Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermoelectric transport of a normal metal-double quantum dots-superconductor hybrid system with spin-orbit coupling

BAI Long ZHANG Rong ZHANG Lei

Citation:

Thermoelectric transport of a normal metal-double quantum dots-superconductor hybrid system with spin-orbit coupling

BAI Long, ZHANG Rong, ZHANG Lei
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The normal metal-quantum dots-superconductor hybrid system is a good platform to study the mechanism of thermoelectric conversion. In terms of non-equilibrium Keldysh Green's function formalism and linear response theory, the charge and spin thermoelectric transport characteristics of a normal-double quantum dot-superconductor hybrid system with spin-orbit coupling are studied in this paper. We deeply discuss the relationship between thermoelectric coefficients and the system parameters, and find both charge and spin thermoelectric coefficients exhibit distinct symmetry characteristics in the parameter space composed of temperature and energy. An increase in temperature leads to a decrease in the conductance within the energy gap, which is attributed to a reduction in Andreev transport. However, outside the energy gap, the conductance gradually increases, and the thermal conductance is gradually enhanced. This is because more quasiparticles outside the energy gap participate in thermoelectric transport, and a large charge thermopower is generated in the region far from the energy gap. It is found that the thermoelectric figure of merit is greater than 1, indicating a strong violation of the Wiedemann-Franz law. With the increase of temperature, the large spin thermopower as well as spin thermoelectric figure of merit can be obtained outside the energy gap. The charge (spin) thermopower and the thermoelectric figure of merit show the rich evolutionary characteristics as functions of the energy level and the Zeeman energy. With the disappearance of the charge thermopower, the spin thermopower still has a finite value, which leads to the emergence of a pure spin Seebeck effect. This is helpful for designing a pure spin current thermoelectric generator. Due to a competitive mechanism between the spin-orbit coupling effect and the Zeeman field, thermoelectric coefficients are decreased with increasing the strength of spin-orbit interaction, but one still can obtain the spin thermoelectric quantities which meet the practical needs by regulating the strength of spin-orbit coupling and the Zeeman energy. The evolution pattern of the thermoelectric coefficients in the energy space indicates that the enhancement of thermoelectric conversion efficiency can be achieved by modulating the energy levels of double quantum dots. In addition, this hybrid system can function as a heat engine to achieve the conversion of heat to work. Although its power and efficiency do not evolve synchronously, in some parameter regions, people can still obtain the thermodynamic performance that meets practical needs. The research results of this paper hold theoretical and practical significance for understanding the thermoelectric transport and thermodynamic performance of hybrid thermoelectric systems.
  • 图 1  混合型双量子点结构模型. N表示与量子点1连接的金属电极, S表示与量子点2连接的超导电极. $t_{c}$为量子点之间的耦合强度, θ为自旋-轨道耦合场${\alpha}$与z轴方向的外磁场B 之间的夹角

    Figure 1.  The model of hybrid double quantum dots, where N is a normal-metal electrode that is attached to the quantum dot 1, and S represents the superconducting electrode that is connected with the quantum dot 2. $t_{c}$ is the interdot coupling strength, and θ denotes the included angle between the spin-orbit coupling field ${\alpha}$ and the external field B along the z axis.

    图 2  (左列)电荷热电系数: (a)电导$G_{c}$、(b)热导$\kappa_{e}$、(c)热功率$S_{c}$和 (d)品质因子$Z_{c}T$作为能级$\varepsilon_{d}$与温度$k_{B}T$的函数. 不同温度条件下, 电导(a')$G_{c}$、(b')热导$\kappa_{e}$、(c')热功率$S_{c}$和 (d')品质因子$Z_{c}T$的截面图被呈现在右列. 其他参数选为$\alpha=0.2\Delta$, $\Delta_{z}=\Delta$以及$\theta=\pi/2$

    Figure 2.  Charge thermoelectric coefficients: (a) conductance $G_{c}$, (b) heat conductance $\kappa_{e}$, (c) thermopower $S_{c}$ and (d) figure of merit $Z_{c}T$ as a function of the energy level$\varepsilon_{d}$ and temperature $k_{B}T$(left column). For different temperatures, the cross sections of (a') conductance $G_{c}$, (b') heat conductance $\kappa_{e}$, (c') thermopower $S_{c}$ and (d') figure of merit $Z_{c}T$ are shown in the right column. The other parameters are $\alpha=0.2\Delta$, $\Delta_{z}=\Delta$, and $\theta=\pi/2$.

