Nielsen J S, Andersen U L 2021 Nat. Phys. 17 1018Google Scholar
[77] Gottesman D, Kitaev A, Preskill J 2001 Phys. Rev. A 64 012310Google Scholar
[78] Miyata K, Ogawa H, Marek P, Filip R, Yonezawa H, Yoshikawa J I, Furusawa A 2016 Phys. Rev. A 93 022301Google Scholar
[79] Sabapathy K K, Weedbrook C 2018 Phys. Rev. A 97 062315Google Scholar
[80] Yukawa M, Miyata K, Yonezawa H, Marek P, Filip R, Furusawa A 2013 Phys. Rev. A 88 053816Google Scholar
[81] Masada G, Miyata K, Politi A, Hashimoto T, O’Brien J L, Furusawa A 2015 Nat. Photonics 9 316Google Scholar
[82] Yang Z, Jahanbozorgi M, Jeong D, Sun S, Pfister O, Lee H, Yi X 2021 Nat. Commun. 12 4781Google Scholar
[83] Dutt A, Luke K, Manipatruni S, Gaeta A L, Nussenzveig P, Lipson M 2015 Phys. Rev. Appl. 3 044005Google Scholar
[84] Zhao Y, Okawachi Y, Jang J K, Ji X, Lipson M, Gaeta A L 2020 Phys. Rev. Lett. 124 193601Google Scholar
[85] Vaidya V D, Morrison B, Helt L G, et al. 2020 Sci. Adv. 6 eaba9186Google Scholar
[86] Zhang Q Y, Xu P, Zhu S N 2018 Chin. Phys. B 27 054207Google Scholar
[87] Kaiser F, Fedrici B, Zavatta A, D’Auria V, Tanzilli S 2016 Optica 3 362Google Scholar
[88] Fürst J U, Strekalov D V, Elser D, Aiello A, Andersen U L, Marquardt Ch, Leuchs G 2011 Phys. Rev. Lett. 106 113901Google Scholar
[89] Lenzini F, Janousek J, Thearle O, Villa M, Haylock B, Kasture S, Cui L, Phan H P, Dao D V, Yonezawa H, Lam P K, Huntington E H, Lobino M 2018 Sci. Adv. 4 eaat9331Google Scholar
[90] Qi Y, Li Y 2020 Nanophotonics 9 1287Google Scholar
[91] Chen P K, Briggs I, Hou S, Fan L 2022 Opt. Lett. 47 1506Google Scholar
[92] Schrödinger E 1935 Naturwissenschaften 23 807Google Scholar
[93] Haroche S 2013 Rev. Mod. Phys. 85 1083Google Scholar
[94] Arndt M, Hornberger K 2014 Nat. Phys. 10 271Google Scholar
[95] Ralph T C, Gilchrist A, Milburn G J, Munro W J, Glancy S 2003 Phys. Rev. A 68 042319Google Scholar
[96] Jeong H, Kim M S 2002 Phys. Rev. A 65 042305Google Scholar
[97] Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503Google Scholar
[98] Sychev D V, Ulanov A E, Tiunov E S, Pushkina A A, Kuzhamuratov A, Novikov V, Lvovsky A I 2018 Nat. Commun. 9 3672Google Scholar
[99] Dakna M, Anhut T, Opatrnýn T, Knöll L, Welsch D G 1997 Phys. Rev. A 55 3184Google Scholar
[100] Ourjoumtsev A, Tualle-Brouri R, Laurat J, Grangier P 2006 Science 312 83Google Scholar
[101] Neergaard-Nielsen J S, Melholt Nielsen B, Hettich C, Mølmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604Google Scholar
[102] Wakui K, Takahashi H, Furusawa A, Sasaki M 2007 Opt. Express 15 3568Google Scholar
[103] Lee N, Benichi H, Takeno Y, Takeda S, Webb J, Huntington E, Furusawa A 2011 Science 332 330Google Scholar
[104] Marek P, Fiurášek J 2010 Phys. Rev. A 82 014304Google Scholar
[105] Tipsmark A, Dong R, Laghaout A, Marek P, Ježek M, Andersen U L 2011 Phys. Rev. A 84 050301Google Scholar
[106] Blandino R, Ferreyrol F, Barbieri M, Grangier P, Tualle-Brouri R 2012 New J. Phys. 14 013017Google Scholar
