Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of Bi2Te3(111) and Al2O3(0001) substrates on electronic and topological properties of Bi(111) bilayer

Sun Hai-Ming

Citation:

Effects of Bi2Te3(111) and Al2O3(0001) substrates on electronic and topological properties of Bi(111) bilayer

Sun Hai-Ming
cstr: 32037.14.aps.71.20220060
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The bilayer and thin films of Bi(111) have demonstrated novel topological properties. Here, we investigate the electronic structures of Bi/Bi2Te3(111) and Bi/Al2O3(0001) by combining first-principles and tight-binding approximation calculations. Our results show that the Bi(111) bilayer is a semiconductor with a gap of about 0.2 eV. Its electronic states are strongly disturbed by the interaction with Bi2Te3(111) thin films, no matter whether the substrate has a band gap or Dirac surface state. Moreover, it is hard to see Rashba-type band splittings in such systems. In contrast, it demonstrates clean and giant Rashba-type splittings as strongly hybridized with insulating Al2O3(0001), which is due to the broken inversion symmetry induced by interfacing and the strong atomic spin-orbit coupling in Bi. Our tight-binding approximation analyses further reveal that the effect of substrate Al2O3(0001) on the band structure of the Bi(111) bilayer is equivalent to the action of external electric field in a range between 0.5 and 0.6 V/Å. Moreover, we find that the strong hybridization between Bi(111) bilayer and the electronic state of the substrate Bi2Te3(111) can lead to a topological phase transition, i.e. the change from a two-dimensional topological insulator into a mediocre insulator. Our study thus provides an insight into the interface-engineering of electronic states of Bi(111) bilayer.
      Corresponding author: Sun Hai-Ming, 201930132023@hunnu.edu.cn
    [1]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [2]

    Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803Google Scholar

    [3]

    Moore J E 2010 Nature 464 194Google Scholar

    [4]

    Hasan M Z, Kane C L, 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [5]

    Qi X L, Zhang S C, 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [6]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [7]

    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766

    [8]

    Murakami S 2006 Phys. Rev. Lett. 97 236805Google Scholar

    [9]

    Liu Z, Liu C X, Wu Y S, Duan W H, Liu Feng, Wu J 2011 Phys. Rev. Lett. 107 136805Google Scholar

    [10]

    Hirahara T, Bihlmayer G, Sakamoto Y, Yamada M, Miyazaki H, Kimura S, Blügel S, Hasegawa S 2011 Phys. Rev. Lett. 107 166801Google Scholar

    [11]

    Yang F, Miao L, Wang Z F, Yao M Y, Zhu F F, Song Y R, Wang M X, Xu J P, Fedorov A V, Sun Z, Zhang G B, Liu C H, Liu F, Qian D, Gao C L, Jia J F 2012 Phys. Rev. Lett. 109 016801Google Scholar

    [12]

    Chen M, Peng J P, Zhang H M, Wang L L, He K, Ma X C, Xue Q K 2012 Appl. Phys. Lett. 101 081603Google Scholar

    [13]

    Chang C Z, Tang P, Feng X, Li K, Ma X C, Duan W, He K, Xue Q K 2015 Phys. Rev. Lett. 115 136801Google Scholar

    [14]

    Shokri R, Meyerheim H L, Roy S, Mohseni K, Ernst A, Otrokov M M, Chulkov E V, Kirschner J 2015 Phys. Rev. B 91 205430Google Scholar

    [15]

    Yao M Y, Zhu F F, Han C Q, Guan D D, Liu C H, Qian D, Jia J F 2016 Sci. Rep. 6 21326Google Scholar

    [16]

    Schouteden K, Govaerts K, Debehets J, Thupakula U, Chen T, Li Z, Netsou A, Song F Q, Lamoen D, Haesendonck C V, Partoens B, Park K 2016 ACS Nano 10 8778Google Scholar

    [17]

    Su S H, Chuang P Y, Chen S W, Chen H Y, Tung Y, Chen W C, Wang C H, Yang Y W, Huang J C A, Chang T R, Lin H, Jeng H T, Cheng C M, Tsuei K D, Su H L, Wu Y C 2017 Chem. Mater. 29 8992Google Scholar

    [18]

