Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High pressure synthesis and physical properties of multiferroic materials with multiply-ordered perovskite structure

Zhou Long Wang Xiao Zhang Hui-Min Shen Xu-Dong Dong Shuai Long You-Wen

Citation:

High pressure synthesis and physical properties of multiferroic materials with multiply-ordered perovskite structure

Zhou Long, Wang Xiao, Zhang Hui-Min, Shen Xu-Dong, Dong Shuai, Long You-Wen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Perovskite is one of the most important material systems for magnetoelectric multiferroic study. However, multiferroic is not expected to occur in a cubic perovskite on account of the highly symmetric crystal structure. Besides, magnetoelectric multiferroics with large ferroelectric polarization and strong magnetoelectric coupling have not been found to occur simultaneously in a single-phase multiferroic material discovered so far, challenging to the potential applications of this kind of material. Here we briefly review two multiferroic materials with multiply-ordered perovskite structure synthesized under high pressure and high temperature conditions. In the cubic perovskite LaMn3Cr4O12, we observed spin-induced ferroelectric polarization, providing the first example where ferroelectric takes place in a cubic perovskite material. In another multiply-ordered provskite BiMn3Cr4O12, type-I and type-Ⅱ multiferroic phases successively developed when cooled. It provides a rare example where two different types of multiferroic phases occur subsequently so that both large polarization and strong magnetoelectric effect are achieved in a single-phase material. In addition, since double ferroelectric phases take place in BiMn3Cr4O12, one can obtain four different polarization states by adopting different poling procedures, thus opening up a new way for generating multifunctional spintronics and multistate storage devices.
      Corresponding author: Long You-Wen, ywlong@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574378, 51772324), the National Basic Research Program of China (Grant No. 2014CB921500), the National Key RD Program of China (Grant No. 2018YFA0305700), and the Chinese Academy of Sciences (Grant Nos. YZ201555, QYZDBSSW-SLH013, XDB07030300, GJHZ1773).
    [1]

    Schmid H 1994 Ferroelectrics 162 317

    [2]

    Spaldin N A, Fiebig M 2005 Science 309 391

    [3]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [4]

    Cheong S W, Mostovoy M 2007 Nat. Mater. 6 13

    [5]

    Ramesh R, Spaldin N A 2007 Nat. Mater. 6 21

    [6]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [7]

    Tokura Y, Seki S, Nagaosa N 2014 Rep. Prog. Phys. 77 076501

    [8]

    Dong S, Liu J M, Cheong S W, Ren Z F 2015 Adv. Phys. 64 519

    [9]

    Yin Y Y, Wang X, Deng H S, Zhou L, Dai J H, Long Y W 2017 Acta Phys. Sin. 66 030201 (in Chinese) [殷云宇, 王潇, 邓宏芟, 周龙, 戴建洪, 龙有文 2017 66 030201]

    [10]

    Long Y W 2016 Chin. Phys. B 25 078108

    [11]

    Zhao Q, Yin Y Y, Dai J H, Shen X, Hu Z, Yang J Y, Wang Q T, Yu R C, Li X D, Long Y W 2016 Chin. Phys. B 25 020701

    [12]

    Khomskii D 2009 Physics 2 20

    [13]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719

    [14]

    Popov Y F, Kadomtseva A M, Krotov S S, Belov D V, Vorobev G P, Makhov P N, Zvezdin A K 2001 Low Temp. Phys. 27 478

    [15]

    Sergienko I A, Sen C, Dagotto E 2006 Phys. Rev. Lett. 97 227204

    [16]

    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55

    [17]

    Tokura Y, Seki Y 2010 Adv. Mater. 22 1554

    [18]

    Wang X, Chai Y S, Zhou L, Cao H B, Cruz C, Yang J Y, Dai J H, Yin Y Y, Yuan Z, Zhang S J, Yu R Z, Azuma M, Shimakawa Y, Zhang H M, Dong S, Sun Y, Jin C Q, Long Y W 2015 Phys. Rev. Lett. 115 087601

    [19]

    Feng J S, Xiang H J 2016 Phys. Rev. B 93 174416

    [20]

    Teague J R, Gerson R, James W J 1970 Solid State Commun. 8 1073

    [21]