[107] Ourjoumtsev A, Ferreyrol F, Tualle-Brouri R, Grangier P 2009 Nat. Phys. 5 189Google Scholar
[108] Sychev D V, Novikov V A, Pirov K K, Simon C, Lvovsky A I 2019 Optica 6 1425Google Scholar
[109] Braunstein S L 1998 Nature 394 47Google Scholar
[110] Lloyd S, Slotine J J E 1998 Phys. Rev. Lett. 80 4088Google Scholar
[111] Braunstein S L 1998 Phys. Rev. Lett. 80 4084Google Scholar
[112] Walker T A, Braunstein S L 2010 Phys. Rev. A 81 062305Google Scholar
[113] Wilde M M, Krovi H, Brun T A 2007 Phys. Rev. A 76 052308Google Scholar
[114] Niset J, Andersen U L, Cerf N J 2008 Phys. Rev. Lett. 101 130503Google Scholar
[115] Niset J, Fiurášek J, Cerf N J 2009 Phys. Rev. Lett. 102 120501Google Scholar
[116] Aoki T, Takahashi G, Kajiya T, Yoshikawa J I, Braunstein S L, van Loock P, Furusawa A 2009 Nat. Phys. 5 541Google Scholar
[117] Lassen M, Berni A, Madsen L S, Filip R, Andersen U L 2013 Phys. Rev. Lett. 111 180502Google Scholar
[118] Hao S, Su X, Tian C, Xie C, Peng K 2015 Sci. Rep. 5 15462Google Scholar
[119] Ralph T C 2011 Phys. Rev. A 84 022339Google Scholar
[120] Glancy S, Knill E 2006 Phys. Rev. A 73 012325Google Scholar
[121] Albert V V, Noh K, Duivenvoorden K, Young D J, Brierley R T, Reinhold P, Vuillot C, Li L, Shen C, Girvin S M, Terhal B M, Jiang L 2018 Phys. Rev. A 97 032346Google Scholar
[122] Flühmann C, Nguyen T L, Marinelli M, Negnevitsky V, Mehta K, Home J P 2019 Nature 566 513Google Scholar
[123] Campagne-Ibarcq P, Eickbusch A, Touzard S, Zalys-Geller E, Frattini N E, Sivak V V, Reinhold P, Puri S, Shankar S, Schoelkopf R J, Frunzio L, Mirrahimi M, Devoret M H 2020 Nature 584 368Google Scholar
[124] Vasconcelos H M, Sanz L, Glancy S 2010 Opt. Lett. 35 3261Google Scholar
[125] Fukui K, Takeda S, Endo M, Asavanant W, Yoshikawa J I, van Loock P, Furusawa A 2022 Phys. Rev. Lett. 128 240503Google Scholar
[126] Su D, Myers C R, Sabapathy K K 2019 Phys. Rev. A 100 052301Google Scholar
[127] Fowler A G, Goyal K 2009 Quantum Inf. Comput. 9 727Google Scholar
[128] Raussendorf R, Harrington J, Goyal K 2006 Ann. Phys. 321 2242Google Scholar
[129] Stern A, Lindner N H 2013 Science 339 1179Google Scholar
[130] Zhang J, Xie C, Peng K, van Loock P 2008 Phys. Rev. A 78 052121Google Scholar
[131] Morimae T 2013 Phys. Rev. A 88 042311Google Scholar
[132] Menicucci N C, Baragiola B Q, Demarie T F, Brennen G K 2018 Phys. Rev. A 97 032345Google Scholar
[133] Milne D F, Korolkova N V, van Loock P 2012 Phys. Rev. A 85 052325Google Scholar
[134] Menicucci N C 2014 Phys. Rev. Lett. 112 120504Google Scholar
[135] Hao S, Wang M, Wang D, Su X 2021 Phys. Rev. A 103 052407Google Scholar
-
图 10 基于cluster态的连续变量拓扑误差修正方案 (a) 八组份拓扑结构连续变量cluster 纠缠态的图态表示[135]; (b) 产生八组份连续变量cluster 纠缠态的分束器网络[135]
Fig. 10. Scheme of topological error correction with CV a Gaussian cluster state: (a) The graph structure of the topological eight-partite CV cluster state; (b) the beam-splitter network for the preparation of the cluster state[135].