    Zhu H S, Zhou W M, Yarmoff J A 2018 Thin Solid Films 660 343Google Scholar

    [19]

    Zhu H S, Zhou W M, Yarmoff J A 2018 J. Phys. Chem. C 122 16122Google Scholar

    [20]

    胡金平, 何丙辰, 王红兵, 张欢, 黄朝钦, 谢磊, 郭晓, 陈石, 黄寒, 宋飞 2022 72 026101Google Scholar

    Hu J P, He B C, Wang H B, Zhang H, Huang C Q, Xie L, Guo X, Chen S, Huang H, Song F 2022 Acta Phys. Sin. 72 026101Google Scholar

    [21]

    Chen M, Liu F 2021 Natl. Sci. Rev. 8 nwaa241Google Scholar

    [22]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [23]

    Blochl P E 1994 Phys. Rev. B 50 17953 31

    [24]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Grimme S, Antony J, Ehrlich S, Krieg S 2010 J. Chem. Phys. 132 154104Google Scholar

    [27]

    Slater J C, Koster G F 1954 Phys. Rev. 94 1498Google Scholar

    [28]

    Maassena J, Lundstrom M 2013 Appl. Phys. Lett. 102 093103Google Scholar

    [29]

    Acosta C M, Lima M P, Silva A J R D, Fazzio A, Lewenkopf C H 2018 Phys. Rev. B 98 035106Google Scholar

    [30]

    Hirahara T, Nagao T, Matsuda I, Bihlmayer G, Chulkov E V, Koroteev Y M, Echenique P M, Saito M, Hasegawa S 2006 Phys. Rev. Lett. 97 146803Google Scholar

    [31]

    Hirahara T, Nagao T, Matsuda I, Bihlmayer G, Chulkov E V, Koroteev Y M, Hasegawa S 2007 Phys. Rev. B 75 035422Google Scholar

    [32]

    Yu R, Qi X L, Bernevig A, Fang Z, Dai X 2011 Phys. Rev. B 84 075119Google Scholar

  • 图 1  1BL-Bi的几何结构和能带 (a) (b)结构的俯视图和侧视图; (c)平衡体积时的能带; (d) (e)减小和增大晶格常数时的能带结构, 其数值对应Bi2Te3(111)和Al2O3(0001)的晶格常数. (a) 图中的菱形代表原胞, (c)—(e) 图中的虚线代表费米能级

    Figure 1.  Geometric and band structures of 1BL-Bi: (a) (b) Top and side views of the structure; (c) band structure for the equilibrium lattice constant; (d) (e) band structures for a decreased and enlarged lattice constant, respectively. The black box in (a) represents the primitive cell. The dashed lines in (c)–(e) denote the Fermi level.

    图 2  Bi/Bi2Te3异质结界面的结构和能带 左侧给出Bi/1QL-Bi2Te3四种构型(用C1, C2, C3和C4表示)的俯视图和侧视图. Bi/3QL-Bi2Te3与其类似, 差别在于衬底有3个QL. (a) 1QL-Bi2Te3的能带结构; (b) Bi/1QL-Bi2Te3的能带结构; (c) 和 (d) 分别代表将能带投影到1BL-Bi和衬底1QL-Bi2Te3; (e) 1QL-Bi2Te3的能带结构; (f) Bi/3QL-Bi2Te3的能带结构; (g) 和 (h) 分别代表将能带投影到1BL-Bi和衬底3QL-Bi2Te3. 图(c), (d), (g)和(h)给出的是1BL-Bi或者Bi2Te3在异质结能带中所占的权重

    Figure 2.  Geometric and band structures of Bi/Bi2Te3 heterostructures: Left panel shows the geometric structures of four configurations for Bi/1QL-Bi2Te3, which are denoted as C1, C2, C3, and C4, respectively. The geometric structure for Bi/3QL-Bi2Te3 are similar to those for Bi/1QL-Bi2Te3. (a) For the free-standing 1QL-Bi2Te3 and (b) for Bi/1QL-Bi2Te3; (c) and (d) show the layer-projections of the band structure onto 1BL-Bi and 1QL-Bi2Te3, respectively; (e)–(h) corresponding plots for Bi/3QL-Bi2Te3.

