Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of nano-nucleation sites assisted crystallization on performance of perovskite photodetector

Sun Xue Huang Feng Liu Gui-Xiong Su Zi-Sheng

Citation:

Effect of nano-nucleation sites assisted crystallization on performance of perovskite photodetector

Sun Xue, Huang Feng, Liu Gui-Xiong, Su Zi-Sheng
PDF
HTML
Get Citation
  • Photodetector occupies an important position in the sensor family, but most of the photoelectric conversion materials of photodetectors are inorganic semiconductors, such as GaAs, GaN, Ge and Si, these inorganic semiconductors are usually prepared by complicated methods and high cost, and furthermore, they have poor mechanical flexibility. Organic-inorganic hybrid perovskite materials serving as visible-light sensitizers have the advantages of balanced electron and hole mobilities, adjustable bandgaps, high absorption coefficients, low temperature solution preparation, which make the materials a suitable candidate for inorganic semiconductors.For planar photodetectors, carriers have greater probabilities to be trapped by the defects in the perovskite films, therefore it is important to fabricate a high-quality perovskite film. However, owing to the low formation energy of perovskite crystals, defects prove to occur on the film surface and grain boundaries, which aggravate the performance of perovskite optoelectronic devices. In this work, we introduce a small quantity of graphene oxide nanosheets (GOSs) on bare glass substrate as effective nucleation sites of perovskite crystals. Owing to the extremely low density of GOSs and large exposed glass basement, the GOSs cannot be regarded as an interface layer. The existence of GOSs on smooth substance reduces the perovskite nucleation barrier, leading to a more preferential crystal growth in these locations, and binds tightly with glass substrate, which passivates the defects efficiently. Meanwhile, the element of O in the GOSs can create Pb–O bond with Pb in the CH3NH3PbI3, further improving the crystal of perovskite. On this basis, planner perovskite photodetector with a structure of glass/GOSs/CH3NH3PbI3/MoO3/Au is fabricated. By adjusting the concentration of GOSs deionized water dispersion under the same spin-coating condition, the photoelectric conversion performance of perovskite photodetector is enhanced. Under the influence of the optimal concentration of GOSs, photocurrent of the champion photodetector (1.15 × 10–6 A) is an order of magnitude higher than that of reference device without GOSs modified (3.58 × 10–7 A) at 3 V bias, leading to a high ON/OFF current ratio of 5.22 × 103. Besides, improved photoresponse speed is also found in the champion device, with a rise time of 9.6 ms and a decay time of 6.6 ms, respectively. The enhanced performance of GOSs modified perovskite photodetector can be attributed to the significantly reduced defects bringing about an enhanced charge separation and collection performance in the CH3NH3PbI3 films.By introducing extremely low quantity GOSs as the effective perovskite crystal nucleation sites, the perovskite crystallization and thin film can be effectively improved, leading to a positive effect on the performance of perovskite photodetector. This method has a certain universality, and therefore it has a reference value for other structures of perovskite photoelectric devices.
      Corresponding author: Su Zi-Sheng, suzs@qztc.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2020J01778).
    [1]

    Šagátová A, Zaťko B, Nečas V, Dubecký F, Anh T L, Sedlačková K, Boháček P, Zápražný Z 2018 Appl. Surf. Sci. 461 3Google Scholar

    [2]

    Tian H J, Hu A Q, Liu Q L, He X Y, Guo X 2020 Adv. Opt. Mater. 8 1901741Google Scholar

    [3]

    Wu J H, Yang Z W, Qiu C Y, Zhang Y J, Wu Z Q, Yang J L, Lu Y H, Li J F, Yang D X, Hao R, Li E P, Yu G L, Lin S S 2018 Nanoscale 10 8023Google Scholar

    [4]

    Gundimeda A, Krishna S, Aggarwal N, Sharma A, Sharma N D, Maurya K K, Husale S, Gupta G 2017 Appl. Phys. Lett. 110 103507Google Scholar

    [5]

    Liu L, Yang C, Patanè A, Yu Z, Yan F G, Wang K Y, Lu H X, Li J M, Zhao L X 2017 Nanoscale 9 8142Google Scholar

    [6]