表 1 离散变量和连续变量量子逻辑门的比较[37]
Table 1. Comparison between quantum logical gates with describe variables and continuous variables[37].
离散变量 (qubits) 连续变量 (qumodes) 计算基矢 $ \{{ |0 \rangle }_{\mathrm{L}}, { |1 \rangle }_{\mathrm{L}} \} $ $ \{{{ |s \rangle }_{x}\}}_{\mathrm{s}\in \mathbb{R}} $ 共轭基矢 $ \big\{{{ |\pm \rangle }_{\mathrm{L}}=( |0 \rangle }_{\mathrm{L}}\pm { |1 \rangle }_{\mathrm{L}})/\sqrt{2} \big \} $ ${ \bigg\{ { |t \rangle }_{p}=\dfrac{1}{\sqrt{2\mathrm{\pi } } } \displaystyle\int_{-\infty }^{\infty }\mathrm{d}s{\mathrm{e} }^{\mathrm{i}st}{ |s \rangle }_{x} \bigg\} }_{t\in \mathbb{R} }$ 编码 $ { |\psi \rangle =\alpha |0 \rangle }_{\mathrm{L}}+\beta { |1 \rangle }_{\mathrm{L}} $$ ({ |\alpha |}^{2}+{ |\beta |}^{2}=1 $) $|\psi \rangle = \displaystyle\int_{-\infty }^{\infty }\mathrm{d}s\psi (s ){ |s \rangle }_{x} \bigg(\displaystyle\int_{-\infty }^{\infty }\mathrm{d}s{ |\psi (s ) |}^{2}=1 \bigg)$ 探测方式 光子探测 平衡零拍探测 量子逻辑门 Bit-flip: $ {\widehat{X} |0 \rangle }_{\mathrm{L}}={ |1 \rangle }_{\mathrm{L}}, {\widehat{X} |1 \rangle }_{\mathrm{L}}={ |0 \rangle }_{\mathrm{L}} $ x方向平移: $ \widehat{X} (v ){ |s \rangle }_{x}={ |s+v \rangle }_{x} $ Phase-flip: $ {\widehat{Z} |0 \rangle }_{\mathrm{L}}={ |0 \rangle }_{\mathrm{L}}, {\widehat{Z} |1 \rangle }_{\mathrm{L}}={- |1 \rangle }_{\mathrm{L}} $ p方向平移: $ \widehat{Z} (u ){ |t \rangle }_{p}={ |t+u \rangle }_{p} $ Hadamard门:$ {\widehat{H} |0 \rangle }_{\mathrm{L}}={ |+ \rangle }_{\mathrm{L}}, {\widehat{H} |1 \rangle }_{\mathrm{L}}={ |- \rangle }_{\mathrm{L}} $ 傅立叶变换: $\widehat{R} ( {\mathrm{\pi } }/{2} ){ |s \rangle }_{x}={ |s \rangle }_{p}, \widehat{R} ( {\mathrm{\pi } }/{2} ){ |t \rangle }_{p}={ |-t \rangle }_{x}$ 可控非门: $ {\widehat{CX} |0 \rangle }_{\mathrm{L}}{ |0 (1 ) \rangle }_{\mathrm{L}}={ |0 \rangle }_{\mathrm{L}}{ |0 (1 ) \rangle }_{\mathrm{L}} $ 可控X门: $ {\widehat{CX} |{s}_{1} \rangle }_{{q}_{1}}{ |{s}_{2} \rangle }_{{q}_{2}}={ |{s}_{1} \rangle }_{{q}_{1}}{ |{s}_{2}+{s}_{1} \rangle }_{{q}_{2}} $ $ {\widehat{CX} |1 \rangle }_{\mathrm{L}}{ |0 (1 ) \rangle }_{\mathrm{L}}={ |1 \rangle }_{\mathrm{L}}{ |1 (0 ) \rangle }_{\mathrm{L}} $ $ {\widehat{CX} |{t}_{1} \rangle }_{{p}_{1}}{ |{t}_{2} \rangle }_{{p}_{2}}={ |{t}_{1}-{t}_{2} \rangle }_{{p}_{1}}{ |{t}_{2} \rangle }_{{p}_{2}} $ -
[1] Shor P W 1994 Proceedings 35th Annual Symposium on Foundations of Computer Science Santa Fe, American, November 20–22, 1994
[2] Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar
[3] Lloyd S 1993 Science 261 1569Google Scholar
