Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Calculation of $ {\mathrm{O}}^ -_2 $ spectroscopic constants with spin-orbit coupling

LIU Mingjie TIAN Yali WANG Yu LI Xiaoxiao HE Xiaohu GONG Ting SUN Xiaocong GUO Guqing QIU Xuanbing LI Chuanliang

Citation:

Calculation of $ {\mathrm{O}}^ -_2 $ spectroscopic constants with spin-orbit coupling

LIU Mingjie, TIAN Yali, WANG Yu, LI Xiaoxiao, HE Xiaohu, GONG Ting, SUN Xiaocong, GUO Guqing, QIU Xuanbing, LI Chuanliang
cstr: 32037.14.aps.74.20241435
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • A comprehensive theoretical study on the low-energy electronic states of superoxide anion (${\text{O}}_{2}^{{ - }}$) is carried out, focusing on the influence of spin-orbit coupling (SOC) on these states. Utilizing the complete active space self-consistent field (CASSCF) method combined with the multireference configuration interaction method with Davidson correction (MRCI+Q) and employing the aug-cc-pV5Z-dk basis set that includes Douglas-Kroll relativistic corrections, the electron correlation and relativistic effects are accurately considered in this work. This work concentrates on the first and second dissociation limits of ${\text{O}}_{2}^{{ - }}$, calculating the potential energy curves (PECs) and spectroscopic constants of 42 Λ-S states. After introducing SOC, 84 Ω states are obtained through splitting, and their PECs and spectroscopic constants are calculated. Detailed data of the electronic states related to the second dissociation limit are provided. The results show excellent agreement with those in the existing literature, thus validating the reliability of the method. This work confirms through calculations with different basis sets that the double-well structure of the ${{\text{a}}^{4}}{{\Sigma }}_{\text{u}}^{{ - }}$ state originates from avoiding crossing with the ${{2}^{4}}{{\Sigma }}_{\text{u}}^{{ - }}$ state, and finds that the size of the basis set can significantly affect the depth of its potential well. After considering SOC, the total energy of the system decreases, especially for the states with high orbital angular momentum (such as the ${{1}^{2}}{{\Phi }}_{\text{u}}$ and ${{1}^{4}}{{{\Delta }}_{\text{g}}}$ states), leading to energy level splitting and energy reduction, while other spectroscopic constants remain essentially unchanged. These findings provide valuable theoretical insights into the electronic structure and spectroscopic properties of ${\text{O}}_{2}^{{ - }}$, present important reference data for future research in fields such as atmospheric chemistry, plasma physics, and molecular spectroscopy. The datasets provided in this work are available from https://doi.org/10.57760/sciencedb.j00213.00076.
      Corresponding author: LI Chuanliang, clli@tyust.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFF0718100), the National Natural Science Foundation of China (Grant Nos. 62475182, 52076145, 12304403), the Special Fund for Science and Technology Innovation Teams of Shanxi Province, China (Grant No. 202304051001034), the Key Research and Development Program of Shanxi Province, China (Grant No. 202302150101006), the Fundamental Research Program of Shanxi Province, China (Grant Nos. 202303021221147, 202203021222204), and the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices, China (Grant No. KF202305).
    [1]

    Burch D S, Smith S J, Branscomb L M 1958 Phys. Rev. 112 171Google Scholar

    [2]

    Celotta R J, Bennett R A, Hall J L, Siegel M W, Levine J 1972 Phys. Rev. A 6 631Google Scholar

    [3]

    Reid G C 1976 Adv. At. Mol. Phys. 12 375

    [4]

    Travers M J, Cowles D C, Ellison G B 1989 Chem. Phys. Lett. 164 449Google Scholar

    [5]

    Ewig C S, Tellinghuisen J 1991 J. Chem. Phys. 95 1097Google Scholar

    [6]

    Lavrich D J, Buntine M A, Serxner D, Johnson M A 1993 J. Chem. Phys. 99 5910Google Scholar

    [7]

    Karpinska B, Foyer C H, Mhamdi A 2024 J. Exp. Bot. 75 4599Google Scholar

    [8]

    郭金玲, 李常燕, 胡长峰, 沈岳年 2014 化学通报 77 146Google Scholar

    Guo J L, Li C Y, Hu C F, Shen Y N 2014 Chemistry 77 146Google Scholar

    [9]

    戴一佳, 赵亮 2024 食品工业科技 45 388Google Scholar

    Dai Y J, Zhao L 2024 Sci. Technol. Food Ind. 45 388Google Scholar

    [10]

    王兆丰, 代华, 高义霞, 李昭, 杜石勇 2024 南方农业学报 55 578Google Scholar

    Wang Z F, Dai H, Gao Y X, Li Z, Du S Y 2024 J. South. Agric. 55 578Google Scholar

    [11]

    温晓芳 2019 硕士学位论文 (河北: 河北科技大学)

    Wen X F 2019 M. S. Thesis (Hebei: Hebei University of Science and Technology

    [12]

    Wang Q Q, Wu S P, Yang J H, Li J, Sun X Y, Yang T T, Mao G J 2024 Microchem. J. 200 110288Google Scholar

    [13]

    Neuman E W 1934 J. Chem. Phys. 2 31Google Scholar

    [14]

    Land J E, Raith W 1974 Phys. Rev. A 9 1592Google Scholar

    [15]

    Rolfe J 1979 J. Chem. Phys. 70 2463Google Scholar

    [16]

    Chen E S, Wentworth W E, Chen E C M 2002 J. Mol. Struct. 606 1Google Scholar

    [17]

    Dinu L, Groenenboom G C, van der Zande W J 2003 J. Chem. Phys. 119 8864Google Scholar

    [18]

    Das G, Zemke W T, Stwalley W C 1980 J. Chem. Phys. 72 2327Google Scholar

    [19]

    Michels H H 1981 Adv. Chem. Phys. (John Wiley & Sons, Ltd) pp225–340

    [20]

    Børve K J, Siegbahn P E M 1990 Theor. Chim. Acta 77 409Google Scholar

    [21]

    Nakatsuji H, Nakai H 1992 Chem. Phys. Lett. 197 339Google Scholar

    [22]

    González-Luque R, Merchán M, Fülscher M P, Roos B O 1993 Chem. Phys. Lett. 204 323Google Scholar

    [23]

    Chandrasekher C A, Griffith K S, Gellene G I 1996 Int. J. Quantum Chem. 58 29Google Scholar

    [24]

    Sordo J A 2001 J. Chem. Phys. 114 1974Google Scholar

    [25]

    Bruna P J, Grein F 1999 Mol. Phys. 97 321Google Scholar

    [26]

    Stampfuß P, Wenzel W 2003 Chem. Phys. Lett. 370 478Google Scholar

    [27]

    Liu H, Shi D H, Sun J F, Zhu Z L 2016 Mol. Phys. 114 3150Google Scholar

    [28]

    Wang Q X, Wang Y M, Ma R, Yan B 2019 Chin. Phys. B 28 073101Google Scholar

    [29]

    Kreplin D A, Knowles P J, Werner H J 2019 J. Chem. Phys. 150 194106

    [30]

    Knowles P J, Werner H J 1992 Theor. Chim. Acta 84 95Google Scholar

    [31]

    Werner H J, Knowles P J, Manby F R, Black J A, Doll K, Heßelmann A, Kats D, Köhn A, Korona T, Kreplin D A, Ma Q, Miller T F, Mitrushchenkov A, Peterson K A, Polyak I, Rauhut G, Sibaev M 2020 J. Chem. Phys. 152 144107Google Scholar

    [32]