    图 3  (左列) 自旋热电系数: (a)热功率$S_{s}$和 (b)品质因子$Z_{s}T$作为能级$\varepsilon_{d}$与温度$k_{B}T$的函数. 不同温度条件下, (a')热功率$S_{s}$和 (b') 品质因子$Z_{s}T$的截面图被呈现在右列. 其他参数选为$\alpha=0.2\Delta$, $\Delta_{z}=\Delta$以及$\theta=\pi/2$

    Figure 3.  Spin thermoelectric coefficients: (a) thermopower $S_{s}$ and (b) figure of merit $Z_{s}T$ as a function of the energy level$\varepsilon_{d}$ and temperature $k_{B}T$(left column). For different temperatures, the cross sections of (a') thermopower $S_{c}$ and (b') figure of merit $Z_{s}T$ are shown in the right column. The other parameters are $\alpha=0.2\Delta$, $\Delta_{z}=1\Delta$, and $\theta=\pi/2$.

    图 4  (a)电荷热功率$S_{c}$和(b)自旋热功率$S_{s}$作为能级$\varepsilon_{d}$与塞曼能$\Delta_{z}$的函数. (c)不同塞曼能条件下, $S_{c}$(实线)和$S_{s}$(虚线)作为$\varepsilon_{d}$的函数. (d)电荷品质因子$Z_{c}T$和(e)自旋品质因子$Z_{s}T$作为能级$\varepsilon_{d}$与塞曼能$\Delta_{z}$的函数. (f)不同塞曼能条件下, $Z_{c}T$(实线)和$Z_{s}T$(虚线)作为$\varepsilon_{d}$的函数. 其他参数选为$\alpha=0.2\Delta$, $k_{B}T=0.3\Delta$以及$\theta=\pi/2$

    Figure 4.  (a) Charge thermopower $S_{c}$ and (b) spin thermopower $S_{s}$ as a function of the energy level$\varepsilon_{d}$ and the Zeeman energy $\Delta_{z}$. (c) For different Zeeman energies, $S_{c}$ and $S_{s}$ as a function of the energy level$\varepsilon_{d}$. (d) Charge figure of merit $Z_{c}T$ and (e) spin figure of merit $Z_{s}T$ as a function of the energy level$\varepsilon_{d}$ and the Zeeman energy $\Delta_{z}$. (f) For different Zeeman energies, $Z_{c}T$ and $Z_{s}T$) as a function of the energy level$\varepsilon_{d}$. The other parameters are $\alpha=0.2\Delta$, $k_{B}T=0.3\Delta$, and $\theta=\pi/2$.

    图 5  (左列) 自旋热电系数: (a)热功率$S_{s}$和 (b)品质因子$Z_{s}T$作为能级$\varepsilon_{d}$与自旋-轨道耦合强度α的函数. 不同α条件下, (a')热功率$S_{s}$和 (b') 品质因子$Z_{s}T$的截面图被呈现在右列. 其他参数选为$\Delta_{z}=0.5\Delta$, $k_{B}T=0.3\Delta$以及$\theta=\pi/2$

    Figure 5.  Spin thermoelectric coefficients: (a) thermopower $S_{s}$ and (b) figure of merit $Z_{s}T$ as a function of the energy level$\varepsilon_{d}$ and spin-orbit coupling strength α(left column). For different temperatures, the cross sections of (a') thermopower $S_{c}$ and (b') figure of merit $Z_{s}T$ are shown in the right column. The other parameters are $\Delta_{z}=0.5\Delta$, $k_{B}T=0.3\Delta$, and $\theta=\pi/2$.