[4] Lloyd S 1994 Science 263 695Google Scholar
[5] Rarity J G, Ownes P C M, Tapster P R 1994 J. Mod. Opt. 41 2435Google Scholar
[6] Devoret M H, Schoelkopf R J 2013 Science 339 1169Google Scholar
[7] Gambetta J M, Chow J M, Steffen M 2017 NPJ Quantum Inf. 3 2Google Scholar
[8] Li Z Y, Yu H F, Tan X S, Zhao S P, Yu Y 2019 Chin. Phys. B 28 098505Google Scholar
[9] Gong M, Wang S, Zha C, et al. 2021 Science 372 948Google Scholar
[10] Huang H L, Wu D, Fan D, Zhu X 2020 Sci. Chin. Inf. Sci. 63 180501Google Scholar
[11] Pagano G, Bapat A, Becker P, Collins K S, De A, Hess P W, Kaplan H B, Kyprianidis A, Tan W L, Baldwin C, Brady L T, Deshpande A, Liu F, Jordan S, Gorshkov A V, Monroe C 2020 Proc. Natl. Acad. Sci. 117 25396Google Scholar
[12] Pino J M, Dreiling J M, Figgatt C, et al. 2021 Nature 592 209Google Scholar
[13] Watson T F, Philips S G J, Kawakami E, et al. 2018 Nature 555 633Google Scholar
[14] Hendrickx N W, Lawrie W I L, Russ M, et al. 2021 Nature 591 580Google Scholar
[15] Arrazola J M, Bergholm V, Brádler K, et al. 2021 Nature 591 54Google Scholar
[16] Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C L, Klimeck G, Rogge S, Coppersmith S N, Eriksson M A 2013 Rev. Mod. Phys. 85 961Google Scholar
[17] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar
[18] Yan Z, Zhang Y R, Gong M, et al. 2019 Science 364 753Google Scholar
[19] Wu Y, Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501Google Scholar
[20] Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460Google Scholar
[21] Zhong H S, Deng Y H, Qin J, et al. 2021 Phys. Rev. Lett. 127 180502Google Scholar
[22] van Loock P 2011 Laser Photonics Rev. 5 167Google Scholar
[23] Andersen U L, Neergaard-Nielsen J S, van Loock P, Furusawa A 2015 Nat. Phys. 11 713Google Scholar
[24] Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513Google Scholar
[25] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621Google Scholar
[26] Huh J, Guerreschi G G, Peropadre B, McClean J R, Aspuru-Guzik A 2015 Nat. Photonics 9 615Google Scholar
[27] Hamilton C S, Kruse R, Sansoni L, Barkhofen S, Silberhorn C, Jex I 2017 Phys. Rev. Lett. 119 170501Google Scholar
[28] Arrazola J M, Bromley T R 2018 Phys. Rev. Lett. 121 030503Google Scholar
[29] Banchi L, Fingerhuth M, Babej T, Ing C, Arrazola J M 2020 Sci. Adv. 6 eaax1950Google Scholar
[30] Lau H K, Pooser R, Siopsis G, Weedbrook C 2017 Phys. Rev. Lett. 118 080501Google Scholar
[31] Schuld M, Killoran N 2019 Phys. Rev. Lett. 122 040504Google Scholar