    Moore C E 1971 Atomic Energy Levels as Derived From the Analyses of Optical Spectra: Volume I. 1H to 23V (Gaithersburg, MD: National Institute of Standards and Technology

    [33]

    Le Roy R J 2017 J. Quant. Spectrosc. Radiat. Transfer 186 167Google Scholar

    [34]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. 4) (New York: Springer) pp15–716

    [35]

    Ervin K M, Anusiewicz I, Skurski P, Simons J, Lineberger W C 2003 J. Phys. Chem. A 107 8521Google Scholar

    [36]

    Das G, Wahl A C, Zemke W T, Stwalley W C 1978 J. Chem. Phys. 68 4252Google Scholar

    [37]

    Schiedt J, Weinkauf R 1999 Rev. Sci. Instrum. 70 2277Google Scholar

  • 图 1  ${\text{O}}_{2}^{{ - }}$ Λ-S态PECs (a) 42个Λ-S态的PECs; (b)第一解离极限二重态的PECs; (c)第二解离极限二重态的PECs; (d) 第一解离极限四重态的PECs

    Figure 1.  Λ-S states Potential energy curves for ${\text{O}}_{2}^{{ - }}$: (a) Potential energy curves of 42 Λ-S states; (b) potential energy curves for the first dissociation limit doublet state; (c) potential energy curves for the second dissociation limit doublet state; (d) potential energy curves for the first dissociation limit quartet state.

    图 2  ${\text{O}}_{2}^{{ - }}$ ${{1}^{2}}{{\Sigma }}_{\text{g}}^ + $与 ${{2}^{2}}{{\Sigma }}_{\text{g}}^ + $态PECs

    Figure 2.  ${{1}^{2}}{{\Sigma }}_{\text{g}}^ + $ and ${{2}^{2}}{{\Sigma }}_{\text{g}}^ + $ potential energy curves of ${\text{O}}_{2}^{{ - }}$.

    图 3  不同基组及冻结电子情况下${{\text{a}}^{4}}{{\Sigma }}_{\text{u}}^{{ - }}$和${{2}^{4}}{{\Sigma }}_{\text{u}}^{{ - }}$ PECs的比较

    Figure 3.  Comparison of the potential energy curves of ${{\text{a}}^{4}}{{\Sigma }}_{\text{u}}^{{ - }}$ and ${{2}^{4}}{{\Sigma }}_{\text{u}}^{{ - }}$ for different basis sets and frozen electrons.

    图 4  由42个Λ-S态产生的84个Ω态PECs (a) Ω = 7/2; (b) Ω = 5/2; (c) Ω = 3/2; (d) Ω = 1/2

    Figure 4.  Potential energy curves for 84 Ω states generated by 42 Λ-S states: (a) Ω = 7/2; (b) Ω = 5/2; (c) Ω = 3/2; (d) Ω = 1/2.

    图 5  由4重Π态产生的4个Ω态的PECs (Ω = –1/2)

    Figure 5.  Potential energy curves for 4 Ω states generated by quadruple Π state (Ω = –1/2).

    表 1  ${\text{O}}_{2}^{{ - }}$第一和第二解离极限对应的Λ-S态和Ω态

    Table 1.  Λ-S and Ω states corresponding to the first and second dissociation limits of ${\text{O}}_{2}^{{ - }}$.

