搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机阳离子对卤素钙钛矿太阳能电池性能的影响

张翱 陈云琳 闫君 张春秀

引用本文:
Citation:

有机阳离子对卤素钙钛矿太阳能电池性能的影响

张翱, 陈云琳, 闫君, 张春秀

Effects of organic cations on performance of halide perovskite solar cell

Zhang Ao, Chen Yun-Lin, Yan Jun, Zhang Chun-Xiu
PDF
导出引用
  • 采用第一性原理计算了CH3NH3PbI3中有机部分CH3NH3+和CH3NH3的静电特性.结果表明:CH3NH3+具有强的亲电特性,CH3NH3的CH3-端具有弱亲电性,而NH3-端具有弱亲核性.发现在CH3NH3PbI3中CH3NH3+之间强静电排斥作用在相变中起着重要的作用,且在室温条件下CH3NH3+在无机笼中具备活性和无序的特性,使得TiO2/CH3NH3PbI3异质结中n型TiO2的电子通过界面扩散到CH3NH3PbI3材料,并与CH3NH3+结合形成CH3NH3,CH3NH3的静电特性导致在内建电场作用下更容易取向,取向的CH3NH3周围形成的静电场会变得更弱和更加均匀.这对无机框架上载流子的产生和传输更加有利,这样的异质结比传统的pn结具有更大优势.这是CH3NH3PbI3太阳能电池高的光电转换效率的重要原因.
    The halide perovskite solar cells employing CH3NH3PbX3 (X=Cl-, Br-, I-) and CH3NH3PbI3-xClx as light absorbers each have shown a rapid rise in power conversion efficiency (PCE) from 3.8% to 22.1% in recent years. The excellent photovoltaic performance is attributed to good optical and electrical properties such as appropriate bandgap, large absorption coefficient, high carrier mobility, long carrier lifetime and long carrier diffusion length. However, the physical mechanism of high PCE for halide perovskite solar cells is still unclear. The Gaussian 09 software is utilized to optimize the geometries of isolated CH3NH3+ and CH3NH3 at a B3 LYP/6-311++G(d, p) level, and the Multiwfn software is used to visualize the electrostatic potentials (ESPs) of CH3NH3+ and CH3NH3. Based on the ESPs of CH3NH3+ and CH3NH3, it is found that the CH3NH3+ has a strong electrophilic character, however, the NH3- side and CH3- side of CH3NH3 have weak nucleophilic and electrophilic character, respectively. So the electrostatic characteristics of CH3NH3+ and CH3NH3 are significantly different. The strong electrostatic repulsive interaction between two neighboring CH3NH3+ radicals plays an important role in structural phase transition of CH3NH3PbI3 material. At room temperature, the CH3NH3+ in the inorganic cage is activated and disordered, and has a strong electrophilic character. Due to these characteristics of CH3NH3+, the interfacial electrons at TiO2/CH3NH3PbI3 heterojunction are combined with CH3NH3+ to form CH3NH3 in the inorganic[PbI3]- framework. The CH3NH3 at the heterojunction under the built-in electric field is more easily oriented than CH3NH3+. Two initial geometrical configurations for CH3NH3+:CH3NH3 and CH3NH3:CH3NH3 dimers are optimized by using Gaussian 09 at an MP2/Aug-cc-PVTZ level. On the basis of the electrostatic characteristic of CH3NH3+:CH3NH3 dimer, the interfacial electrons at TiO2/CH3NH3PbI3 heterojunction are easily injected into the CH3NH3PbI3 material, which leads to the strong polarization of CH3NH3PbI3 material at the heterojunction. From the ESP of optimized CH3NH3:CH3NH3 dimer, it is found that the weak electrostatic field of the inorganic framework, parallel to C-N axis, is induced by the CH3NH3 orientational order, which is made for improving the photogenerated electron-hole pair separation and carrier transport. The TiO2/CH3NH3PbI3 heterojunction has more advantage than traditional p-n junction because of no consumption of carrier for CH3NH3PbI3 material in the process of forming built-in electric field. The physical mechanism is the origin of high PCE for CH3NH3PbI3 solar cells. According to the experimental results and first-principle calculations, we can draw an important conclusion that the electrostatic characteristics of organic CH3NH3+ cations in the inorganic[PbI3]- framework result in the high performances of halide perovskite solar cells.
      通信作者: 陈云琳, ylchen@bjtu.edu.cn
    • 基金项目: 教育部博士点基金(批准号:20130009110008)、北京市教委面上项目(批准号:KM201210015008)和北印英才(批准号:Byyc201316-007)资助的课题.
      Corresponding author: Chen Yun-Lin, ylchen@bjtu.edu.cn
    • Funds: Project supported by the Ph. D. Programs Foundation of Ministry of Education of China (Grant No. 20130009110008), and Beijing Municipal Education Commission Project, China (Grant No. KM201210015008), and Byyc (Grant No. 201316-007).
    [1]