    Takenaka M, Morii K, Sugiyama M, Nakano Y, Takagi S 2012 Opt. Express 20 8718Google Scholar

    [7]

    Hössbacher C, Salamin Y, Fedoryshyn Y, et al. 2017 IEEE Photonics Technol. Lett. 29 1760Google Scholar

    [8]

    Berencén Y, Prucnal S, Liu F, Skorupa I, Hübner R, Rebohle L, Zhou S Q, Schneider H, Helm M, Skorupa W 2017 Sci. Rep. 7 1Google Scholar

    [9]

    Vivien L, Polzer A, Marris-Morini D, Osmond J, Hartmann J M, Crozat P, Cassan E, Kopp C, Zimmermann H, Fédéli J M 2012 Opt. Express 20 1096Google Scholar

    [10]

    Yang J, Pi M Y, Zhang D K, Tang X S, Du J 2021 Chin. J. Lumin. 42 755Google Scholar

    [11]

    Gayen R N, Paul R, Biswas S 2020 Appl. Surf. Sci. 533 147149Google Scholar

    [12]

    Ozel K, Yildiz A 2021 Phys. Status. Solidi RRL 15 2100085Google Scholar

    [13]

    Chen W, Tang H, Chen Y, Heger J E, Li N, Kreuzer L P, Xie Y, Li D P, Anthony C, Pikramenou Z, Ng W K, Sun X W, Wang K, Müller-Buschbaum, P 2020 Nano Energy 78 105254Google Scholar

    [14]

    Wang Y D, Liu Y L, Cao S K, Wang J Z 2021 J. Mater. Chem. C 9 5302Google Scholar

    [15]

    柴磊, 钟敏 2016 65 237902Google Scholar

    Chai L, Zhong M 2016 Acta Phys. Sin. 65 237902Google Scholar

    [16]

    Qu Z H, Ma F, Zhao Y, Chu X B, Yu S Q, You J B 2021 Chin. Phys. Lett. 38 107801Google Scholar

    [17]

    Wang H, Kim D H 2017 Chem. Soc. Rev. 46 5204Google Scholar

    [18]

    张钰, 周欢萍 2019 68 158804Google Scholar

    Zhang Y, Zhou H P 2019 Acta Phys. Sin. 68 158804Google Scholar

    [19]

    Zhu H L, Liang Z, Huo Z, Ng W K, Mao J, Wong K S, Yin W J, Choy W C H 2018 Adv. Funct. Mater. 28 1706068Google Scholar

    [20]

    Li Y, Li Y, Shi J, Zhang H Y, Wu J H, Li D M, Luo Y H, Wu H J, Meng Q B 2018 Adv. Funct. Mater. 28 1705220Google Scholar

    [21]

    Wang T, Lian G, Huang L P, Zhu F, Cui D L, Wang Q L, Meng Q B, Jiang H H, Zhou G J, Wong C P 2019 Nano Energy 64 103914Google Scholar

    [22]

    Li D, Müller M B, Gilje S, Kaner R B, Wallace G G 2008 Nat. Nanotechnol. 3 101Google Scholar

    [23]

    Yang X, Qiu L, Cheng C, Wu Y Z, Ma Z F, Li D 2011 Angew. Chem. Int. Ed. 50 7325Google Scholar

    [24]

    Georgakilas V, Tiwari J N, Kemp K C, Perman J A, Bourlinos A B, Kim K S, Zboril R 2016 Chem. Rev. 116 5464Google Scholar

    [25]

    Ye S Y, Rao H X, Yan W B, Li Y H, Sun W H, Peng H T, Liu Z W, Bian Z Q, Li Y F, Huang C H 2016 Adv. Mater. 28 9648Google Scholar

    [26]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seol S I 2014 Nat. Mater. 13 897Google Scholar

    [27]

    Wang Z K, Li M, Yuan D X, Shi X B, Ma H, Liao L S 2015 ACS Appl. Mater. Interfaces 7 9645Google Scholar

    [28]

    Liu L, Xi Q Y, Gao G, Yang W, Zhou H, Zhao Y X, Wu C Q, Wang L D, Xu J W 2016 Sol. Energy Mater. Sol. Cells 157 937Google Scholar