    原子态 能级/cm–1 Λ-S态 Ω态
    本文 NIST[32]
    O(2s22p4 3Pg)+O(2s22p5 2Pu) 0 0 ${{\rm X}}{}^{2}{{{\Pi }}_{{\rm g}}}$ ${{\rm X}}{}^{2}{{{\Pi }}_{{{\rm g, 3/2}}}}$, ${{\rm X}}{}^{2}{{{\Pi }}_{{{\rm g, 1/2}}}}$
    ${2}{}^{2}{{{\Pi }}_{{\rm g}}}$ ${2}{}^{2}{{{\Pi }}_{{{\rm g, 3/2}}}}$, ${2}{}^{2}{{{\Pi }}_{{{\rm g, 1/2}}}}$
    ${1}{}^{2}{{{\Delta }}_{{\rm g}}}$ ${1}{}^{2}{{{\Delta }}_{{{\rm g, 5/2}}}}$, ${1}{}^{2}{{{\Delta }}_{{{\rm g, 3/2}}}}$
    ${{1}^{2}}{{\Sigma }}_{{\rm g}}^{+}$ ${{1}^{2}}{{\Sigma }}_{{{\rm g, 1/2}}}^{+}$
    ${{1}^{2}}{{\Sigma }}_{{\rm g}}^{{ - }}$ ${{1}^{2}}{{\Sigma }}_{{{\rm g, 1/2}}}^{{ - }}$
    ${{2}^{2}}{{\Sigma }}_{{\rm g}}^{{ - }}$ ${{2}^{2}}{{\Sigma }}_{{{\rm g, 1/2}}}^{{ - }}$
    ${{\rm A}}{}^{2}{{{\Pi }}_{{\rm u}}}$ ${{\rm A}}{}^{2}{{{\Pi }}_{{{\rm u, 1/2}}}}$, ${{\rm A}}{}^{2}{{{\Pi }}_{{{\rm u, 3/2}}}}$
    ${2}{}^{2}{{{\Pi }}_{{\rm u}}}$ ${2}{}^{2}{{{\Pi }}_{{{\rm u, 1/2}}}}$, ${2}{}^{2}{{{\Pi }}_{{{\rm u, 3/2}}}}$
    ${1}{}^{2}{\Delta _{{\rm u}}}$ ${1}{}^{2}{\Delta _{{{\rm u, 5/2}}}}$, ${1}{}^{2}{\Delta _{{{\rm u, 3/2}}}}$
    ${{1}^{2}}{{\Sigma }}_{{\rm u}}^{+}$ ${{1}^{2}}{{\Sigma }}_{{{\rm u, 1/2}}}^{+}$
    ${{1}^{2}}{{\Sigma }}_{{\rm u}}^{{ - }}$ ${{1}^{2}}{{\Sigma }}_{{{\rm u, 1/2}}}^{{ - }}$
    ${{2}^{2}}{{\Sigma }}_{{\rm u}}^{{ - }}$ ${{2}^{2}}{{\Sigma }}_{{{\rm u, 1/2}}}^{{ - }}$
    ${1}{}^{4}{{{\Pi }}_{{\rm g}}}$ ${1}{}^{4}{{{\Pi }}_{{{\rm g, 5/2}}}}$, ${1}{}^{4}{{{\Pi }}_{{{\rm g, 3/2}}}}$, ${1}{}^{4}{{{\Pi }}_{{{\rm g, 1/2}}}}$, ${1}{}^{4}{{{\Pi }}_{{{\rm g, -1/2}}}}$
    ${2}{}^{4}{{{\Pi }}_{{\rm g}}}$ ${2}{}^{4}{{{\Pi }}_{{{\rm g, 5/2}}}}$, ${2}{}^{4}{{{\Pi }}_{{{\rm g, 3/2}}}}$, ${2}{}^{4}{{{\Pi }}_{{{\rm g, 1/2}}}}$, ${2}{}^{4}{{{\Pi }}_{{{\rm g, -1/2}}}}$
    ${1}{}^{4}{{{\Delta }}_{{\rm g}}}$ ${1}{}^{4}{{{\Delta }}_{{{\rm g, 7/2}}}}$, ${1}{}^{4}{{{\Delta }}_{{{\rm g, 5/2}}}}$, ${1}{}^{4}{{{\Delta }}_{{{\rm g, 3/2}}}}$, ${1}{}^{4}{{{\Delta }}_{{{\rm g, 1/2}}}}$
    $ {{1}^{4}}{{\Sigma }}_{{\rm g}}^{+} $ $ {{1}^{4}}{{\Sigma }}_{{{\rm g, 1/2}}}^{+} $, $ {{1}^{4}}{{\Sigma }}_{{{\rm g, 3/2}}}^{+} $
    $ {{1}^{4}}{{\Sigma }}_{{\rm g}}^{{ - }} $ $ {{1}^{4}}{{\Sigma }}_{{{\rm g, 1/2}}}^{{ - }} $, $ {{1}^{4}}{{\Sigma }}_{{{\rm g, 3/2}}}^{{ - }} $
    $ {{2}^{4}}{{\Sigma }}_{{\rm g}}^{{ - }} $ $ {{2}^{4}}{{\Sigma }}_{{{\rm g, 1/2}}}^{{ - }} $, $ {{2}^{4}}{{\Sigma }}_{{{\rm g, 3/2}}}^{{ - }} $
    ${1}{}^{4}{{{\Pi }}_{{\rm u}}}$ ${1}{}^{4}{{{\Pi }}_{{{\rm u, 5/2}}}}$, ${1}{}^{4}{{{\Pi }}_{{{\rm u, 3/2}}}}$, ${1}{}^{4}{{{\Pi }}_{{{\rm u, 1/2}}}}$, ${1}{}^{4}{{{\Pi }}_{{{\rm u, -1/2}}}}$
    ${2}{}^{4}{{{\Pi }}_{{\rm u}}}$ ${2}{}^{4}{{{\Pi }}_{{{\rm u, 5/2}}}}$, ${2}{}^{4}{{{\Pi }}_{{{\rm u, 3/2}}}}$, ${2}{}^{4}{{{\Pi }}_{{{\rm u, 1/2}}}}$, ${2}{}^{4}{{{\Pi }}_{{{\rm u, -1/2}}}}$
    ${1}{}^{4}{{{\Delta }}_{{\rm u}}}$ $1^4\Delta_{\rm u, 7/2}, 1^4\Delta_{\rm u, 5/2},1^4\Delta_{\rm u, 3/2}, 1^4\Delta_{\rm u, 1/2} $
    $ {{1}^{4}}{{\Sigma }}_{{\rm u}}^{+} $ $ {1}^{4}{\Sigma}_{{\rm u}, {\rm 1/2}}^{+} $, $ {1}^{4}{\Sigma}_{{\rm u}, {\rm 3/2}}^{+} $
    ${{{\rm a}}^{4}}{{\Sigma }}_{{\rm u}}^{{ - }}$ $ {{\rm a}}^{4}{\Sigma}_{{\rm u}, {\rm 1/2}}^{-} $, $ {{\rm a}}^{4}{\Sigma}_{{\rm u}, {\rm 3/2}}^{-} $
    ${{2}^{4}}{{\Sigma }}_{{\rm u}}^{{ - }}$ $ {2}^{4}{{\Sigma}}_{{\rm u}, {1/2}}^{-} $, $ {2}^{4}{{ \Sigma}}_{{\rm u}, {3/2}}^{-} $
    O(2s22p4 1Dg)+O(2s22p5 2Pu) 15878.24 15867.86 ${3}{}^{2}{{{\Pi }}_{{\rm g}}}$ ${3}{}^{2}{{{\Pi }}_{{{\rm g, 3/2}}}}$, ${3}{}^{2}{{{\Pi }}_{{{\rm g, 1/2}}}}$
    ${4}{}^{2}{{{\Pi }}_{{\rm g}}}$ ${4}{}^{2}{{{\Pi }}_{{{\rm g, 3/2}}}}$, ${4}{}^{2}{{{\Pi }}_{{{\rm g, 1/2}}}}$
    ${5}{}^{2}{{{\Pi }}_{{\rm g}}}$ $5{}^{2}{{{\Pi }}_{{{\rm g, 3/2}}}}$, ${5}{}^{2}{{{\Pi }}_{{{\rm g, 1/2}}}}$
    ${1}{}^{2}{{\Phi }}_{{\rm g}}$ ${1}{}^{2}{{\Phi }}_{{{\rm g, 7/2}}}$, ${1}{}^{2}{{\Phi }}_{{{\rm g, 5/2}}}$
    ${2}{}^{2}{{{\Delta }}_{{\rm g}}}$ ${2}{}^{2}{{{\Delta }}_{{{\rm g, 5/2}}}}$, ${2}{}^{2}{{{\Delta }}_{{{\rm g, 3/2}}}}$
    ${3}{}^{2}{{{\Delta }}_{{\rm g}}}$ ${3}{}^{2}{{{\Delta }}_{{{\rm g, 5/2}}}}$, ${3}{}^{2}{{{\Delta }}_{{{\rm g, 3/2}}}}$
    ${{2}^{2}}{{\Sigma }}_{{\rm g}}^{+}$ $ {2}^{2}{\Sigma}_{{\rm g}, {\rm 1/2}}^{+} $
    ${{3}^{2}}{{\Sigma }}_{{\rm g}}^{+}$ $ {3}^{2}{\Sigma}_{{\rm g}, {\rm 1/2}}^{+} $
    ${{3}^{2}}{{\Sigma }}_{{\rm g}}^{{ - }}$ $ {3}^{2}{\Sigma}_{{\rm g}, {\rm 1/2}}^{-} $
    ${3}{}^{2}{{{\Pi }}_{{\rm u}}}$ ${3}{}^{2}{{{\Pi }}_{{{\rm u, 3/2}}}}$, ${3}{}^{2}{{{\Pi }}_{{{\rm u, 1/2}}}}$
    ${4}{}^{2}{{{\Pi }}_{{\rm u}}}$ ${4}{}^{2}{{{\Pi }}_{{{\rm u, 3/2}}}}$, ${4}{}^{2}{{{\Pi }}_{{{\rm u, 1/2}}}}$
    ${5}{}^{2}{{{\Pi }}_{{\rm u}}}$ ${5}{}^{2}{{{\Pi }}_{{{\rm u, 3/2}}}}$, ${5}{}^{2}{{{\Pi }}_{{{\rm u, 1/2}}}}$
    ${1}{}^{2}{{\Phi }}_{{\rm u}}$ ${1}{}^{2}{{\Phi }}_{{{\rm u, 7/2}}}$, ${1}{}^{2}{{\Phi }}_{{{\rm u, 5/2}}}$
    ${2}{}^{2}{{{\Delta }}_{{\rm u}}}$ ${2}{}^{2}{{{\Delta }}_{{{\rm u, 5/2}}}}$, ${2}{}^{2}{{{\Delta }}_{{{\rm u, 3/2}}}}$
    ${3}{}^{2}{{{\Delta }}_{{\rm u}}}$ ${3}{}^{2}{{{\Delta }}_{{{\rm u, 5/2}}}}$, ${3}{}^{2}{{{\Delta }}_{{{\rm u, 3/2}}}}$
    ${{2}^{2}}{{\Sigma }}_{{\rm u}}^{+}$ $ {2}^{2}{\Sigma}_{{\rm u}, {\rm 1/2}}^{+} $
    ${{3}^{2}}{{\Sigma }}_{{\rm u}}^{+}$ $ {3}^{2}{\Sigma}_{{\rm u}, {\rm 1/2}}^{+} $
    ${{3}^{2}}{{\Sigma }}_{{\rm u}}^{{ - }}$ $ {3}^{2}{\Sigma}_{{\rm u}, {\rm 1/2}}^{-} $
    DownLoad: CSV

    表 2  第一和第二解离极限束缚Λ-S态在其Re处的主要电子组态

    Table 2.  Main electronic configurations of bound Λ-S states at Re in the first and second dissociation limits.