    Boix P P, Nonomura K, Mathews N, Mhaisalkar S G 2014 Mater. Today 17 16

    [2]

    Kazim S, Nazeeruddin M K, Gratzel M, Ahmad S 2014 Angew. Chem. Int. Ed. 53 2

    [3]

    Gao P, Grätzel M, Nazeeruddin M K 2014 Energy Environ. Sci. 7 2448

    [4]

    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003 Solid State Commun. 127 619

    [5]

    Li M H, Shen P S, Wang K C, Guoabc T F, Chen P 2015 J. Mater. Chem. A 3 9011

    [6]

    Akihiro K, Kenjiro T, Yasuo S, Tsutomu M 2009 J. Am. Chem. Soc. 131 6050

    [7]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [8]

    Zhang Y, Liu M, Eperon G E, Leijtens T, McMeekin D P, Saliba M, Zhang W, de Bastiani M, Petrozza A, Herz L, Johnston M B, Lin H, Snaith H 2015 Mater. Horiz. 2 315

    [9]

    Fan Z, Xiao J X, Sun K, Chen L, Hu Y T, Ouyang J Y, Ong K P, Zeng K Y, Wang J 2015 J. Phys. Chem. Lett. 6 1155

    [10]

    Motta C, El-Mellouhi E, Kais S, Tabet N, Alharbi F, Sanvito S 2015 Nat. Commun. 6 7026

    [11]

    Ma J, Wang L W 2015 Nano Lett. 15 248

    [12]

    Baikie T, Fang Y, Kadro J, Schreyer M, Wei F, Mhaisalkar S, Graetzel M, White T 2013 J. Mater. Chem. A 1 5628

    [13]

    Lee J H, Lee J H, Kong E H, Jang H M 2016 Sci. Rep. 6 21687

    [14]

    Brown B, Hess D, Desai V, Deen M J 2006 Electrochem. Soc. Interf. 15 28

    [15]

    Zheng F, Takenaka H, Wang F, Koocher N Z, Rappe A M 2015 J. Phys. Chem. Lett. 6 31

    [16]

    Wang Y, Xia Z, Liu L, Xu W, Yuan Z, Zhang Y, Sirringhaus H, Lifshitz Y, Lee S T, Bao Q, Sun B 2017 Adv. Mater. 18 1606370

    [17]

    Onoda-Yamamuro N, Matsuoand T, Suga H 1992 J. Phys. Chem. Solids 53 935

    [18]

    Wasylishen R, Knop O, Macdonald J 1985 Solid State Commun. 56 581

    [19]

    Frost J M, Butler K T, Brivio F, Hendon C H, Schilfgaarde M V, Walsh A 2014 Nano Lett. 14 2584

    [20]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J 2009 Gaussian 09 (Revision C.01 Gaussian, Inc. Wallingford, CT)

    [21]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580

    [22]

    Poglitsch A, Weber D 1987 J. Chem. Phys. 87 637

    [23]

    Wang W Z, Ji B M, Zhang Y 2009 J. Phys. Chem. A 113 8132

    [24]

    Li Q Z, Jing B, Li R, Liu Z B, Li W Z, Luan F, Cheng J B, Gong B A, Sun J Z 2011 Phys. Chem. Chem. Phys. 13 2266