    [29]

    Li W Z, Dong H P, Guo X D, Li N, Li J W, Niu G D, Wang L D 2014 J. Mater. Chem. A 2 20105Google Scholar

    [30]

    Kröger M, Hamwi S, Meyer J, Riedl T, Kowalsky W, Kahn A 2009 Appl. Phys. Lett. 95 251

    [31]

    Greiner M T, Helander M G, Tang W M, Wang Z B, Qiu J, Lu Z H 2012 Nat. Mater. 11 76Google Scholar

    [32]

    Wang Y, Song Q G, Lin T, Fu Y, Sun X, Chu B, Jin F M, Zhao H F, Li W L, Su Z S, Li Y T 2017 Org. Electron. 49 355Google Scholar

    [33]

    Afzal A M, Bae I G, Aggarwal Y, Park J, Jeong H R, Choi E H, Park B 2021 Sci. Rep. 11 1Google Scholar

    [34]

    Hamilton M C, Martin S, Kanicki J 2004 IEEE Trans. Electron. Devices 51 887

    [35]

    Khan A A, Azam M, Eric D, Liang G X, Yu Z N 2020 J. Mater. Chem. C 8 2880Google Scholar

    [36]

    Wei Y Z, Feng G T, Mao P, Luan Y G, Zhuang J, Chen N L, Yang H X, Li W W, Yang S Y, Wang J Z 2020 ACS Appl. Mater. Interfaces 12 8826Google Scholar

    [37]

    Shan C W, Meng F, Yu J H, Wang Z X, Li W H, Fan D Y, Chen R, Ma H B, Li G Q, Kyaw A K K 2021 J. Mater. Chem. C 9 7632Google Scholar

    [38]

    Srivastava A, Jit S, Tripathi S 2021 IEEE Trans. Electron. Devices 68 IEEE Trans. Electron. Devices

    [39]

    Reddy K C S, Selamneni V, Rao M G S, Meza-Arroyo J, Sahatiya P, Ramirez-Bon R 2021 Appl. Surf. Sci. 568 150944Google Scholar

    [40]

    Dutta A, Medda A, Bera R, Sarkar K, Sain S, Kumar P, Patra A 2020 ACS Appl. Nano Mater. 3 4717

    [41]

    Bristow H, Jacoutot P, Scaccabarozzi A D, et al. 2020 ACS Appl. Mater. Interfaces 12 48836Google Scholar

  • 图 1  (a) 空白硅片以及 (b) 0.025, (c) 0.050, (d) 0.100 mg/mL GOSs分散液沉积在硅片表面的形貌

    Figure 1.  The morphology of (a) bare silicon wafer and (b) 0.025, (c) 0.050, (d) 0.100 mg/ mL GOSs dispersion deposited on the surface of silicon wafer.

    图 2  (a) G0, (b) G0.025, (c) G0.05和(d) G0.1上生长的钙钛矿薄膜的平面扫描SEM照片

    Figure 2.  Top-view SEM images of the CH3NH3PbI3 films on (a) G0, (b) G0.025, (c) G0.05 and (d) G0.1

    图 3  (a) G0和(b) G0.05上生长的钙钛矿薄膜的断面扫描SEM照片

    Figure 3.  Cross-sectional SEM images of the CH3NH3PbI3 films on (a) G0 and (b) G0.05

    图 4  (a) 钙钛矿薄膜在G0, G0.025, G0.05以及G0.1上的XRD图谱; (b) 相应样品在14.2°和28.5°位置衍射峰放大图

    Figure 4.  (a) XRD patterns of the CH3NH3PbI3 films on G0, G0.025, G0.05 and G0.1; (b) enlarged diffraction peaks at 14.2° and 28.5° of the corresponding samples.

    图 5  沉积在G0, G0.025, G0.05以及G0.1上的CH3NH3PbI3光吸收谱. 图中同时给出G0.1放大30倍的吸收光谱

    Figure 5.  Absorbance spectra of the CH3NH3PbI3 films deposited on G0, G0.025, G0.05 and G0.1. The absorption spectrum of G0.1 amplified by 30 is also shown in the figure.