    $\Lambda$-S态 $\Lambda$-S态在$R_{e}$处的主要组态
    ${\mathrm{X}}^{2}\Pi_{\mathrm{g}}$ $3\sigma_{\mathrm{g}}^{2}1\pi_{\mathrm{u}}^{4}1\pi_{\mathrm{g}}^{3}3\sigma_{\mathrm{u}}^{0}$ (98.05%)
    $1^{2}\Sigma^+_{\mathrm{g}}$ $3\sigma_{\mathrm{g}}^{1}1\pi_{\mathrm{u}}^{4}1\pi_{\mathrm{g}}^{4}3\sigma_{\mathrm{u}}^{0}$ (96.32%)
    $1^{2}\Sigma^-_{\mathrm{g}}$ $3\sigma_{\mathrm{g}}^{2}1\pi_{\mathrm{u}}^{3}1\pi_{\mathrm{g}}^{3}3\sigma_{\mathrm{u}}^{1}$ (97.30%)
    ${\mathrm{A}}^{2}\Pi_{\mathrm{u}}$ $3\sigma_{\mathrm{g}}^{2}1\pi_{\mathrm{u}}^{4}1\pi_{\mathrm{g}}^{3}3\sigma_{\mathrm{u}}^{0}$ (92.88%)
    $1^{2}\Delta_{\mathrm{u}}$ $3\sigma_{\mathrm{g}}^{2}1\pi_{\mathrm{u}}^{4}1\pi_{\mathrm{g}}^{2}3\sigma_{\mathrm{u}}^{1}$ (60.17%)$3\sigma_{\mathrm{g}}^{2}1\pi_{\mathrm{u}}^{2}1\pi_{\mathrm{g}}^{4}3\sigma_{\mathrm{u}}^{1}$ (34.59%)
    $1^{2}\Sigma ^-_{\mathrm{u}}$ $3\sigma_{\mathrm{g}}^{2}1\pi_{\mathrm{u}}^{4}1\pi_{\mathrm{g}}^{2}3\sigma_{\mathrm{u}}^{1}$ (73.86%)
    $1^{4}\Pi_{\mathrm{g}}$ $3\sigma_{\mathrm{g}}^{1}1\pi_{\mathrm{u}}^{3}1\pi_{\mathrm{g}}^{4}3\sigma_{\mathrm{u}}^{1}$ (99.97%)
    $1^{4}\Delta_{\mathrm{g}}$ $3\sigma_{\mathrm{g}}^{2}1\pi_{\mathrm{u}}^{3}1\pi_{\mathrm{g}}^{3}3\sigma_{\mathrm{u}}^{1}$ (70.71%)
    $1^{4}\Sigma^+_{\mathrm{g}}$ $3\sigma_{\mathrm{g}}^{2}1\pi_{\mathrm{u}}^{3}1\pi_{\mathrm{g}}^{3}3\sigma_{\mathrm{u}}^{1}$ (70.71%)
    $1^{4}\Sigma^-_{\mathrm{g}}$ $3\sigma_{\mathrm{g}}^{1}1\pi_{\mathrm{u}}^{4}1\pi_{\mathrm{g}}^{2}3\sigma_{\mathrm{u}}^{2}$ (69.48%)$3\sigma_{\mathrm{g}}^{2}1\pi_{\mathrm{u}}^{3}1\pi_{\mathrm{g}}^{3}3\sigma_{\mathrm{u}}^{1}$ (48.39%)
    $1^{4}\Pi_{\mathrm{u}}$ $3\sigma_{\mathrm{g}}^{1}1\pi_{\mathrm{u}}^{4}1\pi_{\mathrm{g}}^{3}3\sigma_{\mathrm{u}}^{1}$ (99.85%)
    $2^{4}\Pi_{\mathrm{u}}$ $3\sigma_{\mathrm{g}}^{2}1\pi_{\mathrm{u}}^{3}1\pi_{\mathrm{g}}^{2}3\sigma_{\mathrm{u}}^{2}$ (99.87%)
    ${\mathrm{a}}^{4}\Sigma^-_{\mathrm{u}}$ (1st well) $3\sigma_{\mathrm{g}}^{2}1\pi_{\mathrm{u}}^{4}1\pi_{\mathrm{g}}^{2}3\sigma_{\mathrm{u}}^{1}$ (97.21%)
    ${\mathrm{a}}^{4}\Sigma^-_{\mathrm{u}}$ (2nd well) $3\sigma_{\mathrm{g}}^{2}1\pi_{\mathrm{u}}^{4}1\pi_{\mathrm{g}}^{2}3\sigma_{\mathrm{u}}^{1}$ (61.53%)$3\sigma_{\mathrm{g}}^{2}1\pi_{\mathrm{u}}^{3}1\pi_{\mathrm{g}}^{4}3\sigma_{\mathrm{u}}^{1}$ (32.34%)
    $3^{2}\Pi_{\mathrm{g}}$ $3\sigma_{\mathrm{g}}^{1}1\pi_{\mathrm{u}}^{3}1\pi_{\mathrm{g}}^{4}3\sigma_{\mathrm{u}}^{1}$ (63.92%)
    $2^{2}\Delta_{\mathrm{g}}$ $3\sigma_{\mathrm{g}}^{1}1\pi_{\mathrm{u}}^{4}1\pi_{\mathrm{g}}^{2}3\sigma_{\mathrm{u}}^{2}$ (50.21%) $3\sigma_{\mathrm{g}}^{2}1\pi_{\mathrm{u}}^{3}1\pi_{\mathrm{g}}^{3}3\sigma_{\mathrm{u}}^{1}$ (35.45%)
    $2^{2}\Sigma^+_{\mathrm{g}}$ $3\sigma_{\mathrm{g}}^{2}1\pi_{\mathrm{u}}^{3}1\pi_{\mathrm{g}}^{3}3\sigma_{\mathrm{u}}^{1}$ (85.66%)
    $3^{2}\Sigma^+_{\mathrm{g}}$ $3\sigma_{\mathrm{g}}^{2}1\pi_{\mathrm{u}}^{3}1\pi_{\mathrm{g}}^{3}3\sigma_{\mathrm{u}}^{1}$ (42.42%)$3\sigma_{\mathrm{g}}^{1}1\pi_{\mathrm{u}}^{2}1\pi_{\mathrm{g}}^{4}3\sigma_{\mathrm{u}}^{2}$ (35.42%)$3\sigma_{\mathrm{g}}^{1}1\pi_{\mathrm{u}}^{4}1\pi_{\mathrm{g}}^{2}3\sigma_{\mathrm{u}}^{2}$ (29.42%)
    $3^{2}\Pi_{\mathrm{u}}$ $3\sigma_{\mathrm{g}}^{1}1\pi_{\mathrm{u}}^{4}1\pi_{\mathrm{g}}^{3}3\sigma_{\mathrm{u}}^{1}$ (73.79%)$3\sigma_{\mathrm{g}}^{2}1\pi_{\mathrm{u}}^{3}1\pi_{\mathrm{g}}^{4}3\sigma_{\mathrm{u}}^{0}$ (30.12%)
    $1^{2}\Phi_{\mathrm{u}}$ $3\sigma_{\mathrm{g}}^{2}1\pi_{\mathrm{u}}^{3}1\pi_{\mathrm{g}}^{2}3\sigma_{\mathrm{u}}^{2}$ (50.00%)
    $2^{2}\Delta_{\mathrm{u}}$ $3\sigma_{\mathrm{g}}^{1}1\pi_{\mathrm{u}}^{3}1\pi_{\mathrm{g}}^{3}3\sigma_{\mathrm{u}}^{2}$ (49.87%)$3\sigma_{\mathrm{g}}^{2}1\pi_{\mathrm{u}}^{4}1\pi_{\mathrm{g}}^{2}3\sigma_{\mathrm{u}}^{1}$ (28.13%) $3\sigma_{\mathrm{g}}^{2}1\pi_{\mathrm{u}}^{2}1\pi_{\mathrm{g}}^{4}3\sigma_{\mathrm{u}}^{1}$ (21.31%)
    $3^{2}\Sigma ^+_{\mathrm{u}}$ $3\sigma_{\mathrm{g}}^{1}1\pi_{\mathrm{u}}^{3}1\pi_{\mathrm{g}}^{3}3\sigma_{\mathrm{u}}^{2}$ (40.05%)$3\sigma_{\mathrm{g}}^{2}1\pi_{\mathrm{u}}^{4}1\pi_{\mathrm{g}}^{2}3\sigma_{\mathrm{u}}^{1}$ (37.78%) $3\sigma_{\mathrm{g}}^{2}1\pi_{\mathrm{u}}^{2}1\pi_{\mathrm{g}}^{4}3\sigma_{\mathrm{u}}^{1}$ (30.08%)
    DownLoad: CSV