    图 3  绝缘体Al2O3对1BL-Bi电子结构的影响 (a) Bi/Al2O3(0001)异质结界面的能带; (b) 异质结能带在1BL-Bi上的投影

    Figure 3.  Effects of insulating Al2O3 on the band structure of 1L-Bi: (a) The band structure of Bi/Al2O3(0001); (b) layer-projection of the band structure onto 1L-Bi.

    图 4  电场对1BL-Bi能带结构的影响 (a) 能带结构的紧束缚近似拟合; (b)—(d)不同电场作用下紧束缚近似计算得到的能带结构

    Figure 4.  Effects of electric field on the band structure of 1L-Bi: (a) Tight-binding fitting of the band structure of 1L-Bi; (b)–(d) band structures of 1L-Bi under different electric fields derived from the tight-binding method.

    图 5  Bi/1QL-Bi2Te3(111)旺尼尔电荷中心的演化

    Figure 5.  Evolution of the Wannier charge center for Bi/1QL-Bi2Te3(111).

    表 1  1BL-Bi的紧束缚近似参数. εα代表α轨道的在位能 (on-site energy); VαβσVαβπ分别代表α 和β轨道形成σ键和π键的跃迁参数. SOC强度λ为1.23 eV

    Table 1.  Tight-binding parameters for 1BL-Bi. εα denotes the on-site energies of orbital α. Vαβσ and (Vαβπ) denotes the hopping parameter for σ(π) bond between orbitals α and β.

    On-site/eV
    εsεpxεpyεpz
    –9.477–1.3830.624–0.154
    Hopping/eV
    VssσVspσVppσVppπ
    1st NN–0.4551.4391.718–0.646
    2nd NN0.0010.3150.168–0.013
    3rd NN0.0190.2780.162–0.123
    4th NN–0.112–0.0960.162–0.067
    5th NN–0.0460.0370.0000.028
    DownLoad: CSV
    Baidu
  • [1]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [2]

    Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803Google Scholar

    [3]

    Moore J E 2010 Nature 464 194Google Scholar

    [4]

    Hasan M Z, Kane C L, 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [5]

    Qi X L, Zhang S C, 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [6]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [7]

    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766

    [8]

    Murakami S 2006 Phys. Rev. Lett. 97 236805Google Scholar

    [9]

    Liu Z, Liu C X, Wu Y S, Duan W H, Liu Feng, Wu J 2011 Phys. Rev. Lett. 107 136805Google Scholar

    [10]

    Hirahara T, Bihlmayer G, Sakamoto Y, Yamada M, Miyazaki H, Kimura S, Blügel S, Hasegawa S 2011 Phys. Rev. Lett. 107 166801Google Scholar

    [11]

    Yang F, Miao L, Wang Z F, Yao M Y, Zhu F F, Song Y R, Wang M X, Xu J P, Fedorov A V, Sun Z, Zhang G B, Liu C H, Liu F, Qian D, Gao C L, Jia J F 2012 Phys. Rev. Lett. 109 016801Google Scholar

    [12]

    Chen M, Peng J P, Zhang H M, Wang L L, He K, Ma X C, Xue Q K 2012 Appl. Phys. Lett. 101 081603Google Scholar

    [13]

    Chang C Z, Tang P, Feng X, Li K, Ma X C, Duan W, He K, Xue Q K 2015 Phys. Rev. Lett. 115 136801Google Scholar

    [14]

    Shokri R, Meyerheim H L, Roy S, Mohseni K, Ernst A, Otrokov M M, Chulkov E V, Kirschner J 2015 Phys. Rev. B 91 205430Google Scholar

    [15]

    Yao M Y, Zhu F F, Han C Q, Guan D D, Liu C H, Qian D, Jia J F 2016 Sci. Rep. 6 21326Google Scholar

    [16]

    Schouteden K, Govaerts K, Debehets J, Thupakula U, Chen T, Li Z, Netsou A, Song F Q, Lamoen D, Haesendonck C V, Partoens B, Park K 2016 ACS Nano 10 8778Google Scholar

    [17]

    Su S H, Chuang P Y, Chen S W, Chen H Y, Tung Y, Chen W C, Wang C H, Yang Y W, Huang J C A, Chang T R, Lin H, Jeng H T, Cheng C M, Tsuei K D, Su H L, Wu Y C 2017 Chem. Mater. 29 8992Google Scholar