[32] Killoran N, Bromley T R, Arrazola J M, Schuld M, Quesada N, Lloyd S 2019 Phys. Rev. Res. 1 033063Google Scholar
[33] Kalajdzievski T, Weedbrook C, Rebentrost P 2018 Phys. Rev. A 97 062311Google Scholar
[34] Arrazola J M, Kalajdzievski T, Weedbrook C, Lloyd S 2019 Phys. Rev. A 100 032306Google Scholar
[35] Adesso G, Illuminati F 2007 J. Phys. A:Math. Theor. 40 7821Google Scholar
[36] 苏晓龙, 贾晓军, 彭堃墀 2016 物理学进展 36 101
Su X L, Jia X J, Peng K C 2016 Process phys. 36 101 (in Chinese)
[37] Fukui K, Takeda S 2022 J. Phys. B:At. Mol. Opt. Phys. 55 012001Google Scholar
[38] Gu M, Weedbrook C, Menicucci N C, Ralph T C, van Loock P 2009 Phys. Rev. A 79 062318Google Scholar
[39] Furusawa A, van Loock P 2011 Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing (Hoboken: Wiley) p16
[40] Lloyd S, Braunstein S L 1999 Phys. Rev. Lett. 82 1784Google Scholar
[41] Furusawa A, van Loock P 2011 Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing (Hoboken: Wiley) p58
[42] Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188Google Scholar
[43] Menicucci N C, van Loock P, Gu M, Weedbrook C, Ralph T C, Nielsen M A 2006 Phys. Rev. Lett. 97 110501Google Scholar
[44] Zhang J, Braunstein S L 2006 Phys. Rev. A 73 032318Google Scholar
[45] Hao S, Deng X, Liu Y, Su X, Xie C, Peng K 2021 Chin. Phys. B 30 060312Google Scholar
[46] 苏晓龙, 贾晓军, 谢常德, 彭堃墀 2010 物理 39 746
Su X L, Jia X J, Xie C D, Peng K C 2010 Physics 39 746
[47] 彭堃墀, 苏晓龙, 贾晓军, 谢常德 2012 山西大学学报 35 231Google Scholar
Peng K C, Su X L, Jia X J, Xie C D 2012 J. Shanxi Univ. 35 231Google Scholar
[48] Wang Y, Tian C, Su Q, Wang M, Su X 2019 Sci. Chin. Inf. Sci. 62 72501Google Scholar
[49] Su X, Wang M, Yan Z, Jia X, Xie C, Peng K 2020 Sci. Chin. Inf. Sci. 63 180503Google Scholar
[50] Menicucci N C, Flammia S T, van Loock P 2011 Phys. Rev. A 83 042335Google Scholar
[51] Su X, Tan A, Jia X, Zhang J, Xie C, Peng K 2007 Phys. Rev. Lett. 98 070502Google Scholar
[52] Yukawa M, Ukai R, van Loock P, Furusawa A 2008 Phys. Rev. A 78 012301Google Scholar
[53] Tan A, Wang Y, Jin X, Su X, Jia X, Zhang J, Xie C, Peng K 2008 Phys. Rev. A 78 013828Google Scholar
[54] Su X, Zhao Y, Hao S, Jia X, Xie C, Peng K 2012 Opt. Lett. 37 5178Google Scholar
[55] Pysher M, Miwa Y, Shahrokhshahi R, Bloomer R, Pfister O 2011 Phys. Rev. Lett. 107 030505Google Scholar
[56] Chen M, Menicucci N C, Pfister O 2014 Phys. Rev. Lett. 112 120505Google Scholar
[57] Roslund J, de Araújo R M, Jiang S, Fabre C, Treps N 2014 Nat. Photonics. 8 109Google Scholar