    [25]

    Mosconi E, Amat A, Nazeeruddin M K, Gratzel M, Angelis F D 2013 J. Phys. Chem. C 117 13902

    [26]

    Liu C, Zhang Y M, Zhang Y M, L H L 2013 Chin. Phys. B 22 406

    [27]

    Guan H, L H L, Guo H, Zhang Y M, Zhang Y M, Wu L F 2015 Chin. Phys. B 24 126701

    [28]

    Cai L, Zhong M 2016 Acta Phys. Sin. 65 237902 (in Chinese)[柴磊, 钟敏 2016 65 237902]

  • [1]

    Boix P P, Nonomura K, Mathews N, Mhaisalkar S G 2014 Mater. Today 17 16

    [2]

    Kazim S, Nazeeruddin M K, Gratzel M, Ahmad S 2014 Angew. Chem. Int. Ed. 53 2

    [3]

    Gao P, Grätzel M, Nazeeruddin M K 2014 Energy Environ. Sci. 7 2448

    [4]

    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003 Solid State Commun. 127 619

    [5]

    Li M H, Shen P S, Wang K C, Guoabc T F, Chen P 2015 J. Mater. Chem. A 3 9011

    [6]

    Akihiro K, Kenjiro T, Yasuo S, Tsutomu M 2009 J. Am. Chem. Soc. 131 6050

    [7]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [8]

    Zhang Y, Liu M, Eperon G E, Leijtens T, McMeekin D P, Saliba M, Zhang W, de Bastiani M, Petrozza A, Herz L, Johnston M B, Lin H, Snaith H 2015 Mater. Horiz. 2 315

    [9]

    Fan Z, Xiao J X, Sun K, Chen L, Hu Y T, Ouyang J Y, Ong K P, Zeng K Y, Wang J 2015 J. Phys. Chem. Lett. 6 1155

    [10]

    Motta C, El-Mellouhi E, Kais S, Tabet N, Alharbi F, Sanvito S 2015 Nat. Commun. 6 7026

    [11]

    Ma J, Wang L W 2015 Nano Lett. 15 248

    [12]

    Baikie T, Fang Y, Kadro J, Schreyer M, Wei F, Mhaisalkar S, Graetzel M, White T 2013 J. Mater. Chem. A 1 5628

    [13]

    Lee J H, Lee J H, Kong E H, Jang H M 2016 Sci. Rep. 6 21687

    [14]

    Brown B, Hess D, Desai V, Deen M J 2006 Electrochem. Soc. Interf. 15 28

    [15]

    Zheng F, Takenaka H, Wang F, Koocher N Z, Rappe A M 2015 J. Phys. Chem. Lett. 6 31

    [16]

    Wang Y, Xia Z, Liu L, Xu W, Yuan Z, Zhang Y, Sirringhaus H, Lifshitz Y, Lee S T, Bao Q, Sun B 2017 Adv. Mater. 18 1606370

    [17]

    Onoda-Yamamuro N, Matsuoand T, Suga H 1992 J. Phys. Chem. Solids 53 935

    [18]

    Wasylishen R, Knop O, Macdonald J 1985 Solid State Commun. 56 581

    [19]

    Frost J M, Butler K T, Brivio F, Hendon C H, Schilfgaarde M V, Walsh A 2014 Nano Lett. 14 2584

    [20]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J 2009 Gaussian 09 (Revision C.01 Gaussian, Inc. Wallingford, CT)

    [21]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580

    [22]

    Poglitsch A, Weber D 1987 J. Chem. Phys. 87 637

    [23]

    Wang W Z, Ji B M, Zhang Y 2009 J. Phys. Chem. A 113 8132

    [24]

    Li Q Z, Jing B, Li R, Liu Z B, Li W Z, Luan F, Cheng J B, Gong B A, Sun J Z 2011 Phys. Chem. Chem. Phys. 13 2266

    [25]

    Mosconi E, Amat A, Nazeeruddin M K, Gratzel M, Angelis F D 2013 J. Phys. Chem. C 117 13902