    [18]

    Zhu H S, Zhou W M, Yarmoff J A 2018 Thin Solid Films 660 343Google Scholar

    [19]

    Zhu H S, Zhou W M, Yarmoff J A 2018 J. Phys. Chem. C 122 16122Google Scholar

    [20]

    胡金平, 何丙辰, 王红兵, 张欢, 黄朝钦, 谢磊, 郭晓, 陈石, 黄寒, 宋飞 2022 72 026101Google Scholar

    Hu J P, He B C, Wang H B, Zhang H, Huang C Q, Xie L, Guo X, Chen S, Huang H, Song F 2022 Acta Phys. Sin. 72 026101Google Scholar

    [21]

    Chen M, Liu F 2021 Natl. Sci. Rev. 8 nwaa241Google Scholar

    [22]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [23]

    Blochl P E 1994 Phys. Rev. B 50 17953 31

    [24]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Grimme S, Antony J, Ehrlich S, Krieg S 2010 J. Chem. Phys. 132 154104Google Scholar

    [27]

    Slater J C, Koster G F 1954 Phys. Rev. 94 1498Google Scholar

    [28]

    Maassena J, Lundstrom M 2013 Appl. Phys. Lett. 102 093103Google Scholar

    [29]

    Acosta C M, Lima M P, Silva A J R D, Fazzio A, Lewenkopf C H 2018 Phys. Rev. B 98 035106Google Scholar

    [30]

    Hirahara T, Nagao T, Matsuda I, Bihlmayer G, Chulkov E V, Koroteev Y M, Echenique P M, Saito M, Hasegawa S 2006 Phys. Rev. Lett. 97 146803Google Scholar

    [31]

    Hirahara T, Nagao T, Matsuda I, Bihlmayer G, Chulkov E V, Koroteev Y M, Hasegawa S 2007 Phys. Rev. B 75 035422Google Scholar

    [32]

    Yu R, Qi X L, Bernevig A, Fang Z, Dai X 2011 Phys. Rev. B 84 075119Google Scholar