    图 6  钙钛矿光电探测器的(a)结构示意图和(b)器件实物照片

    Figure 6.  (a) Schematic structure and (b) picture of the perovskite photodetector.

    图 7  (a)光照及(b)黑暗条件下G0, G0.025, G0.05和G0.1上制备的钙钛矿探测器的I-V曲线

    Figure 7.  I-V curves of the photodetectors fabricated on G0, G0.025, G0.05 and G0.1 under (a) solar simulator irradiation and (b) dark, respectively.

    图 8  分别沉积在G0和G0.05上的钙钛矿光电探测器的RD*

    Figure 8.  The R and D* of perovskite photodetectors fabricated on G0 and G0.05, respectively.

    图 9  G0和G0.05上制备的钙钛矿光电探测器的5个周期光响应行为

    Figure 9.  Five cycles photoresponse behavious of the perovskite photodetectors fabricated on G0 and G0.05.

    表 1  不同基底上生长的钙钛矿薄膜XRD衍射峰半峰宽

    Table 1.  FWHM of the CH3NH3PbI3 XRD diffraction peaks deposited on different substrates.

    FWHM/(°)
    14.228.5
    G0/CH3NH3PbI30.1330.146
    G0.025/CH3NH3PbI30.1130.104
    G0.05/CH3NH3PbI30.1120.099
    G0.1/CH3NH3PbI30.1210.115
    DownLoad: CSV

    表 2  溶液法制备的可见光探测器性能

    Table 2.  Performance of visible light detector prepared by solution method.

    材料制备方法开关比/103响应度/(A·W–1)探测率/Jones响应时间Ref.
    Cs0.1FA0.2MA0.7Pb(I0.9Cl0.1)3-F4TCNQ旋涂6.945.4530 ms/600 ms[35]
    (BA)2(MA)n1PbnI3n+1旋涂1.3827.063.53 ms/3.78 ms[36]
    CH3NH3PbI3旋涂0.478.2 × 101218 ns[37]
    CH3NH3PbI3旋涂5.221.712.04 × 10149.6 ms/6.6 msThis work
    ZnO/pentacene旋涂0.362.17 × 1014[38]
    p-NiO/n-CdS水热法/旋涂~0.0052.60 × 10–29.21 × 1093.5 s[39]
    CdSe旋涂4.70.164 × 1011107 ms/110 ms[40]
    PTQ10∶O-IDTBR刮刀涂布0.033.3 × 101120 μs/25 μs[41]
    PTQ10∶O-FBR0.349.6 × 101212 μs/15 μs
    DownLoad: CSV
    Baidu
  • [1]

    Šagátová A, Zaťko B, Nečas V, Dubecký F, Anh T L, Sedlačková K, Boháček P, Zápražný Z 2018 Appl. Surf. Sci. 461 3Google Scholar

    [2]

    Tian H J, Hu A Q, Liu Q L, He X Y, Guo X 2020 Adv. Opt. Mater. 8 1901741Google Scholar

    [3]

    Wu J H, Yang Z W, Qiu C Y, Zhang Y J, Wu Z Q, Yang J L, Lu Y H, Li J F, Yang D X, Hao R, Li E P, Yu G L, Lin S S 2018 Nanoscale 10 8023Google Scholar

    [4]

    Gundimeda A, Krishna S, Aggarwal N, Sharma A, Sharma N D, Maurya K K, Husale S, Gupta G 2017 Appl. Phys. Lett. 110 103507Google Scholar

    [5]

    Liu L, Yang C, Patanè A, Yu Z, Yan F G, Wang K Y, Lu H X, Li J M, Zhao L X 2017 Nanoscale 9 8142Google Scholar

    [6]

    Takenaka M, Morii K, Sugiyama M, Nakano Y, Takagi S 2012 Opt. Express 20 8718Google Scholar

    [7]

    Hössbacher C, Salamin Y, Fedoryshyn Y, et al. 2017 IEEE Photonics Technol. Lett. 29 1760Google Scholar

    [8]

    Berencén Y, Prucnal S, Liu F, Skorupa I, Hübner R, Rebohle L, Zhou S Q, Schneider H, Helm M, Skorupa W 2017 Sci. Rep. 7 1Google Scholar