    [26]

    Liu C, Zhang Y M, Zhang Y M, L H L 2013 Chin. Phys. B 22 406

    [27]

    Guan H, L H L, Guo H, Zhang Y M, Zhang Y M, Wu L F 2015 Chin. Phys. B 24 126701

    [28]

    Cai L, Zhong M 2016 Acta Phys. Sin. 65 237902 (in Chinese)[柴磊, 钟敏 2016 65 237902]

  • [1] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究.  , 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [2] 秦京运, 舒群威, 袁艺, 仇伟, 肖立华, 彭平, 卢国松. Tl0.33WO3电子结构和太阳辐射屏蔽性能第一性原理研究.  , 2020, 69(4): 047102. doi: 10.7498/aps.69.20191577
    [3] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究.  , 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [4] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究.  , 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [5] 石瑜, 白洋, 莫丽玢, 向青云, 黄亚丽, 曹江利. H掺杂α-Fe2O3的第一性原理研究.  , 2015, 64(11): 116301. doi: 10.7498/aps.64.116301
    [6] 周鹏力, 史茹倩, 何静芳, 郑树凯. B-Al共掺杂3C-SiC的第一性原理研究.  , 2013, 62(23): 233101. doi: 10.7498/aps.62.233101
    [7] 杨春燕, 张蓉, 张利民, 可祥伟. 0.5NdAlO3-0.5CaTiO3电子结构及光学性质的第一性原理计算.  , 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [8] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究.  , 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [9] 汝强, 李燕玲, 胡社军, 彭薇, 张志文. Sn3InSb4合金嵌Li性能的第一性原理研究.  , 2012, 61(3): 038210. doi: 10.7498/aps.61.038210
    [10] 何建平, 吕文中, 汪小红. Ba0.5Sr0.5TiO3有序构型的第一性原理研究.  , 2011, 60(9): 097102. doi: 10.7498/aps.60.097102
    [11] 陈玉红, 杜瑞, 张致龙, 王伟超, 张材荣, 康龙, 罗永春. H2 分子在Li3N(110)表面吸附的第一性原理研究.  , 2011, 60(8): 086801. doi: 10.7498/aps.60.086801
    [12] 赵宇宏, 黄志伟, 李爱红, 穆彦青, 杨伟明, 侯华, 韩培德, 张素英. Nb在Ni3Al中取代行为及合金化效应的第一性原理研究.  , 2011, 60(4): 047103. doi: 10.7498/aps.60.047103
    [13] 邓杨, 王如志, 徐利春, 房慧, 严辉. 立方(Ba0.5Sr0.5)TiO3高压诱导带隙变化的第一性原理研究.  , 2011, 60(11): 117309. doi: 10.7498/aps.60.117309
    [14] 张易军, 闫金良, 赵刚, 谢万峰. Si掺杂β-Ga2O3的第一性原理计算与实验研究.  , 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [15] 李世娜, 刘永. Cu3N弹性和热力学性质的第一性原理研究.  , 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [16] 孙源, 黄祖飞, 范厚刚, 明星, 王春忠, 陈岗. BiFeO3中各离子在铁电相变中作用本质的第一性原理研究.  , 2009, 58(1): 193-200. doi: 10.7498/aps.58.193.1
    [17] 祝国梁, 疏达, 戴永兵, 王俊, 孙宝德. Si在TiAl3中取代行为的第一性原理研究.  , 2009, 58(13): 210-S215. doi: 10.7498/aps.58.210
    [18] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构.  , 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [19] 宇 霄, 罗晓光, 陈贵锋, 沈 俊, 李养贤. 第一性原理计算XHfO3(X=Ba, Sr)的结构、弹性和电子特性.  , 2007, 56(9): 5366-5370. doi: 10.7498/aps.56.5366
    [20] 赵宗彦, 柳清菊, 张 瑾, 朱忠其. 3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究.  , 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
计量
  • 文章访问数:  6907
  • PDF下载量:  354
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-31
  • 修回日期:  2018-03-15
  • 刊出日期:  2019-05-20

/

返回文章
返回
Baidu
map