[58] Cai Y, Roslund J, Ferrini G, Arzani F, Xu X, Fabre C, Treps N 2017 Nat. Commun. 8 15645Google Scholar
[59] Menicucci N C 2011 Phys. Rev. A 83 062314Google Scholar
[60] Yokoyama S, Ukai R, Armstrong S C, Sornphiphatphong C, Kaji T, Suzuki S, Yoshikawa J I, Yonezawa H, Menicucci N C, Furusawa A 2013 Nat. Photonics 7 982Google Scholar
[61] Yoshikawa J I, Yokoyama S, Kaji T, Sornphiphatphong C, Shiozawa Y, Makino K, Furusawa A 2016 APL Photonics 1 060801Google Scholar
[62] Larsen M V, Guo X, Breum C R, Neergaard-Nielsen J S, Andersen U L 2019 Science 366 369Google Scholar
[63] Asavanant W, Shiozawa Y, Yokoyama S, et al. 2019 Science 366 373Google Scholar
[64] Raussendorf R, Harrington J 2007 Phys. Rev. Lett. 98 190504Google Scholar
[65] Raussendorf R, Harrington J, Goyal K 2007 New J. Phys. 9 199Google Scholar
[66] Fukui K, Asavanant W, Furusawa A 2020 Phys. Rev. A 102 032614Google Scholar
[67] Yoshikawa J I, Hayashi T, Akiyama T, Takei N, Huck A, Andersen U L, Furusawa A 2007 Phys. Rev. A 76 060301Google Scholar
[68] Yoshikawa J I, Miwa Y, Huck A, Andersen U L, van Loock P, Furusawa A 2008 Phys. Rev. Lett. 101 250501Google Scholar
[69] Miwa Y, Yoshikawa J I, van Loock P, Furusawa A 2009 Phys. Rev. A 80 050303Google Scholar
[70] Ukai R, Yokoyama S, Yoshikawa J I, van Loock P, Furusawa A 2011 Phys. Rev. Lett. 107 250501Google Scholar
[71] Ukai R, Iwata N, Shimokawa Y, Armstrong S C, Politi A, Yoshikawa J I, van Loock P, Furusawa A 2011 Phys. Rev. Lett. 106 240504Google Scholar
[72] Wang Y, Su X, Shen H, Tan A, Xie C, Peng K 2010 Phys. Rev. A 81 022311Google Scholar
[73] Hao S, Deng X, Su X, Jia X, Xie C, Peng K 2014 Phys. Rev. A 89 032311Google Scholar
[74] Su X, Hao S, Deng X, Ma L, Wang M, Jia X, Xie C, Peng K 2013 Nat. Commun. 4 2828Google Scholar
[75] Asavanant W, Charoensombutamon B, Yokoyama S, et al. 2021 Phys. Rev. Appl. 16 034005Google Scholar
[76] Larsen M V, Guo X, Breum C R, Neergaard-Nielsen J S, Andersen U L 2021 Nat. Phys. 17 1018Google Scholar
[77] Gottesman D, Kitaev A, Preskill J 2001 Phys. Rev. A 64 012310Google Scholar
[78] Miyata K, Ogawa H, Marek P, Filip R, Yonezawa H, Yoshikawa J I, Furusawa A 2016 Phys. Rev. A 93 022301Google Scholar
[79] Sabapathy K K, Weedbrook C 2018 Phys. Rev. A 97 062315Google Scholar
[80] Yukawa M, Miyata K, Yonezawa H, Marek P, Filip R, Furusawa A 2013 Phys. Rev. A 88 053816Google Scholar
[81] Masada G, Miyata K, Politi A, Hashimoto T, O’Brien J L, Furusawa A 2015 Nat. Photonics 9 316Google Scholar
[82] Yang Z, Jahanbozorgi M, Jeong D, Sun S, Pfister O, Lee H, Yi X 2021 Nat. Commun. 12 4781Google Scholar