    图 6  电荷热电系数: (a)热功率$S_{c}$和 (b)品质因子$Z_{c}T$作为量子点能级$\varepsilon_{1}$与$\varepsilon_{2}$的函数. 自旋热电系数: (c)热功率$S_{s}$和 (d) 品质因子$Z_{s}T$作为量子点能级$\varepsilon_{1}$与$\varepsilon_{2}$的函数. 其他参数为$\alpha=0.2\Delta$, $\Delta_{z}=\Delta$, $k_{B}T=0.3\Delta$以及$\theta=\pi/2$

    Figure 6.  Charge thermoelectric coefficients: (a) thermopower $S_{c}$ and (c) figure of merit $Z_{c}T$ as a function of the quantum dot's levels $\varepsilon_{1}$ and $\varepsilon_{2}$. Spin thermoelectric coefficients: (b) thermopower $S_{s}$ and (d) figure of merit $Z_{s}T$ as a function of the quantum dot's levels $\varepsilon_{1}$ and $\varepsilon_{2}$. The other parameters are $\alpha=0.2\Delta$, $k_{B}T=0.3\Delta$, and $\theta=\pi/2$.

    图 7  (a)最大功率$P_{max}$ (以$P_{0}=(k_{B}\Delta T)^{2}/h$为单位) 和 (b) 最大功率时的效率$\eta_{maxP}$ (以 卡诺效率$\eta_{c}$为单位) 作为量子点能级$\varepsilon_{1}$与$\varepsilon_{2}$的函数. 其他参数为$\alpha=0.2\Delta$, $\Delta_{z}=\Delta$, $k_{B}T=0.3\Delta$以及$\theta=\pi/2$

    Figure 7.  (a) Maximum power $P_{max}$ (in units of $P_{0}=(k_{B}\Delta T)^{2}/h$) and (b) efficiency at maximum power $\eta_{maxP}$ (in units of Carnot efficiency $\eta_{c}$) as a function of the quantum dot's levels $\varepsilon_{1}$ and $\varepsilon_{2}$. The other parameters are $\alpha=0.2\Delta$, $\Delta_{z}=\Delta$, $k_{B}T=0.3\Delta$ and $\theta=\pi/2$.

    Baidu
  • [1]

    陈晓彬, 段文晖 2015 64 186302Google Scholar

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302Google Scholar

    [2]

    Mahan G D, Sofo J O 1996 Proc. Natl. Acad. Sci. USA 93 7436Google Scholar

    [3]

    Liu J, Sun Q F, Xie X C 2010 Phys. Rev. B 81 245323Google Scholar

    [4]

    Swirkowicz R, Wierzbicki M, Barnas J 2009 Phys. Rev. B 80 195409Google Scholar

    [5]

    Mazal Y, Meir Y, Dubi Y 2019 Phys. Rev. B 99 075433Google Scholar

    [6]

    Chida K, Fujiwara A, Nishiguchi K 2022 Appl. Phys. Lett. 121 183501Google Scholar

    [7]

    Sanduleac I, Pflaum J, Casian A 2019 J. Appl. Phys. 126 175501Google Scholar

    [8]

    Gomes T C S C, Marchal N, Araujo F A, Piraux L 2019 Appl. Phys. Lett. 115 242402Google Scholar

    [9]

    Wierzbicki M, Swirkowicz R 2010 J. Phys.: Condens. Matter 22 185302Google Scholar

    [10]

    Wang R Q, Shen L, Shen R, Wang B G, Xing D Y 2010 Phys. Rev. Lett. 105 057202Google Scholar

    [11]

    Bao W S, Liu Y S, Lei X L 2010 J. Phys.: Condens. Matter 22 315502Google Scholar

    [12]

    Ghawri B, Mahapatra P S, Garg M, Mandal S, Jayaraman A, Watanabe K, Taniguchi T, Jain M, Chandni U, Ghosh A 2024 Phys. Rev. B 109 045436Google Scholar

    [13]

    Anderson L E, Laitinen A, Zimmerman A, Werkmeister T, Shackleton H, Kruchkov A, Taniguchi T, Watanabe K, Sachdev S, Kim P 2024 Phys. Rev. Lett. 132 246502Google Scholar

    [14]

    Li J, Niquet Y M, Delerue C 2019 Phys. Rev. B 99 075433Google Scholar

    [15]

    Xu Y, Gan Z X, Zhang S C 2014 Phys. Rev. Lett. 112 226801Google Scholar

    [16]

    Blasi G, Taddei F, Arrachea L, Carrega M, Braggio A 2020 Phys. Rev. Lett. 124 227701Google Scholar

    [17]

    Sebastian Bergeret F, Silaev M, Virtanen P, Heikkilä T T 2018 Rev. Mod. Phys. 90 041001Google Scholar