    [9]

    Vivien L, Polzer A, Marris-Morini D, Osmond J, Hartmann J M, Crozat P, Cassan E, Kopp C, Zimmermann H, Fédéli J M 2012 Opt. Express 20 1096Google Scholar

    [10]

    Yang J, Pi M Y, Zhang D K, Tang X S, Du J 2021 Chin. J. Lumin. 42 755Google Scholar

    [11]

    Gayen R N, Paul R, Biswas S 2020 Appl. Surf. Sci. 533 147149Google Scholar

    [12]

    Ozel K, Yildiz A 2021 Phys. Status. Solidi RRL 15 2100085Google Scholar

    [13]

    Chen W, Tang H, Chen Y, Heger J E, Li N, Kreuzer L P, Xie Y, Li D P, Anthony C, Pikramenou Z, Ng W K, Sun X W, Wang K, Müller-Buschbaum, P 2020 Nano Energy 78 105254Google Scholar

    [14]

    Wang Y D, Liu Y L, Cao S K, Wang J Z 2021 J. Mater. Chem. C 9 5302Google Scholar

    [15]

    柴磊, 钟敏 2016 65 237902Google Scholar

    Chai L, Zhong M 2016 Acta Phys. Sin. 65 237902Google Scholar

    [16]

    Qu Z H, Ma F, Zhao Y, Chu X B, Yu S Q, You J B 2021 Chin. Phys. Lett. 38 107801Google Scholar

    [17]

    Wang H, Kim D H 2017 Chem. Soc. Rev. 46 5204Google Scholar

    [18]

    张钰, 周欢萍 2019 68 158804Google Scholar

    Zhang Y, Zhou H P 2019 Acta Phys. Sin. 68 158804Google Scholar

    [19]

    Zhu H L, Liang Z, Huo Z, Ng W K, Mao J, Wong K S, Yin W J, Choy W C H 2018 Adv. Funct. Mater. 28 1706068Google Scholar

    [20]

    Li Y, Li Y, Shi J, Zhang H Y, Wu J H, Li D M, Luo Y H, Wu H J, Meng Q B 2018 Adv. Funct. Mater. 28 1705220Google Scholar

    [21]

    Wang T, Lian G, Huang L P, Zhu F, Cui D L, Wang Q L, Meng Q B, Jiang H H, Zhou G J, Wong C P 2019 Nano Energy 64 103914Google Scholar

    [22]

    Li D, Müller M B, Gilje S, Kaner R B, Wallace G G 2008 Nat. Nanotechnol. 3 101Google Scholar

    [23]

    Yang X, Qiu L, Cheng C, Wu Y Z, Ma Z F, Li D 2011 Angew. Chem. Int. Ed. 50 7325Google Scholar

    [24]

    Georgakilas V, Tiwari J N, Kemp K C, Perman J A, Bourlinos A B, Kim K S, Zboril R 2016 Chem. Rev. 116 5464Google Scholar

    [25]

    Ye S Y, Rao H X, Yan W B, Li Y H, Sun W H, Peng H T, Liu Z W, Bian Z Q, Li Y F, Huang C H 2016 Adv. Mater. 28 9648Google Scholar

    [26]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seol S I 2014 Nat. Mater. 13 897Google Scholar

    [27]

    Wang Z K, Li M, Yuan D X, Shi X B, Ma H, Liao L S 2015 ACS Appl. Mater. Interfaces 7 9645Google Scholar

    [28]

    Liu L, Xi Q Y, Gao G, Yang W, Zhou H, Zhao Y X, Wu C Q, Wang L D, Xu J W 2016 Sol. Energy Mater. Sol. Cells 157 937Google Scholar

    [29]

    Li W Z, Dong H P, Guo X D, Li N, Li J W, Niu G D, Wang L D 2014 J. Mater. Chem. A 2 20105Google Scholar

    [30]

    Kröger M, Hamwi S, Meyer J, Riedl T, Kowalsky W, Kahn A 2009 Appl. Phys. Lett. 95 251

    [31]

    Greiner M T, Helander M G, Tang W M, Wang Z B, Qiu J, Lu Z H 2012 Nat. Mater. 11 76Google Scholar