    Zakharov Y N, Raevski I P, Eknadiosians E I, Pinskaya A N, Pustovaya L E, Borodin V Z 2000 Ferroelectrics 247 47

    [22]

    Zhou L, Dai J, Chai Y, Zhang H, Dong S, Cao H, Calder S, Yin Y, Wang X, Shen X, Liu Z, Saito T, Shimakawa Y, Hojo H, Ikuhara Y, Azuma M, Hu Z, Sun Y, Jin C Q, Long Y W 2017 Adv. Mater. 29 1703435

    [23]

    Larson A C, von Dreele R B 1994 General Structure Analysis System (GSAS) Report No. LAUR 86-748 (Los Alamos National Laboratory)

    [24]

    Brown I D, Altermatt D 1985 Acta Crystallogr. B41 244

    [25]

    Brese N E, OKeeffe M 1991 Acta Crystallogr. B47 192

    [26]

    Long Y W, Saito T, Mizumaki M, Agui A, Shimakawa Y 2009 J. Am. Chem. Soc. 131 16244

    [27]

    Scott J F, Kammerdiner L, Parris M, Traynor S, Ottenbacher V, Shavabkeh A, Oliver W F 1988 J. Appl. Phys. 64 787

    [28]

    Chai Y S, Oh Y S, Wang L J, Manivannan N, Feng S M, Yang Y S, Yan L Q, Jin C Q, Kim K H 2012 Phys. Rev. B 85 184406

    [29]

    Chapon L C, Blake G R, Gutmann M J, Park S, Hur N, Radaelli P G, Cheong S W 2004 Phys. Rev. Lett. 93 177402

    [30]

    Guo Y Y, Wang Y L, Liu J M, Wei T 2014 J. Appl. Phys. 116 063905

    [31]

    Hur N, Park S, Sharma P A, Ahn J S, Guha S, Cheong S W 2004 Nature 429 392

    [32]

    van Aken B, Palstra T T M, Filippetti A, Spaldin N A 2004 Nat. Mater. 3 164

  • [1]

    Schmid H 1994 Ferroelectrics 162 317

    [2]

    Spaldin N A, Fiebig M 2005 Science 309 391

    [3]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [4]

    Cheong S W, Mostovoy M 2007 Nat. Mater. 6 13

    [5]

    Ramesh R, Spaldin N A 2007 Nat. Mater. 6 21

    [6]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [7]

    Tokura Y, Seki S, Nagaosa N 2014 Rep. Prog. Phys. 77 076501

    [8]

    Dong S, Liu J M, Cheong S W, Ren Z F 2015 Adv. Phys. 64 519

    [9]

    Yin Y Y, Wang X, Deng H S, Zhou L, Dai J H, Long Y W 2017 Acta Phys. Sin. 66 030201 (in Chinese) [殷云宇, 王潇, 邓宏芟, 周龙, 戴建洪, 龙有文 2017 66 030201]

    [10]

    Long Y W 2016 Chin. Phys. B 25 078108

    [11]

    Zhao Q, Yin Y Y, Dai J H, Shen X, Hu Z, Yang J Y, Wang Q T, Yu R C, Li X D, Long Y W 2016 Chin. Phys. B 25 020701

    [12]

    Khomskii D 2009 Physics 2 20

    [13]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719

    [14]

    Popov Y F, Kadomtseva A M, Krotov S S, Belov D V, Vorobev G P, Makhov P N, Zvezdin A K 2001 Low Temp. Phys. 27 478

    [15]

    Sergienko I A, Sen C, Dagotto E 2006 Phys. Rev. Lett. 97 227204

    [16]

    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55

    [17]

    Tokura Y, Seki Y 2010 Adv. Mater. 22 1554

    [18]

    Wang X, Chai Y S, Zhou L, Cao H B, Cruz C, Yang J Y, Dai J H, Yin Y Y, Yuan Z, Zhang S J, Yu R Z, Azuma M, Shimakawa Y, Zhang H M, Dong S, Sun Y, Jin C Q, Long Y W 2015 Phys. Rev. Lett. 115 087601

    [19]

    Feng J S, Xiang H J 2016 Phys. Rev. B 93 174416

    [20]

    Teague J R, Gerson R, James W J 1970 Solid State Commun. 8 1073

    [21]