    [18]

    Hwang S Y, Lopez R, Sanchez D 2016 Phys. Rev. B 94 054506Google Scholar

    [19]

    Hwang S Y, Sanchez D, Lopez R 2016 New. J. Phys. 18 093024Google Scholar

    [20]

    Trocha P, Barnas J 2017 Phys. Rev. B 95 165439Google Scholar

    [21]

    Michaek G, Urbaniak M, Bulka B R, Domanski T, Wysokinski K I, 2016 Phys. Rev. B 93 235440Google Scholar

    [22]

    Dutta P, Alves K R, Black-Schaffer A M 2020 Phys. Rev. B 102 094513Google Scholar

    [23]

    Linder J, Balatsky A V 2019 Rev. Mod. Phys. 91 045005Google Scholar

    [24]

    Kubala B, Konig J 2002 Phys. Rev. B 65 245301Google Scholar

    [25]

    Chi F, Li S S 2006 J. Appl. Phys. 100 113703Google Scholar

    [26]

    Kang K, Cho S Y 2004 J. Phys.: Condens. Matter 16 117Google Scholar

    [27]

    Lu H Z, Lü R, Zhu B F 2005 Phys. Rev. B 71 235320Google Scholar

    [28]

    Kubo T, Tokura Y, Tarucha S 2011 Phys. Rev. B 83 115310Google Scholar

    [29]

    Pan H, Lin T H 2006 Phys. Rev. B 74 235312Google Scholar

    [30]

    Bordoloi A, Zannier V, Sorba L, Schrnenberger C, Baumgartner A 2020 Commun. Phys. 3 135Google Scholar

    [31]

    Bittermann L, Dominguez F, Recher P 2024 Phys. Rev. B 110 045429Google Scholar

    [32]

    Bułka B R 2021 Phys. Rev. B 102 155410

    [33]

    Yao H, Zhang C, Li Z J, Nie Y H, Niu P B 2018 J. Phys. D: Appl. Phys. 51 175301Google Scholar

    [34]

    Bai L, Zhang L, Tang F R, Zhang R 2023 J. Appl. Phys. 134 184304Google Scholar

    [35]

    Hussein R, Governale M, Sigmund Kohler S, Belzig W, Giazotto F, Alessandro Braggio A 2019 Phys. Rev. B 99 075429Google Scholar

    [36]

    Tabatabaei S M, Sánchez D, Yeyati A L, Sánchez R 2022 Phys. Rev. B 106 115419Google Scholar

    [37]

    Sánchez R, Burset P, Yeyati A L 2018 Phys. Rev. B 98 241414Google Scholar

    [38]