    [32]

    Wang Y, Song Q G, Lin T, Fu Y, Sun X, Chu B, Jin F M, Zhao H F, Li W L, Su Z S, Li Y T 2017 Org. Electron. 49 355Google Scholar

    [33]

    Afzal A M, Bae I G, Aggarwal Y, Park J, Jeong H R, Choi E H, Park B 2021 Sci. Rep. 11 1Google Scholar

    [34]

    Hamilton M C, Martin S, Kanicki J 2004 IEEE Trans. Electron. Devices 51 887

    [35]

    Khan A A, Azam M, Eric D, Liang G X, Yu Z N 2020 J. Mater. Chem. C 8 2880Google Scholar

    [36]

    Wei Y Z, Feng G T, Mao P, Luan Y G, Zhuang J, Chen N L, Yang H X, Li W W, Yang S Y, Wang J Z 2020 ACS Appl. Mater. Interfaces 12 8826Google Scholar

    [37]

    Shan C W, Meng F, Yu J H, Wang Z X, Li W H, Fan D Y, Chen R, Ma H B, Li G Q, Kyaw A K K 2021 J. Mater. Chem. C 9 7632Google Scholar

    [38]

    Srivastava A, Jit S, Tripathi S 2021 IEEE Trans. Electron. Devices 68 IEEE Trans. Electron. Devices

    [39]

    Reddy K C S, Selamneni V, Rao M G S, Meza-Arroyo J, Sahatiya P, Ramirez-Bon R 2021 Appl. Surf. Sci. 568 150944Google Scholar

    [40]

    Dutta A, Medda A, Bera R, Sarkar K, Sain S, Kumar P, Patra A 2020 ACS Appl. Nano Mater. 3 4717

    [41]

    Bristow H, Jacoutot P, Scaccabarozzi A D, et al. 2020 ACS Appl. Mater. Interfaces 12 48836Google Scholar