  • [1] LIU Mingjie, TIAN Yali, WANG Yu, LI Xiaoxiao, HE Xiaohu, GONG Ting, SUN Xiaocong, GUO Guqing, QIU Xuanbing, LI Chuanliang. Calculation of $ {\mathrm{O}}^ -_2 $ spectroscopic constants with spin-orbit coupling. Acta Physica Sinica, 2025, 74(2): 023101. doi: 10.7498/aps.74.20241435
    [2] FAN Jingtao, JIA Suotang. Dynamical response of spin frequency spectrum in spin-orbit coupled Bose-Einstein condensate. Acta Physica Sinica, 2025, 74(9): 096701. doi: 10.7498/aps.74.20241783
    [3] BAI Long, ZHANG Rong, ZHANG Lei. Thermoelectric transport of normal metal-double quantum dots-superconductor hybrid system with spin-orbit coupling. Acta Physica Sinica, 2025, 74(10): 107301. doi: 10.7498/aps.74.20241756
    [4] Li Rui, Dou Rong-Long, Gao Ting, Li Qi-Nan, Song Chao-Qun. Theoretical study on the excited states of ICl+ molecular ion including spin-orbit coupling. Acta Physica Sinica, 2025, 74(12): . doi: 10.7498/aps.74.20250510
    [5] Yuan Jia-Wang, Chen Li, Zhang Yun-Bo. Adiabatic elimination theory of multi-level system in spin-orbit coupled Bose-Einstein condensate. Acta Physica Sinica, 2023, 72(21): 216701. doi: 10.7498/aps.72.20231052
    [6] Xing Wei, Li Sheng-Zhou, Sun Jin-Feng, Cao Xu, Zhu Zun-Lue, Li Wen-Tao, Li Yue-Yi, Bai Chun-Xu. Theoretical study on spectroscopic properties of 10 Λ-S and 26 Ω states for AlH molecule. Acta Physica Sinica, 2023, 72(16): 163101. doi: 10.7498/aps.72.20230615
    [7] He Ya-Ping, Chen Ming-Xia, Pan Jie-Feng, Li Dong, Lin Gang-Jun, Huang Xin-Hong. Electron-spin polarization effect in Rashba spin-orbit coupling modulated single-layered semiconductor nanostructure. Acta Physica Sinica, 2023, 72(2): 028503. doi: 10.7498/aps.72.20221381
    [8] Ma Yun-E, Qiao Xin, Gao Rui, Liang Jun-Cheng, Zhang Ai-Xia, Xue Ju-Kui. Tunneling dynamics of tunable spin-orbit coupled Bose-Einstein condensates. Acta Physica Sinica, 2022, 71(21): 210302. doi: 10.7498/aps.71.20220697
    [9] Xing Wei, Li Sheng–Zhou, Sun Jin–Feng, Li Wen–Tao, Zhu Zun–Lüe, Liu Feng. Theoretical study on spectroscopic properties of 8 Λ-S and 23 Ω states for BH molecule. Acta Physica Sinica, 2022, 71(10): 103101. doi: 10.7498/aps.71.20220038
    [10] Zhou Yong-Xiang, Xue Xun. Electron vortices in spin-orbit coupling system. Acta Physica Sinica, 2022, 71(21): 210301. doi: 10.7498/aps.71.20220751
    [11] Hong Lan, Ge Jun, Shuang Shan, Liu Da-Quan. Influence of Rashba effect and Zeeman effect on properties of bound magnetopolaron in an anisotropic quantum dot. Acta Physica Sinica, 2022, 71(1): 016301. doi: 10.7498/aps.71.20210803
    [12] Sun Hai-Ming. Rashba effect and flat band property in one-dimensional helical Se atomic chain. Acta Physica Sinica, 2022, 71(14): 147102. doi: 10.7498/aps.71.20220646
    [13] Su Xin, Huang Tian-Ye, Wang Jun-Zhuan, Liu Yuan, Zheng You-Liao, Shi Yi, Wang Xiao-Mu. Circular photogalvanic effect. Acta Physica Sinica, 2021, 70(13): 138501. doi: 10.7498/aps.70.20210498
    [14] Wang Pan, Zong Yi-Xin, Wen Hong-Yu, Xia Jian-Bai, Wei Zhong-Ming. Electronic properties of two-dimensional Janus atomic crystal. Acta Physica Sinica, 2021, 70(2): 026801. doi: 10.7498/aps.70.20201406
    [15] Li Ji, Liu Bin, Bai Jing, Wang Huan-Yu, He Tian-Chen. Ground state of spin-orbit coupled rotating ferromagnetic Bose-Einstein condensate in toroidal trap. Acta Physica Sinica, 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [16] Wei Ying-Qiang, Xu Lei, Peng Qi-Ming, Wang Jian-Pu. Rashba effect in perovskites and its influences on carrier recombination. Acta Physica Sinica, 2019, 68(15): 158506. doi: 10.7498/aps.68.20190675
    [17] Huang Zhen, Zeng Wen, Gu Yi, Liu Li, Zhou Lu, Zhang Wei-Ping. Double reflection of spin-orbit-coupled cold atoms. Acta Physica Sinica, 2016, 65(16): 164201. doi: 10.7498/aps.65.164201
    [18] Li Zhi, Wang Jian-Zhong. Barrier scattering properties in spin-orbit coupled Bose-Einstein condensate. Acta Physica Sinica, 2013, 62(10): 100306. doi: 10.7498/aps.62.100306
    [19] Zheng Xiao, Chen Jian-Ping, Shao Jia-Li, Bie Li-Dong. Analysis on topological properties of Beijing urban public transit based on complex network theory. Acta Physica Sinica, 2012, 61(19): 190510. doi: 10.7498/aps.61.190510
    [20] Xu Tian-Ning, Wu Hui-Zhen, Sui Cheng-Hua. Rashba effect in PbTe/PbSrTe asymmetric quantum wells. Acta Physica Sinica, 2008, 57(12): 7865-7871. doi: 10.7498/aps.57.7865
Metrics
  • Abstract views:  5895
  • PDF Downloads:  117
  • Cited By: 0
Publishing process
  • Received Date:  10 January 2022
  • Accepted Date:  22 February 2022
  • Available Online:  22 June 2022
  • Published Online:  05 July 2022

/

返回文章
返回
Baidu
map