-
采用基于色散修正的平面波超软赝势方法研究了钙钛矿材料APbI3结构中四种阳离子Cs+,NH4+,MA+,FA+分别处于A位时,其结构的稳定性、电子结构及光学性质.研究结果显示受阳离子种类和尺寸的影响,PbI基体骨架发生不同程度的扭曲,A位置阳离子(除Cs+外)半径越大,其与PbI基体骨架之间的作用力越强,在MAPbI3和FAPbI3中PbI6八面体显示出较大的电偶极矩.计算得出的能带结构表明,四种体系在费米能级附近的能带相似,即价带顶均由I 5p轨道组成,导带底由Pb 6p轨道和部分I 5p轨道杂化而成.电子结构和光学性质的差异主要源于PbI6八面体结构的扭曲.在四种结构体系中,CsPbI3显示出最窄的直接带隙、最小载流子有效质量和较强的光吸收能力.这些结果可为进一步深入研究钙钛矿材料在太阳能电池领域的应用提供理论指导.The rapid development of organic-inorganic hybrid perovskite solar cells has recently attracted the worldwide attention because their power conversion efficiency has risen from 4% to higher than 20% within just six years. It is well known that the perovskite materials with APbI3 crystal structure have a 3D framework of corner-sharing PbI6 octahedra, in which each Pb atom bonds with six I atoms, and the A cations fill in the octahedral interstices. At present, a lot of researches have focused on the synthesis and doping modification of perovskite materials. However, it is hard to detect directly the weak interactions between A cations and PbI6 skeleton in the APbI3 crystal structure through experiments, which have effect on the structural stability and electronic properties. To provide a full understanding of the interplay among size, structure, and organic/inorganic interactions, the stability, electronic structures and optical properties of APbI3 (A denotes Cs+, NH4+, MA+, FA+) were investigated by the plane-wave ultra soft pseudo potentials. Two dispersion corrections were taken into account in the weak interactions between A cations and PbI6 skeleton in the APbI3 crystal structure, respectively. The results show that the type and size of cations affect the distortion of PbI framework, indicating that the larger the radius of the A cation is, the stronger the interaction between the A cation and the PbI framework is. Further, it is identified that after geometry relaxation, the orientation of A cations (A denotes NH4+, MA+, FA+) is easy to change, and the PbI frameworks present structural distortion. CsPbI3 is more stable energetically than other three kinds of perovskite materials. For the PbI6 octahedra, the large dipole moments of 0.23D and 0.32D for the generalized-gradient approximation method or 0.28D and 0.29D for the local-density approximation method are also present in MAPbI3 and FAPbI3, respectively. In addition, the energy band structures, which affect the generation and migration of photon-generated carriers and optical properties, will alter with the structural distortion of PbI frameworks. By analyzing the energy band structures and corresponding density of states, we find that four systems have similar band structures near the Fermi energy, namely, the top of valance band is mainly contributed by I 5p orbitals, while the bottom of conduction band is dominated by Pb 6p orbitals and partly contributed by I 5p orbitals. A little difference of their electronic structures and optical absorption spectra originates from the distortion of PbI6 octahedra in APbI3 crystal structures. It is noted that the contribution of the ions Cs+ and FA+ on the top of valance band is slightly larger than that of the ions NH4+ and MA+. Compared with other three kinds of perovskite materials, CsPbI3 presents the narrowest direct band gap, the lowest effective carrier mass and excellent visible-light and infrared absorption. The results may provide some theoretical guidance for further research on perovskite materials in the application of solar cells.
-
Keywords:
- perovskite material /
- structural stability /
- electronic structure /
- first-principles
[1] Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grtzel M, Han H W 2014Science 345 295
[2] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Grtzel M, Park N G 2012Sci.Rep. 2 591
[3] Wang F Z, Tan Z A, Dai S Y, Li Y F 2015Acta Phys.Sin. 64 038401(in Chinese)[王福芝, 谭占鳌, 戴松元, 李永舫2015 64 038401]
[4] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009J.Am.Chem.Soc. 131 6050
[5] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S Ⅱ 2015Science 348 1234
[6] Zhang D F, Zheng L L, Ma Y Z, Wang S F, Bian Z Q, Huang C H, Gong Q H, Xiao L X 2015Acta Phys.Sin. 64 038803(in Chinese)[张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新2015 64 038803]
[7] Cappel U B, Daeneke T, Bach U 2012Nano Lett. 12 4925
[8] Liu M Z, Johnston M B, Snaith H J 2013Nature 501 395
[9] Knop O, Wasylishen R E, White M A, Oort M J M V 1990Can.J.Chem. 68 412
[10] Lee J W, Seol D J, Cho A N 2014Adv.Mater. 26 4991
[11] Zhou Y Y, Yang M J, Pang S P, Zhu K, Padture N P 2016J.Am.Chem.Soc. 138 5535