  • [1] Yang Ying-Guo, Feng Shang-Lei, Li Li-Na. Solution slot-die coating perovskite film crystalline growth observed by in situ GIWAXS/GISAXS. Acta Physica Sinica, 2024, 73(6): 063201. doi: 10.7498/aps.73.20231847
    [2] Zhang Zi-Fa, Yuan Xiang, Lu Ying-Shen, He Dan-Min, Yan Quan-He, Cao Hao-Yu, Hong Feng, Jiang Zui-Min, Xu Run, Ma Zhong-Quan, Song Hong-Wei, Xu Fei. Improving crystallization and photoelectric performance of CsPbI2Br perovskite under ambient air via dynamic hot-air assisted recrystallization strategy. Acta Physica Sinica, 2024, 73(9): 098803. doi: 10.7498/aps.73.20240153
    [3] Sun Tang-You, Yu Yan-Li, Qin Zu-Bin, Chen Zan-Hui, Chen Jun-Li, Jiang Yue, Zhang Fa-Bi. Multi-band response Cs2AgBiBr6 double perovskite photodetector based on TiO2 nanopillars. Acta Physica Sinica, 2024, 73(7): 078502. doi: 10.7498/aps.73.20231919
    [4] Sun Tao, Yuan Jian-Mei. Band gap prediction of perovskite materials based on transfer learning. Acta Physica Sinica, 2023, 72(21): 218901. doi: 10.7498/aps.72.20231027
    [5] Wang Gui-Qiang, Wang Dong-Sheng, Bi Jia-Yu, Chang Jia-Run, Meng Fan-Ning. Tailoring of CsPbIBr2 perovskite crystallization via phenylthiourea for stable and efficiency perovskite solar cells. Acta Physica Sinica, 2023, 72(15): 158801. doi: 10.7498/aps.72.20230593
    [6] Tao Cong, Wang Jing-Min, Niu Mei-Ling, Zhu Lin, Peng Qi-Ming, Wang Jian-Pu. Magnetic field effects in non-magnetic luminescent materials: from organic semiconductors to halide perovskites. Acta Physica Sinica, 2022, 71(6): 068502. doi: 10.7498/aps.71.20211872
    [7] Li Yu-Kun, Dong Jian-Jun, Chen Tao, Song Zai-Feng, Wang Qiang-Qiang, Deng Ke-Li, Deng Bo, Cao Zhu-Rong, Wang Feng. External photoelectric effect of CsPbX3 perovskite in X-ray region. Acta Physica Sinica, 2021, 70(19): 197901. doi: 10.7498/aps.70.20210651
    [8] Shi Wen-Qi, Tian Hong, Lu Yu-Xin, Zhu Hong, Li Fen, Wang Xiao-Xia, Liu Yan-Wen. Research progress of metal halide perovskite nanometer optoelectronic materials. Acta Physica Sinica, 2021, 70(8): 087303. doi: 10.7498/aps.70.20201842
    [9] Li Bin, Miao Xiang-Yang. Photoluminescence blinking properties of single CsPbBr3 perovskite quantum dots. Acta Physica Sinica, 2021, 70(20): 207802. doi: 10.7498/aps.70.20210908
    [10] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Structure optimization and optoelectronical property calculation for organic lead iodine perovskite solar cells. Acta Physica Sinica, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [11] Wei Ying-Qiang, Xu Lei, Peng Qi-Ming, Wang Jian-Pu. Rashba effect in perovskites and its influences on carrier recombination. Acta Physica Sinica, 2019, 68(15): 158506. doi: 10.7498/aps.68.20190675
    [12] Wang Xue-Ting, Fu Yu-Hao, Na Guang-Ren, Li Hong-Dong, Zhang Li-Jun. Barium as doping element tuning both toxicity and optoelectric properties of lead-based halide perovskites. Acta Physica Sinica, 2019, 68(15): 157101. doi: 10.7498/aps.68.20190596
    [13] Wang Ji-Fei, Lin Dong-Xu, Yuan Yong-Bo. Recent progress of ion migration in organometal halide perovskite. Acta Physica Sinica, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [14] Liu Xiao-Min, Li Yi-Hui, Wang Xing-Tao, Zhao Yi-Xin. Organic ammonium salt surface treatment stabilizing all-inorganic CsPbI2Br perovskite. Acta Physica Sinica, 2019, 68(15): 158805. doi: 10.7498/aps.68.20190303
    [15] Zhang Ao, Chen Yun-Lin, Yan Jun, Zhang Chun-Xiu. Effects of organic cations on performance of halide perovskite solar cell. Acta Physica Sinica, 2018, 67(10): 106701. doi: 10.7498/aps.67.20180236
    [16] Zhou Long, Wang Xiao, Zhang Hui-Min, Shen Xu-Dong, Dong Shuai, Long You-Wen. High pressure synthesis and physical properties of multiferroic materials with multiply-ordered perovskite structure. Acta Physica Sinica, 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878
    [17] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [18] Liu Na, Wei Yang, Ma Xin-Guo, Zhu Lin, Xu Guo-Wang, Chu Liang, Huang Chu-Yun. Theoretical study on the stability and photoelectric properties of APbI3 perovskite. Acta Physica Sinica, 2017, 66(5): 057103. doi: 10.7498/aps.66.057103
    [19] Yin Yun-Yu, Wang Xiao, Deng Hong-Shan, Zhou Long, Dai Jian-Hong, Long You-Wen. High-pressure synthesis and special physical properties of several ordered perovskite structures. Acta Physica Sinica, 2017, 66(3): 030201. doi: 10.7498/aps.66.030201
    [20] Wang Dong, Zhu Hui-Min, Zhou Zhong-Min, WangZai-Wei, Lü Si-Liu, Pang Shu-Ping, CuiGuang-Lei. Effect of solvent on the perovskite thin film morphology and crystallinity. Acta Physica Sinica, 2015, 64(3): 038403. doi: 10.7498/aps.64.038403
  • supplement 17-20220189补充材料.pdf supplement
Metrics
  • Abstract views:  4098
  • PDF Downloads:  81
  • Cited By: 0
Publishing process
  • Received Date:  26 January 2022
  • Accepted Date:  13 April 2022
  • Available Online:  18 August 2022
  • Published Online:  05 September 2022

/

返回文章
返回
Baidu
map