    Zakharov Y N, Raevski I P, Eknadiosians E I, Pinskaya A N, Pustovaya L E, Borodin V Z 2000 Ferroelectrics 247 47

    [22]

    Zhou L, Dai J, Chai Y, Zhang H, Dong S, Cao H, Calder S, Yin Y, Wang X, Shen X, Liu Z, Saito T, Shimakawa Y, Hojo H, Ikuhara Y, Azuma M, Hu Z, Sun Y, Jin C Q, Long Y W 2017 Adv. Mater. 29 1703435

    [23]

    Larson A C, von Dreele R B 1994 General Structure Analysis System (GSAS) Report No. LAUR 86-748 (Los Alamos National Laboratory)

    [24]

    Brown I D, Altermatt D 1985 Acta Crystallogr. B41 244

    [25]

    Brese N E, OKeeffe M 1991 Acta Crystallogr. B47 192

    [26]

    Long Y W, Saito T, Mizumaki M, Agui A, Shimakawa Y 2009 J. Am. Chem. Soc. 131 16244

    [27]

    Scott J F, Kammerdiner L, Parris M, Traynor S, Ottenbacher V, Shavabkeh A, Oliver W F 1988 J. Appl. Phys. 64 787

    [28]

    Chai Y S, Oh Y S, Wang L J, Manivannan N, Feng S M, Yang Y S, Yan L Q, Jin C Q, Kim K H 2012 Phys. Rev. B 85 184406

    [29]

    Chapon L C, Blake G R, Gutmann M J, Park S, Hur N, Radaelli P G, Cheong S W 2004 Phys. Rev. Lett. 93 177402

    [30]

    Guo Y Y, Wang Y L, Liu J M, Wei T 2014 J. Appl. Phys. 116 063905

    [31]

    Hur N, Park S, Sharma P A, Ahn J S, Guha S, Cheong S W 2004 Nature 429 392

    [32]