[12] Pang S P, Hu H, Zhang J L, Lv S L, Yu Y M, Wei F, Qin T S, Xu H X, Liu Z L, Cui G L 2014Chem.Mater. 26 1485
[13] Choi H, Jeong J, Kim H B, Kim S, Walker B, Kim G H, Kim J Y 2014Nano Energy 7 80
[14] Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Grtzel M 2016Energy Environ.Sci. 9 1989
[15] Baikie T, Fang Y A, Kadro J M, Schreyer M, Wei F X, Mhaisalkar S G, Grtzel M, White T J 2013J.Mater.Chem.A 1 5628
[16] Motta C, Mellouhi F E, Kais S, Tabet N, Alharbi F, Sanvito S 2015Nat.Commun. 6 7026
[17] Filippetti A, Mattoni A 2014Phys.Rev.B 89 12503
[18] Mosconi E, Amat A, Nazeeruddin M K, Grtzel M, De Angelis F 2013J.Phys.Chem.C 117 13902
[19] Geng W, Zhang L, Zhang Y N, Lau W M, Liu L M 2014J.Phys.Chem.C 118 19565
[20] Wang Y, Gould T, Dobson J F, Zhang H M, Yang H G, Yao X D, Zhao H J 2014J.Phys.Chem.Chem.Phys. 16 1424
[21] Umari P, Mosconi E, De Angelis F 2014Sci.Rep. 4 4467
[22] Kawamura Y, Mashiyama H, Hasebe K 2002J.Phys.Soc.Jpn. 71 1694
[23] Vanderbilt D 1990Phys.Rev.B 41 7892
[24] Tkatchenko A, Scheffler M 2009Phys.Rev.Lett. 102 073005
[25] Ortmann F, Bechstedt F, Schmidt W G 2006Phys.Rev.B 73 205101
[26] Monkhorst H J, Pack J D 1976Phys.Rev.B 13 5188
[27] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002J.Phys:Condens.Matter. 14 2717
[28] Chung L, Lee B, He J Q, Chang R P H, Kanatzidis M G 2012Nature 485 486
[29] Gao X, Uehara K, Klug D D, Patchkovskii S, Tse J S, Tritt T M 2005Phys.Rev.B 72 125202
[30] Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003Solid State Commun. 127 619
[31] Schulz P E, Edri E, Kirmayer S, Hodes G, Cahen D, Kahn A 2014Energy Environ.Sci. 7 1377
[32] Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S 2015Nature 517 476
[33] Lee C, Hong J, Stroppa A, Whangbo M H, Shim J H 2015RSC Advances 5 78701
-
[1] Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grtzel M, Han H W 2014Science 345 295
[2] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Grtzel M, Park N G 2012Sci.Rep. 2 591
[3] Wang F Z, Tan Z A, Dai S Y, Li Y F 2015Acta Phys.Sin. 64 038401(in Chinese)[王福芝, 谭占鳌, 戴松元, 李永舫2015 64 038401]
[4] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009J.Am.Chem.Soc. 131 6050
[5] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S Ⅱ 2015Science 348 1234
[6] Zhang D F, Zheng L L, Ma Y Z, Wang S F, Bian Z Q, Huang C H, Gong Q H, Xiao L X 2015Acta Phys.Sin. 64 038803(in Chinese)[张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新2015 64 038803]
[7] Cappel U B, Daeneke T, Bach U 2012Nano Lett. 12 4925
[8] Liu M Z, Johnston M B, Snaith H J 2013Nature 501 395
[9] Knop O, Wasylishen R E, White M A, Oort M J M V 1990Can.J.Chem. 68 412
[10] Lee J W, Seol D J, Cho A N 2014Adv.Mater. 26 4991
[11] Zhou Y Y, Yang M J, Pang S P, Zhu K, Padture N P 2016J.Am.Chem.Soc. 138 5535
[12] Pang S P, Hu H, Zhang J L, Lv S L, Yu Y M, Wei F, Qin T S, Xu H X, Liu Z L, Cui G L 2014Chem.Mater. 26 1485
[13] Choi H, Jeong J, Kim H B, Kim S, Walker B, Kim G H, Kim J Y 2014Nano Energy 7 80
[14] Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Grtzel M 2016Energy Environ.Sci. 9 1989
[15] Baikie T, Fang Y A, Kadro J M, Schreyer M, Wei F X, Mhaisalkar S G, Grtzel M, White T J 2013J.Mater.Chem.A 1 5628
[16] Motta C, Mellouhi F E, Kais S, Tabet N, Alharbi F, Sanvito S 2015Nat.Commun. 6 7026
[17] Filippetti A, Mattoni A 2014Phys.Rev.B 89 12503
[18] Mosconi E, Amat A, Nazeeruddin M K, Grtzel M, De Angelis F 2013J.Phys.Chem.C 117 13902
[19] Geng W, Zhang L, Zhang Y N, Lau W M, Liu L M 2014J.Phys.Chem.C 118 19565
[20] Wang Y, Gould T, Dobson J F, Zhang H M, Yang H G, Yao X D, Zhao H J 2014J.Phys.Chem.Chem.Phys. 16 1424
[21] Umari P, Mosconi E, De Angelis F 2014Sci.Rep. 4 4467
[22] Kawamura Y, Mashiyama H, Hasebe K 2002J.Phys.Soc.Jpn. 71 1694
[23] Vanderbilt D 1990Phys.Rev.B 41 7892
[24] Tkatchenko A, Scheffler M 2009Phys.Rev.Lett. 102 073005
[25] Ortmann F, Bechstedt F, Schmidt W G 2006Phys.Rev.B 73 205101
[26] Monkhorst H J, Pack J D 1976Phys.Rev.B 13 5188
[27] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002J.Phys:Condens.Matter. 14 2717
[28] Chung L, Lee B, He J Q, Chang R P H, Kanatzidis M G 2012Nature 485 486
[29] Gao X, Uehara K, Klug D D, Patchkovskii S, Tse J S, Tritt T M 2005Phys.Rev.B 72 125202
[30] Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003Solid State Commun. 127 619
[31] Schulz P E, Edri E, Kirmayer S, Hodes G, Cahen D, Kahn A 2014Energy Environ.Sci. 7 1377
[32] Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S 2015Nature 517 476
[33] Lee C, Hong J, Stroppa A, Whangbo M H, Shim J H 2015RSC Advances 5 78701
计量
- 文章访问数: 8868
- PDF下载量: 913
- 被引次数: 0