    表 3  ${{\text{X}}^{2}}{{{\Pi }}_{\text{g}}}$态和${{\text{A}}^{2}}{{{\Pi }}_{\text{u}}}$态的光谱常数

    Table 3.  Spectroscopic constants for the ${{\text{X}}^{2}}{{{\Pi }}_{\text{g}}}$ and ${{\text{A}}^{2}}{{{\Pi }}_{\text{u}}}$ states.

    Te/cm–1 Re/nm ωe/cm–1 ωeχe/cm–1 Be/cm–1 αe/(102 cm–1) De/eV
    ${{\text{X}}^{2}}{{{\Pi }}_{\text{g}}}$ 本文 0 0.1350 1073.6 7.8 1.1526 1.45 4.2284
    Cal.[27] 0 0.1346 1122.2 8.8 1.1601 1.31 4.2764
    Exp.[35] 0 0.1348(8) 1108(20) [9] 1.1610 4.1724
    Exp.[6] 0 4.2484
    Exp.[34] 0 0.135 1090.0 8.0(1) 4.1573
    Exp.[4] 0 0.1347(5) 1073(50)
    Cal.[21] 0 0.144 1010.0 4.0000
    Cal.[24] 0 0.1348 1132.0 4.0762
    Cal.[35] 0 0.1356 1112.0
    Cal.[36] 0 0.1356 1098.0 9.0 1.1350 1.51 4.1290
    Cal.[18] 0 0.1352 1130.0 12.7 1.1430 1.56 4.2100
    Cal.[5] 0 0.1354 1163.0 9.2
    Cal.[20] 0 0.1365 3.9300
    Cal.[37] 0 0.1373 1065.0 8.8
    Cal.[22] 0 0.1362 1107.2 13.0 1.1361 1.37 4.0560
    ${{\text{A}}^{2}}{{{\Pi }}_{\text{u}}}$ 本文 25775.21 0.1790 547.2 6.9 0.6562 0.91 1.0327
    Cal.[27] 25707.72 0.1787 553.2 6.8 0.6721 1.45 0.9731
    Exp.[34] (25300.00) (574.5) (7.1)
    Exp.[15] 27310.00 0.1730 592.0 6.0
    Exp.[6] 0.1680 0.77±0.15
    Cal.[36] 0.1828 484.6 11.1 0.6260 1.37 0.7550
    Cal.[18] 27400.00 0.1817 506.3 10.4 0.6330 1.27 0.8130
    Cal.[19] 23632.04 0.1920 452.1 4.0 0.5700 0.79 1.2300
    Cal.[5] 28580.00 0.1743 604.0 6.0
    Cal.[35] 27342.18 0.1758 557.0
    Cal.[25] 25003.18 0.1806 535.0 8.9
    Cal.[20] 0.1847 0.7500
    DownLoad: CSV

    表 4  第一解离极限5个束缚二重态的光谱常数

    Table 4.  Spectroscopic constants for five bound doublet states in the first dissociation limit.

    Te/cm–1 Re/nm ωe/cm–1 ωeχe/cm–1 Be/cm–1 102αe/cm–1 De/eV
    ${{1}^{2}}{{{\Delta }}_{\text{u}}}$ 本文 25773.25 0.1949 423.2 6.7 0.5535 1.01 1.0501
    Cal.[27] 25744.15 0.1948 426.4 6.4 0.5558 1.03 1.0636
    Cal.[19] 22664.17 0.1980 524.7 4.8 0.5400 0.65 1.3500
    ${{1}^{2}}{{\Sigma }}_{\text{g}}^ + $ 本文 37694.72 0.1761 530.9 3.7 0.6779 1.85 0.1445
    Cal.[27] (1st well) 36812.48 0.1758 526.7 2.5 0.6977 5.05 0.1019
    Cal.[27] (2nd well) 34143.01 0.6343 8.9 1.3 0.0484 0.19 0.0074
    Cal.[19] 39682.46 0.1950 603.2 24.1 0.5500 1.95 1.1400
    Cal.[25] 38391.98 0.1776 538.0 5.0
    ${{1}^{2}}{{\Sigma }}_{\text{u}}^ + $ 本文 27050.77 0.2039 366.8 6.0 0.5056 0.99 0.8917
    Cal.[27] 27043.01 0.2027 366.2 2.1 0.5121 0.92 0.9121
    Cal.[19] 23228.76 0.2000 514.4 4.9 0.5200 0.63 1.2800
    ${{1}^{2}}{{\Sigma }}_{\text{g}}^{{ - }}$ 本文 27485.00 0.2156 361.3 5.8 0.4523 0.88 0.8379
    Cal.[27] 27540.34 0.2161 358.9 5.7 0.4511 0.95 0.8087
    Cal.[19] 24357.93 0.2180 451.5 3.5 0.4400 0.45 1.1400
    ${{1}^{2}}{{\Sigma }}_{\text{u}}^{{ - }}$ 本文 29701.21 0.1914 434.8 8.2 0.5738 0.94 0.5633
    Cal.[27] 29783.15 0.1912 447.1 7.2 0.5762 1.01 0.3411
    Cal.[36] 0.2010 439.0 10.0 0.5190 1.00 0.4000
    Cal.[19] 30407.09 0.1990 484.4 12.9 0.5300 1.04 0.3900
    DownLoad: CSV

    表 5  第一解离极限7个束缚四重态的光谱常数

    Table 5.  Spectroscopic constants of seven bound quartet states in the first dissociation limit.