[83] Dutt A, Luke K, Manipatruni S, Gaeta A L, Nussenzveig P, Lipson M 2015 Phys. Rev. Appl. 3 044005Google Scholar
[84] Zhao Y, Okawachi Y, Jang J K, Ji X, Lipson M, Gaeta A L 2020 Phys. Rev. Lett. 124 193601Google Scholar
[85] Vaidya V D, Morrison B, Helt L G, et al. 2020 Sci. Adv. 6 eaba9186Google Scholar
[86] Zhang Q Y, Xu P, Zhu S N 2018 Chin. Phys. B 27 054207Google Scholar
[87] Kaiser F, Fedrici B, Zavatta A, D’Auria V, Tanzilli S 2016 Optica 3 362Google Scholar
[88] Fürst J U, Strekalov D V, Elser D, Aiello A, Andersen U L, Marquardt Ch, Leuchs G 2011 Phys. Rev. Lett. 106 113901Google Scholar
[89] Lenzini F, Janousek J, Thearle O, Villa M, Haylock B, Kasture S, Cui L, Phan H P, Dao D V, Yonezawa H, Lam P K, Huntington E H, Lobino M 2018 Sci. Adv. 4 eaat9331Google Scholar
[90] Qi Y, Li Y 2020 Nanophotonics 9 1287Google Scholar
[91] Chen P K, Briggs I, Hou S, Fan L 2022 Opt. Lett. 47 1506Google Scholar
[92] Schrödinger E 1935 Naturwissenschaften 23 807Google Scholar
[93] Haroche S 2013 Rev. Mod. Phys. 85 1083Google Scholar
[94] Arndt M, Hornberger K 2014 Nat. Phys. 10 271Google Scholar
[95] Ralph T C, Gilchrist A, Milburn G J, Munro W J, Glancy S 2003 Phys. Rev. A 68 042319Google Scholar
[96] Jeong H, Kim M S 2002 Phys. Rev. A 65 042305Google Scholar
[97] Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503Google Scholar
[98] Sychev D V, Ulanov A E, Tiunov E S, Pushkina A A, Kuzhamuratov A, Novikov V, Lvovsky A I 2018 Nat. Commun. 9 3672Google Scholar
[99] Dakna M, Anhut T, Opatrnýn T, Knöll L, Welsch D G 1997 Phys. Rev. A 55 3184Google Scholar
[100] Ourjoumtsev A, Tualle-Brouri R, Laurat J, Grangier P 2006 Science 312 83Google Scholar
[101] Neergaard-Nielsen J S, Melholt Nielsen B, Hettich C, Mølmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604Google Scholar
[102] Wakui K, Takahashi H, Furusawa A, Sasaki M 2007 Opt. Express 15 3568Google Scholar
[103] Lee N, Benichi H, Takeno Y, Takeda S, Webb J, Huntington E, Furusawa A 2011 Science 332 330Google Scholar
[104] Marek P, Fiurášek J 2010 Phys. Rev. A 82 014304Google Scholar
[105] Tipsmark A, Dong R, Laghaout A, Marek P, Ježek M, Andersen U L 2011 Phys. Rev. A 84 050301Google Scholar
[106] Blandino R, Ferreyrol F, Barbieri M, Grangier P, Tualle-Brouri R 2012 New J. Phys. 14 013017Google Scholar
[107] Ourjoumtsev A, Ferreyrol F, Tualle-Brouri R, Grangier P 2009 Nat. Phys. 5 189Google Scholar
[108] Sychev D V, Novikov V A, Pirov K K, Simon C, Lvovsky A I 2019 Optica 6 1425Google Scholar