    van Aken B, Palstra T T M, Filippetti A, Spaldin N A 2004 Nat. Mater. 3 164

  • [1] Chen Zhao-Liang, Lu Da-Biao, Ye Xu-Bin, Zhao Hao-Ting, Zhang Jie, Pan Zhao, Chi Zhen-Hua, Cui Tian, Shen Yao, Long You-Wen. High-pressure synthesized perovskite-type CeTaN2O and its magnetic and electrical properties. Acta Physica Sinica, 2024, 73(8): 080702. doi: 10.7498/aps.73.20240025
    [2] An Ming, Dong Shuai. Charge-mediated magnetoelectricity: from ferroelectric field effect to charge-ordering ferroelectrics. Acta Physica Sinica, 2020, 69(21): 217502. doi: 10.7498/aps.69.20201193
    [3] Chen Cheng, Lu Jian-An, Du Wei, Wang Wei, Mao Xiang-Yu, Chen Xiao-Bing. Effects of Nd-doping on multiferroic properties of Bi6−xNdxFe1.4Ni0.6Ti3O18 polycrystalline. Acta Physica Sinica, 2019, 68(3): 037701. doi: 10.7498/aps.68.20181287
    [4] Shen Jian-Xin, Shang Da-Shan, Sun Young. Fundamental circuit element and nonvolatile memory based on magnetoelectric effect. Acta Physica Sinica, 2018, 67(12): 127501. doi: 10.7498/aps.67.20180712
    [5] Liu Xiao-Qiang, Wu Shu-Ya, Zhu Xiao-Li, Chen Xiang-Ming. Hybrid improper ferroelectricity and multiferroic in Ruddlesden-Popper structures. Acta Physica Sinica, 2018, 67(15): 157503. doi: 10.7498/aps.67.20180317
    [6] Yuan Guo-Liang, Li Shuang, Ren Shen-Qiang, Liu Jun-Ming. Excited charge-transfer organics with multiferroicity. Acta Physica Sinica, 2018, 67(15): 157509. doi: 10.7498/aps.67.20180759
    [7] Zhao Run, Yang Hao. Oxygen vacancies induced tuning effect on physical properties of multiferroic perovskite oxide thin films. Acta Physica Sinica, 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [8] Huang Ying-Zhuang,  Qi Yan,  Du An,  Liu Jia-Hong,  Ai Chuan-Wei,  Dai Hai-Yan,  Zhang Xiao-Li,  Huang Yu-Yan. Magnetoelectric coupling and external field modulation of a composite multiferroic chain. Acta Physica Sinica, 2018, 67(24): 247501. doi: 10.7498/aps.67.20181561
    [9] Wu Mei-Xia, Li Man-Rong. Multiferroic properties of exotic double perovskite A2BB' O6. Acta Physica Sinica, 2018, 67(15): 157510. doi: 10.7498/aps.67.20180817
    [10] Liang Wen, Li Ze-Ming, Wang Lu-Ying, Chen Lin, Li He-Ping. High pressure synthesis of anhydrous magnesium carbonate (MgCO3) from magnesium oxalate dihydrate (MgC2O42H2O) and its characterization. Acta Physica Sinica, 2017, 66(3): 036202. doi: 10.7498/aps.66.036202
    [11] Yin Yun-Yu, Wang Xiao, Deng Hong-Shan, Zhou Long, Dai Jian-Hong, Long You-Wen. High-pressure synthesis and special physical properties of several ordered perovskite structures. Acta Physica Sinica, 2017, 66(3): 030201. doi: 10.7498/aps.66.030201
    [12] Mao Xiang-Yu, Zou Bao-Wen, Sun Hui, Chen Chun-Yan, Chen Xiao-Bing. Effects of Co-doping on multiferroic properties of Bi6Fe2-xCoxTi3O18 ceramics. Acta Physica Sinica, 2015, 64(21): 217701. doi: 10.7498/aps.64.217701
    [13] Xu Xin-He, Liu Ying, Gan Yue-Hong, Liu Wen-Miao. A method of retrieving the constitutive parameter matrix of magnetoelectric coupling metamaterial. Acta Physica Sinica, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [14] Wang Mei-Na, Li Ying, Wang Tian-Xing, Liu Guo-Dong. Magnetic properties of multiferroic material DyMnO3 in orthorhombic structure. Acta Physica Sinica, 2013, 62(22): 227101. doi: 10.7498/aps.62.227101
    [15] Gu Jian-Jun, Liu Li-Hu, Qi Yun-Kai, Xu Qin, Zhang Hui-Min, Sun Hui-Yuan. Magnetoelectric coupling in NiFe2 O4-BiFeO3 composite films. Acta Physica Sinica, 2011, 60(6): 067701. doi: 10.7498/aps.60.067701
    [16] Deng Heng, Yang Chang-Ping, Huang Chang, Xu Ling-Fang. Magnetically correlated I-V nonlinearity and electrical transport property of the double-layered perovskite La1.8Ca1.2Mn2O7 compound. Acta Physica Sinica, 2010, 59(10): 7390-7395. doi: 10.7498/aps.59.7390
    [17] Ma Jing, Shi Zhan, Lin Yuan-Hua, Nan Ce-Wen. Magnetoelectric properties of multiferroic composites with pseudo 2-2 type multilayered structure. Acta Physica Sinica, 2009, 58(8): 5852-5856. doi: 10.7498/aps.58.5852
    [18] Zhong Chong-Gui, Jiang Qing, Fang Jing-Huai, Ge Cun-Wang. Magnetoelectric coupling and magnetoelectric properties of single-phase ABO3 type multiferroic materials. Acta Physica Sinica, 2009, 58(5): 3491-3496. doi: 10.7498/aps.58.3491
    [19] Yang Ying, Li Qi-Chang, Liu Jun-Ming, Liu Zhi-Guo. Magnetic and dielectric properties of ferroelectromagent Pb(Fe1/2 Nb1/2)O3. Acta Physica Sinica, 2005, 54(9): 4213-4216. doi: 10.7498/aps.54.4213
    [20] XIONG HAN, CHE GUANG-CAN, YAO YU-SHU, NI YONG-MING, DONG CHENG, JIA SHUN-LIAN. HIGH PRESSURE SYNTHESIS OF Ca DOPED (RPr)-123 SUPERCONDUCTORS. Acta Physica Sinica, 2001, 50(9): 1783-1786. doi: 10.7498/aps.50.1783
Metrics
  • Abstract views:  7790
  • PDF Downloads:  360
  • Cited By: 0
Publishing process
  • Received Date:  04 May 2018
  • Accepted Date:  29 May 2018
  • Published Online:  05 August 2018

/

返回文章
返回
Baidu
map