    Te/cm–1 Re/nm ωe/cm–1 ωeχe/cm–1 Be/cm–1 αe/(102 cm–1) De/eV
    ${{\text{a}}^{4}}{{\Sigma }}_{\text{u}}^{{ - }}$ 本文(1st well) 16385.20 0.1200 1612.7 9.3 1.4591 1.64 1.0826
    Cal.[27] 9661.49 0.1194 1612.3 9.9 2.1694 50.24 1.8791
    本文(2nd well) 18779.71 0.1837 546.3 6.2 0.6226 0.46 1.2756
    Cal.[27] 18854.63 0.1832 546.1 6.0 0.6284 0.86 1.6961
    Cal.[36] 19357.30 0.1850 582.0 9.6 0.6080 1.00 1.6700
    Cal.[19] 16534.36 0.1880 604.8 3.4 0.6000 0.61 2.0700
    Cal.[5] 22540.00 0.1846 572.0 5.6
    Cal.[35] 19357.30 0.1808 569.0
    Cal.[25] 16534.36 0.1880 604.8 3.4 0.6000 0.61 2.1100
    ${{1}^{4}}{{{\Delta }}_{\text{g}}}$ 本文 25061.91 0.2132 390.3 3.4 0.4625 0.82 1.1346
    Cal.[27] 25032.62 0.2126 397.2 5.7 0.4664 0.81 1.1131
    Cal.[19] 20970.41 0.2120 503.7 2.9 0.4700 0.39 1.5300
    ${{1}^{4}}{{\Sigma }}_{\text{g}}^{+}$ 本文 25289.44 0.2143 383.8 5.5 0.4579 0.81 1.1064
    Cal.[27] 25324.30 0.2134 391.7 5.5 0.4628 0.81 1.1371
    Cal.[19] 21051.06 0.2130 504.1 3.0 0.4600 0.37 1.5500
    ${{1}^{4}}{{{\Pi }}_{\text{u}}}$ 本文 31129.29 0.2408 233.0 5.7 0.3626 1.01 0.3675
    Cal.[27] 31221.58 0.2389 240.6 5.7 0.3695 1.01 0.3806
    Exp.[34] 97800.00 1044.0 10.0
    Cal.[19] 31052.33 0.2480 345.6 8.9 0.3400 0.04 0.3100
    ${{1}^{4}}{{\Sigma }}_{\text{g}}^{{ - }}$ 本文 33621.36 0.2792 112.1 6.7 0.2696 1.53 0.0684
    Cal.[27] 33784.61 0.2784 118.2 6.7 0.2729 1.41 0.0385
    ${{2}^{4}}{{{\Pi }}_{\text{u}}}$ 本文 33819.65 0.3045 94.5 5.4 0.2268 1.27 0.0398
    Cal.[27] 33914.10 0.4770 151.1 42.6 0.0813 41.48 0.0443
    ${{1}^{4}}{{{\Pi }}_{\text{g}}}$ 本文 34022.34 0.4769 1.1 4.2 0.0925 3.28 0.0088
    Cal.[27] 34163.64 0.4586 55.6 8.3 0.0995 1.23 0.0134
    DownLoad: CSV

    表 6  第二解离极限8个束缚态的光谱常数

    Table 6.  Spectroscopic constants of eight bound states in the second dissociation limit.

    Te/cm–1 Re/nm ωe/cm–1 ωeχe/cm–1 Be/cm–1 αe/(102 cm–1) De/eV
    ${{3}^{2}}{{{\Pi }}_{\text{g}}}$ 48109.82 0.2896 160.7 3.8 0.2508 0.62 0.2048
    ${{2}^{2}}{{{\Delta }}_{\text{g}}}$ 48397.03 0.2812 131.1 2.2 0.2659 0.59 0.1839
    ${{2}^{2}}{{\Sigma }}_{\text{g}}^{+}$ 37199.41 0.1760 508.0 5.4 0.6787 1.12 1.5565
    ${{3}^{2}}{{\Sigma }}_{\text{g}}^{+}$ 48872.32 0.3153 128.7 3.9 0.2115 0.72 0.1573
    ${{3}^{2}}{{{\Pi }}_{\text{u}}}$ 45234.02 0.2303 296.8 4.9 0.3965 1.01 0.5552
    ${{1}^{2}}{{\Phi }}_{\text{u}}$ 49874.49 0.3158 73.4 5.6 0.2109 1.68 0.0258
    ${{2}^{2}}{{{\Delta }}_{\text{u}}}$ 49752.52 0.6162 54.6 1.6 0.0554 0.44 0.0290
    ${{3}^{2}}{{\Sigma }}_{\text{u}}^{+}$ 48753.89 0.3139 135.9 3.9 0.2134 0.67 0.1268
    DownLoad: CSV

    表 7  由${\text{O}}_{2}^{{ - }}$第一解离极限5个Π态产生的16个Ω态的光谱常数

    Table 7.  Spectroscopic constants of the 16 Ω states generated by the 5 Π states in the first dissociation limit of the ${\text{O}}_{2}^{{ - }}$.

    Te/cm–1 Re/nm ωe/cm–1 Be/cm–1 De/eV
    ${{\text{X}}^{2}}{{{\Pi }}_{{\text{g, 3/2}}}}$ 本文 0 0.1354 1083.07 1.1471 4.2520
    Cal.[27] 0 0.1353 1123.34 4.2663
    ${{\text{X}}^{2}}{{{\Pi }}_{{\text{g, 1/2}}}}$ 本文 166.72 0.1353 1078.97 1.1481 4.2405
    Cal.[27] 154.29 0.1353 1093.64 4.2485
    ${{\text{A}}^{2}}{{{\Pi }}_{{\text{u, 1/2}}}}$ 本文 26008.90 0.1810 547.04 0.6412 1.0273
    Cal.[27] 25725.94 0.1785 550.50 0.9681
    ${{\text{A}}^{2}}{{{\Pi }}_{{\text{u, 3/2}}}}$ 本文 26131.12 0.1811 547.20 0.6410 1.0213
    Cal.[27] 25844.45 0.1785 551.40 0.9754
    ${{1}^{4}}{{{\Pi }}_{{\text{g, 5/2}}}}$ 本文 33938.02 0.4862 16.80 0.0889 0.0121
    Cal.[27] 34153.98 0.4573 52.43 0.0135
    ${{1}^{4}}{{{\Pi }}_{{\text{g, 3/2}}}}$ 本文 33985.59 0.4860 16.45 0.0890 0.0122
    Cal.[27] 34217.41 0.4580 50.49 0.0136
    ${{1}^{4}}{{{\Pi }}_{{\text{g, 1/2}}}}$ 本文 34033.17 0.4815 19.32 0.0907 0.0122
    Cal.[27] 34255.16 0.4584 50.87 0.0134
    ${{1}^{4}}{{{\Pi }}_{{\rm {g,-1/2}}}}$ 本文 34080.74 0.4814 19.09 0.0907 0.0122
    Cal.[27] 34267.45 0.4586 52.36 0.0135
    ${{1}^{4}}{{{\Pi }}_{{\rm {u,-1/2}}}}$ 本文 31043.47 0.2408 233.14 0.3627 0.3399
    Cal.[27] 31224.44 0.2388 240.87 0.3844
    ${{1}^{4}}{{{\Pi }}_{{\text{u, 1/2}}}}$ 本文 31092.18 0.2408 233.09 0.3626 0.3397
    Cal.[27] 31273.82 0.2388 240.29 0.3820
    ${{1}^{4}}{{{\Pi }}_{{\text{u, 3/2}}}}$ 本文 31140.89 0.2408 233.05 0.3626 0.3396
    Cal.[27] 31322.32 0.2384 237.18 0.3808
    ${{1}^{4}}{{{\Pi }}_{{\text{u, 5/2}}}}$ 本文 31189.60 0.2408 233.00 0.3626 0.3395
    Cal.[27] 31371.48 0.2384 237.23 0.3799
    ${{2}^{4}}{{{\Pi }}_{{\text{u, - 1/2}}}}$ 本文 33993.00 0.3019 92.79 0.2306 0.0484
    Cal.[27] 33933.85 0.4765 151.63 0.0442
    ${{2}^{4}}{{{\Pi }}_{{\text{u, 1/2}}}}$ 本文 34036.11 0.3096 88.01 0.2194 0.0485
    Cal.[27] 33946.63 0.4786 150.73 0.0432
    ${{2}^{4}}{{{\Pi }}_{{\text{u, 3/2}}}}$ 本文 34079.23 0.3031 93.86 0.2289 0.0434
    Cal.[27] 33967.94 0.4774 153.22 0.0438
    ${{2}^{4}}{{{\Pi }}_{{\text{u, 5/2}}}}$ 本文 34122.35 0.3030 93.97 0.2289 0.0432
    Cal.[27] 34000.35 0.4769 149.84 0.0445
    DownLoad: CSV

    表 8  由${\text{O}}_{2}^{{ - }}$第一解离极限5个Δ态产生的6个Ω态的光谱常数

    Table 8.  Spectroscopic constants of the six Ω states generated by the five Δ states in the first dissociation limit of the ${\text{O}}_{2}^{{ - }}$.