[109] Braunstein S L 1998 Nature 394 47Google Scholar
[110] Lloyd S, Slotine J J E 1998 Phys. Rev. Lett. 80 4088Google Scholar
[111] Braunstein S L 1998 Phys. Rev. Lett. 80 4084Google Scholar
[112] Walker T A, Braunstein S L 2010 Phys. Rev. A 81 062305Google Scholar
[113] Wilde M M, Krovi H, Brun T A 2007 Phys. Rev. A 76 052308Google Scholar
[114] Niset J, Andersen U L, Cerf N J 2008 Phys. Rev. Lett. 101 130503Google Scholar
[115] Niset J, Fiurášek J, Cerf N J 2009 Phys. Rev. Lett. 102 120501Google Scholar
[116] Aoki T, Takahashi G, Kajiya T, Yoshikawa J I, Braunstein S L, van Loock P, Furusawa A 2009 Nat. Phys. 5 541Google Scholar
[117] Lassen M, Berni A, Madsen L S, Filip R, Andersen U L 2013 Phys. Rev. Lett. 111 180502Google Scholar
[118] Hao S, Su X, Tian C, Xie C, Peng K 2015 Sci. Rep. 5 15462Google Scholar
[119] Ralph T C 2011 Phys. Rev. A 84 022339Google Scholar
[120] Glancy S, Knill E 2006 Phys. Rev. A 73 012325Google Scholar
[121] Albert V V, Noh K, Duivenvoorden K, Young D J, Brierley R T, Reinhold P, Vuillot C, Li L, Shen C, Girvin S M, Terhal B M, Jiang L 2018 Phys. Rev. A 97 032346Google Scholar
[122] Flühmann C, Nguyen T L, Marinelli M, Negnevitsky V, Mehta K, Home J P 2019 Nature 566 513Google Scholar
[123] Campagne-Ibarcq P, Eickbusch A, Touzard S, Zalys-Geller E, Frattini N E, Sivak V V, Reinhold P, Puri S, Shankar S, Schoelkopf R J, Frunzio L, Mirrahimi M, Devoret M H 2020 Nature 584 368Google Scholar
[124] Vasconcelos H M, Sanz L, Glancy S 2010 Opt. Lett. 35 3261Google Scholar
[125] Fukui K, Takeda S, Endo M, Asavanant W, Yoshikawa J I, van Loock P, Furusawa A 2022 Phys. Rev. Lett. 128 240503Google Scholar
[126] Su D, Myers C R, Sabapathy K K 2019 Phys. Rev. A 100 052301Google Scholar
[127] Fowler A G, Goyal K 2009 Quantum Inf. Comput. 9 727Google Scholar
[128] Raussendorf R, Harrington J, Goyal K 2006 Ann. Phys. 321 2242Google Scholar
[129] Stern A, Lindner N H 2013 Science 339 1179Google Scholar
[130] Zhang J, Xie C, Peng K, van Loock P 2008 Phys. Rev. A 78 052121Google Scholar
[131] Morimae T 2013 Phys. Rev. A 88 042311Google Scholar
[132] Menicucci N C, Baragiola B Q, Demarie T F, Brennen G K 2018 Phys. Rev. A 97 032345Google Scholar
[133] Milne D F, Korolkova N V, van Loock P 2012 Phys. Rev. A 85 052325Google Scholar
[134] Menicucci N C 2014 Phys. Rev. Lett. 112 120504Google Scholar
[135] Hao S, Wang M, Wang D, Su X 2021 Phys. Rev. A 103 052407Google Scholar
计量
- 文章访问数: 6617
- PDF下载量: 395
- 被引次数: 0