    Gresta D, Real M, Arrachea L 2019 Phys. Rev. Lett. 123 186801Google Scholar

  • [1] LIU Mingjie, TIAN Yali, WANG Yu, LI Xiaoxiao, HE Xiaohu, GONG Ting, SUN Xiaocong, GUO Guqing, QIU Xuanbing, LI Chuanliang. Calculation of $ {\mathrm{O}}^ -_2 $ spectroscopic constants with spin-orbit coupling. Acta Physica Sinica, doi: 10.7498/aps.74.20241435
    [2] FAN Jingtao, JIA Suotang. Dynamical response of spin frequency spectrum in spin-orbit coupled Bose-Einstein condensate. Acta Physica Sinica, doi: 10.7498/aps.74.20241783
    [3] Wen Li, Lu Mao-Wang, Chen Jia-Li, Chen Sai-Yan, Cao Xue-Li, Zhang An-Qi. Transmission time and spin polarization for electron in magnetically confined semiconducotr nanostructure modulated by spin-orbit coupling. Acta Physica Sinica, doi: 10.7498/aps.73.20240285
    [4] Wang Huan, He Xia-Yao, Li Shuai, Liu Bo. Quench dynamics of a spin-orbital coupled Bose-Einstein condensate with nonlinear interactions. Acta Physica Sinica, doi: 10.7498/aps.72.20222401
    [5] He Ya-Ping, Chen Ming-Xia, Pan Jie-Feng, Li Dong, Lin Gang-Jun, Huang Xin-Hong. Electron-spin polarization effect in Rashba spin-orbit coupling modulated single-layered semiconductor nanostructure. Acta Physica Sinica, doi: 10.7498/aps.72.20221381
    [6] Yuan Jia-Wang, Chen Li, Zhang Yun-Bo. Adiabatic elimination theory of multi-level system in spin-orbit coupled Bose-Einstein condensate. Acta Physica Sinica, doi: 10.7498/aps.72.20231052
    [7] Li Xin-Yue, Qi Juan-Juan, Zhao Dun, Liu Wu-Ming. Soliton solutions of the spin-orbit coupled binary Bose-Einstein condensate system. Acta Physica Sinica, doi: 10.7498/aps.72.20222319
    [8] Gao Jian-Hua, Huang Xu-Guang, Liang Zuo-Tang, Wang Qun, Wang Xin-Nian. Spin-orbital coupling in strong interaction and global spin polarization. Acta Physica Sinica, doi: 10.7498/aps.72.20230102
    [9] Ma Yun-E, Qiao Xin, Gao Rui, Liang Jun-Cheng, Zhang Ai-Xia, Xue Ju-Kui. Tunneling dynamics of tunable spin-orbit coupled Bose-Einstein condensates. Acta Physica Sinica, doi: 10.7498/aps.71.20220697
    [10] Zhou Yong-Xiang, Xue Xun. Electron vortices in spin-orbit coupling system. Acta Physica Sinica, doi: 10.7498/aps.71.20220751
    [11] Gao Feng, Zhang Hong, Zhang Chang-Zhe, Zhao Wen-Li, Meng Qing-Tian. Accurate theoretical study of potential energy curves, spectroscopic parameters, vibrational energy levels and spin-orbit coupling interaction on SiH+(X1Σ+) ion. Acta Physica Sinica, doi: 10.7498/aps.70.20210450
    [12] Li Ji, Liu Bin, Bai Jing, Wang Huan-Yu, He Tian-Chen. Ground state of spin-orbit coupled rotating ferromagnetic Bose-Einstein condensate in toroidal trap. Acta Physica Sinica, doi: 10.7498/aps.69.20200372
    [13] Wen Lin, Liang Yi, Zhou Jing, Yu Peng, Xia Lei, Niu Lian-Bin, Zhang Xiao-Fei. Effects of linear Zeeman splitting on the dynamics of bright solitons in spin-orbit coupled Bose-Einstein condensates. Acta Physica Sinica, doi: 10.7498/aps.68.20182013
    [14] Li Ji, Liu Wu-Ming. Ground state of spin-orbit coupled rotating two-component Bose-Einstein condensate in gradient magnetic field. Acta Physica Sinica, doi: 10.7498/aps.67.20180539
    [15] He Li, Yu Zeng-Qiang. Landau critical velocity of spin-orbit-coupled Bose-Einstein condensate across quantum phase transition. Acta Physica Sinica, doi: 10.7498/aps.66.220301
    [16] Huang Zhen, Zeng Wen, Gu Yi, Liu Li, Zhou Lu, Zhang Wei-Ping. Double reflection of spin-orbit-coupled cold atoms. Acta Physica Sinica, doi: 10.7498/aps.65.164201
    [17] He Li, Yu Zeng-Qiang. Dynamic structure factors and sum rules in two-component quantum gases with spin-orbit coupling. Acta Physica Sinica, doi: 10.7498/aps.65.131101
    [18] Li Zhi, Cao Hui. Klein tunneling in spin-orbit coupled Bose-Einstein condensate scattered by cusp barrier. Acta Physica Sinica, doi: 10.7498/aps.63.110306
    [19] Li Zhi, Wang Jian-Zhong. Barrier scattering properties in spin-orbit coupled Bose-Einstein condensate. Acta Physica Sinica, doi: 10.7498/aps.62.100306
    [20] Du Fei, Li Xu, Huang Zu-Fei, Li Ang, Wang Chun-Zhong, Chen Gang. Restriction of geometrical frustration and magnetic ordering in the inverse-spinel LiNiVO4. Acta Physica Sinica, doi: 10.7498/aps.58.541
Metrics
  • Abstract views:  412
  • PDF Downloads:  14
  • Cited By: 0
Publishing process
  • Available Online:  13 March 2025

/

返回文章
返回
Baidu
map