    Te/cm–1 Re/nm ωe/cm–1 Be/cm–1 De/eV
    ${{1}^{2}}{{{\Delta }}_{{\text{u, 5/2}}}}$ 本文 26005.19 0.1960 414.18 0.5471 1.0476
    Cal.[27] 25820.31 0.1948 426.27 1.0660
    ${{1}^{2}}{{{\Delta }}_{{\text{u, 3/2}}}}$ 本文 26017.40 0.1960 414.32 0.5472 1.0525
    Cal.[27] 25894.06 0.1943 423.62 1.0613
    ${{1}^{4}}{{{\Delta }}_{{\text{g, 7/2}}}}$ 本文 25190.59 0.2129 388.26 0.4636 1.1344
    Cal.[27] 25013.30 0.2125 397.39 1.1184
    ${{1}^{4}}{{{\Delta }}_{{\text{g, 5/2}}}}$ 本文 25281.54 0.2127 387.98 0.4647 1.1345
    Cal.[27] 25091.22 0.2126 397.31 1.1146
    ${{1}^{4}}{{{\Delta }}_{{\text{g, 3/2}}}}$ 本文 25372.49 0.2129 390.39 0.4640 1.1345
    Cal.[27] 25211.93 0.2125 395.57 1.1133
    ${{1}^{4}}{{{\Delta }}_{{\text{g, 1/2}}}}$ 本文 25463.44 0.2127 388.44 0.4647 1.1346
    Cal.[27] 25290.28 0.2126 393.75 1.1115
    DownLoad: CSV

    表 9  由${\text{O}}_{2}^{{ - }}$第二解离极限4个Λ-S态产生的8个Ω态的光谱常数

    Table 9.  Spectroscopic constants of the eight Ω states generated by the four Λ-S states in the second dissociation limit of the ${\text{O}}_{2}^{{ - }}$.

    Te/cm–1 Re/nm ωe/cm–1 Be/cm–1 De/eV
    ${{3}^{2}}{{{\Pi }}_{{\text{g, 1/2}}}}$ 48084.30 0.2916 155.27 0.2472 0.1952
    ${{3}^{2}}{{{\Pi }}_{{\text{g, 3/2}}}}$ 48109.85 0.2907 158.14 0.2487 0.2017
    ${{3}^{2}}{{{\Pi }}_{{\text{u, 1/2}}}}$ 45212.53 0.2316 291.66 0.3920 0.5514
    ${{3}^{2}}{{{\Pi }}_{{\text{u, 3/2}}}}$ 45226.50 0.2319 291.93 0.3910 0.5587
    ${{1}^{2}}{{\Phi }}_{{\text{u, 5/2}}}$ 49926.23 0.3158 73.24 0.2108 0.0257
    ${{1}^{2}}{{\Phi }}_{{\text{u, 7/2}}}$ 50055.56 0.3156 73.49 0.2111 0.0259
    ${{2}^{2}}{{{\Delta }}_{{\text{g, 3/2}}}}$ 48942.47 0.2841 126.81 0.2605 0.1671
    ${{2}^{2}}{{{\Delta }}_{{\text{g, 5/2}}}}$ 48997.29 0.2814 130.77 0.2655 0.1672
    DownLoad: CSV
    Baidu
  • [1]

    Burch D S, Smith S J, Branscomb L M 1958 Phys. Rev. 112 171Google Scholar

    [2]

    Celotta R J, Bennett R A, Hall J L, Siegel M W, Levine J 1972 Phys. Rev. A 6 631Google Scholar

    [3]

    Reid G C 1976 Adv. At. Mol. Phys. 12 375

    [4]

    Travers M J, Cowles D C, Ellison G B 1989 Chem. Phys. Lett. 164 449Google Scholar

    [5]

    Ewig C S, Tellinghuisen J 1991 J. Chem. Phys. 95 1097Google Scholar

    [6]

    Lavrich D J, Buntine M A, Serxner D, Johnson M A 1993 J. Chem. Phys. 99 5910Google Scholar

    [7]

    Karpinska B, Foyer C H, Mhamdi A 2024 J. Exp. Bot. 75 4599Google Scholar

    [8]

    郭金玲, 李常燕, 胡长峰, 沈岳年 2014 化学通报 77 146Google Scholar

    Guo J L, Li C Y, Hu C F, Shen Y N 2014 Chemistry 77 146Google Scholar

    [9]

    戴一佳, 赵亮 2024 食品工业科技 45 388Google Scholar

    Dai Y J, Zhao L 2024 Sci. Technol. Food Ind. 45 388Google Scholar

    [10]

    王兆丰, 代华, 高义霞, 李昭, 杜石勇 2024 南方农业学报 55 578Google Scholar

    Wang Z F, Dai H, Gao Y X, Li Z, Du S Y 2024 J. South. Agric. 55 578Google Scholar

    [11]

    温晓芳 2019 硕士学位论文 (河北: 河北科技大学)

    Wen X F 2019 M. S. Thesis (Hebei: Hebei University of Science and Technology

    [12]

    Wang Q Q, Wu S P, Yang J H, Li J, Sun X Y, Yang T T, Mao G J 2024 Microchem. J. 200 110288Google Scholar

    [13]

    Neuman E W 1934 J. Chem. Phys. 2 31Google Scholar

    [14]

    Land J E, Raith W 1974 Phys. Rev. A 9 1592Google Scholar

    [15]

    Rolfe J 1979 J. Chem. Phys. 70 2463Google Scholar

    [16]

    Chen E S, Wentworth W E, Chen E C M 2002 J. Mol. Struct. 606 1Google Scholar

    [17]

    Dinu L, Groenenboom G C, van der Zande W J 2003 J. Chem. Phys. 119 8864Google Scholar

    [18]

    Das G, Zemke W T, Stwalley W C 1980 J. Chem. Phys. 72 2327Google Scholar

    [19]

    Michels H H 1981 Adv. Chem. Phys. (John Wiley & Sons, Ltd) pp225–340

    [20]

    Børve K J, Siegbahn P E M 1990 Theor. Chim. Acta 77 409Google Scholar

    [21]

    Nakatsuji H, Nakai H 1992 Chem. Phys. Lett. 197 339Google Scholar

    [22]

    González-Luque R, Merchán M, Fülscher M P, Roos B O 1993 Chem. Phys. Lett. 204 323Google Scholar

    [23]

    Chandrasekher C A, Griffith K S, Gellene G I 1996 Int. J. Quantum Chem. 58 29Google Scholar

    [24]

    Sordo J A 2001 J. Chem. Phys. 114 1974Google Scholar

    [25]

    Bruna P J, Grein F 1999 Mol. Phys. 97 321Google Scholar

    [26]

    Stampfuß P, Wenzel W 2003 Chem. Phys. Lett. 370 478Google Scholar

    [27]

    Liu H, Shi D H, Sun J F, Zhu Z L 2016 Mol. Phys. 114 3150Google Scholar

    [28]

    Wang Q X, Wang Y M, Ma R, Yan B 2019 Chin. Phys. B 28 073101Google Scholar

    [29]

    Kreplin D A, Knowles P J, Werner H J 2019 J. Chem. Phys. 150 194106

    [30]

    Knowles P J, Werner H J 1992 Theor. Chim. Acta 84 95Google Scholar

    [31]

    Werner H J, Knowles P J, Manby F R, Black J A, Doll K, Heßelmann A, Kats D, Köhn A, Korona T, Kreplin D A, Ma Q, Miller T F, Mitrushchenkov A, Peterson K A, Polyak I, Rauhut G, Sibaev M 2020 J. Chem. Phys. 152 144107Google Scholar

    [32]

    Moore C E 1971 Atomic Energy Levels as Derived From the Analyses of Optical Spectra: Volume I. 1H to 23V (Gaithersburg, MD: National Institute of Standards and Technology

    [33]

    Le Roy R J 2017 J. Quant. Spectrosc. Radiat. Transfer 186 167Google Scholar

    [34]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. 4) (New York: Springer) pp15–716

    [35]

    Ervin K M, Anusiewicz I, Skurski P, Simons J, Lineberger W C 2003 J. Phys. Chem. A 107 8521Google Scholar

    [36]

    Das G, Wahl A C, Zemke W T, Stwalley W C 1978 J. Chem. Phys. 68 4252Google Scholar

    [37]

    Schiedt J, Weinkauf R 1999 Rev. Sci. Instrum. 70 2277Google Scholar

  • [1] Xing Wei, Li Sheng-Zhou, Sun Jin-Feng, Cao Xu, Zhu Zun-Lue, Li Wen-Tao, Li Yue-Yi, Bai Chun-Xu. Theoretical study on spectroscopic properties of 10 Λ-S and 26 Ω states for AlH molecule. Acta Physica Sinica, 2023, 72(16): 163101. doi: 10.7498/aps.72.20230615
    [2] Ma Yun-E, Qiao Xin, Gao Rui, Liang Jun-Cheng, Zhang Ai-Xia, Xue Ju-Kui. Tunneling dynamics of tunable spin-orbit coupled Bose-Einstein condensates. Acta Physica Sinica, 2022, 71(21): 210302. doi: 10.7498/aps.71.20220697
    [3] Sun Hai-Ming. Effects of Bi2Te3(111) and Al2O3(0001) substrates on electronic and topological properties of Bi(111) bilayer. Acta Physica Sinica, 2022, 71(13): 137101. doi: 10.7498/aps.71.20220060
    [4] Zhou Yong-Xiang, Xue Xun. Electron vortices in spin-orbit coupling system. Acta Physica Sinica, 2022, 71(21): 210301. doi: 10.7498/aps.71.20220751
    [5] Xing Wei, Li Sheng–Zhou, Sun Jin–Feng, Li Wen–Tao, Zhu Zun–Lüe, Liu Feng. Theoretical study on spectroscopic properties of 8 Λ-S and 23 Ω states for BH molecule. Acta Physica Sinica, 2022, 71(10): 103101. doi: 10.7498/aps.71.20220038
    [6] Gao Feng, Zhang Hong, Zhang Chang-Zhe, Zhao Wen-Li, Meng Qing-Tian. Accurate theoretical study of potential energy curves, spectroscopic parameters, vibrational energy levels and spin-orbit coupling interaction on SiH+(X1Σ+) ion. Acta Physica Sinica, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [7] Xing Wei, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lüe. icMRCI+Q study on spectroscopic properties and predissociation mechanisms of electronic states of BF+ cation. Acta Physica Sinica, 2018, 67(6): 063301. doi: 10.7498/aps.67.20172114
    [8] Wei Chang-Li,  Liao Hao,  Luo Tai-Sheng,  Ren Yin-Shuan,  Yan Bing. Theoretical study on potential curves and spectroscopic constants of low-lying electronic states of Na2+ cation. Acta Physica Sinica, 2018, 67(24): 243101. doi: 10.7498/aps.67.20181690
    [9] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. icMRCI+Q study on spectroscopic properties of twelve -S states and twenty-three states of the CF+ cation. Acta Physica Sinica, 2016, 65(3): 033102. doi: 10.7498/aps.65.033102
    [10] Li Zhi, Wang Jian-Zhong. Barrier scattering properties in spin-orbit coupled Bose-Einstein condensate. Acta Physica Sinica, 2013, 62(10): 100306. doi: 10.7498/aps.62.100306
    [11] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun Lüe. Potential energy curve and spectroscopic properties of PS (X2Π) radical. Acta Physica Sinica, 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [12] Wang Jie-Min, Feng Heng-Qiang, Sun Jin-Feng, Shi De-Heng, Li Wen-Tao, Zhu Zun-Lüe. A study on spectroscopic parameters of X2+, A2 and B2+ low-lying electronic states of SiN radical. Acta Physica Sinica, 2013, 62(1): 013105. doi: 10.7498/aps.62.013105
    [13] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. MRCI+Q study on spectroscopic parameters and molecular constants of X1Σ+ and A1Π electronic states of the SiSe molecule. Acta Physica Sinica, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [14] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lue. Study on spectroscopic properties of B2 (X3g-, A3u) molecule. Acta Physica Sinica, 2012, 61(20): 203101. doi: 10.7498/aps.61.203101
    [15] Liu Xin-Hao, Lin Jing-Bo, Liu Yan-Hui, Jin Ying-Jiu. First-principles study on the electronic structures, magnetism, and half-metallicity of full-Heusler X2YGa (X=Co, Fe, Ni; Y=V,Cr, Mn) alloys. Acta Physica Sinica, 2011, 60(10): 107104. doi: 10.7498/aps.60.107104
    [16] Sun Jin-Feng, Zhu Zun, Liu Hui, Shi De-Heng. Spectroscopic parameters and molecular constants of CSe(X1Σ+) radical. Acta Physica Sinica, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [17] Liu Hui, Xing Wei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng. Study on spectroscopic parameters and molecular constants of CS+(X2Σ+) and CS+(A2Π) by MRCI. Acta Physica Sinica, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [18] Shi De-Heng, Zhang Jin-Ping, Sun Jin-Feng, Liu Yu-Fang, Zhu Zun-Lüe. Elastic collision between S and D atoms at low temperatures and accurate analytic interaction potential and molecular constants of the SD(X2Π) radical. Acta Physica Sinica, 2009, 58(11): 7646-7653. doi: 10.7498/aps.58.7646
    [19] Shi De-Heng, Liu Yu-Fang, Sun Jin-Feng, Zhang Jin-Ping, Zhu Zun-Lüe. Elastic collisions between O and D atoms at low temperature and accurate analytic potential energy function and molecular constants of the OD(X2Π) radical. Acta Physica Sinica, 2009, 58(4): 2369-2375. doi: 10.7498/aps.58.2369
    [20] Xu Hai-Feng, Guo Ying, Li Qi-Feng, Dai Jing-Hua, Liu Shi-Lin, Ma Xing-Xiao. The spectral assignment for the A2Σ+←X2Π transition of N2O+ ions. Acta Physica Sinica, 2004, 53(4): 1027-1033. doi: 10.7498/aps.53.1027
Metrics
  • Abstract views:  826
  • PDF Downloads:  44
  • Cited By: 0
Publishing process
  • Received Date:  14 October 2024
  • Accepted Date:  28 November 2024
  • Available Online:  02 December 2024
  • Published Online:  20 January 2025

/

返回文章
返回
Baidu
map