Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamical response of spin frequency spectrum in spin-orbit coupled Bose-Einstein condensate

FAN Jingtao JIA Suotang

Citation:

Dynamical response of spin frequency spectrum in spin-orbit coupled Bose-Einstein condensate

FAN Jingtao, JIA Suotang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Dynamical characteristics of internal and external states of a Bose-Einstein condensate are generally different and independent, thus requiring different experimental manipulation techniques. The spin-orbit coupling recently achieved in Bose-Einstein condensates essentially connects spin and motion degree of freedom, endowing spin states with the ability to respond to orbital manipulation, and vice versa. In this work, a dynamical response effect, induced by simultaneously manipulating the internal and external states of a spin-orbit-coupled Bose-Einstein condensate, is predicted. Here, the “simultaneously manipulating the internal and external states” means that the driving field combines the Zeeman field applied to the internal state of the atom and the orbital potential affecting the external states of the atom. Specifically, the Bose-Einstein condensate is assumed to be activated by an abruptly applied Zeeman field and a sudden shake of the trapping potential. After some reasonable simplification and approximation of the model (i.e. neglecting the inter-atomic interactions and modelling the shake of the trapping potential by a short time-dependent pulse), an analytical relationship connecting spin frequency spectrum and the parameters of the driving fields is derived. The numerical calculations based on directly integrating the Gross-Pitaevskii equation are in good agreement with the results from the analytical relationship. The physical origin of the predicted spin dynamical response can be traced back to the quantum interference among different spin-orbit states. Due to the fact that a series of characteristic parameters of the condensate can be manifested in the spin frequency spectrum, the dynamical response effect predicted here provides a candidate method for determining and calibrating various system parameters by measuring the spin frequency spectrum.
  • 图 1  (a)产生自旋-轨道耦合BEC的实验示意图; (b)原子的能级结构以及激光诱导的跃迁

    Figure 1.  (a) Schematic illustration of the experimental setup to generate spin-orbit coupled BEC; (b) the atomic level structure and their transitions.

    图 2  $ \left\langle {{\sigma _x}(t)} \right\rangle $在不同驱动参数下以$ \left| {\varPsi (0)} \right\rangle = \left( {\left| {{\chi _ + }(0)} \right\rangle \left| + \right\rangle + \left| {{\chi _ - }(0)} \right\rangle \left| - \right\rangle } \right)/\sqrt 2 $为初态随时间的演化, 其他参数固定为$ \alpha = 0.2\sqrt {\hbar \omega /m} , $$ \tau = 0.01/\omega , \;\;\varOmega = 0 $.

    Figure 2.  Time evolution of $ \left\langle {{\sigma _x}(t)} \right\rangle $ under the initial state $ \left| {\varPsi (0)} \right\rangle = \left( {\left| {{\chi _ + }(0)} \right\rangle \left| + \right\rangle + \left| {{\chi _ - }(0)} \right\rangle \left| - \right\rangle } \right)/\sqrt 2 $ for different driving parameters. The other parameters are set by $ \alpha = 0.2\sqrt {\hbar \omega /m} , \, \, \tau = 0.01/\omega , \;\;\varOmega = 0 $.

    图 3  固定其余参数, 变化$ \zeta $(上图)和变化$ {\eta _0} $(下图)时自旋频谱$ \left| {{S_x}(\nu )} \right| $的取值, 其他参数固定为$ \alpha = 0.2\sqrt {\hbar \omega /m} $, $ \tau = 0.01/\omega $, $ {T_{\text{L}}} = 400/\omega $, $ \varOmega = 0 $, 初态选择为$ \left| {\varPsi (0)} \right\rangle = $$ \left( {\left| {{\chi _ + }(0)} \right\rangle \left| + \right\rangle + \left| {{\chi _ - }(0)} \right\rangle \left| - \right\rangle } \right)/\sqrt 2 $

    Figure 3.  Spin frequency spectrum $ \left| {{S_x}(\nu )} \right| $ for varying $ \zeta $ (up panel) and $ {\eta _0} $ (bottom panel). The other parameters are set by $ \alpha = 0.2\sqrt {\hbar \omega /m} $, $ \tau = 0.01/\omega $, $ {T_{\text{L}}} = 400/\omega $, and $ \varOmega = $$ 0 $. The initial state is chosen as $ \left| {\varPsi (0)} \right\rangle = ( \left| {{\chi _ + }(0)} \right\rangle \left| + \right\rangle + $$ \left| {{\chi _ - }(0)} \right\rangle \left| - \right\rangle )/\sqrt 2 $.

    图 4  自旋频谱$ \left| {{S_x}(\nu )} \right| $在(a) $ \zeta {\text{ - }}\nu $和(b) $ {\eta _0}{\text{ - }}\nu $ 平面上的取值 (a) $ {\eta _0} = 0.2\omega $; (b) $ \zeta = 100\sqrt {\hbar /\left( {{\text{π}}m\omega } \right)} $; 其他参数以及初态选择与图3一致

    Figure 4.  Spin frequency spectrum $ \left| {{S_x}(\nu )} \right| $ in the (a) $ \zeta {\text{ - }}\nu $ plane and the (b) $ {\eta _0}{\text{ - }}\nu $ plane: (a) $ {\eta _0} = 0.2\omega $; (b) $ \zeta = $$ 100\sqrt {\hbar /\left( {{\text{π}}m\omega } \right)} $. The other parameters and the initial state are the same as those in Fig.3.

    图 5  多自旋-轨道态量子干涉的示意图, 动力学调控图像与量子干涉图像具有对应关系, 图中不同颜色的模块表示干涉过程的不同组成部分

    Figure 5.  Schematic description of the multiple spin-orbit-states interference. The dynamical control image corresponds to the quantum interference image, where different colored modules in the diagram represent different components of the interference process.

    图 6  $ \varOmega = 0 $(蓝色实线)和$ \varOmega = 0.15\omega $(黑色虚线)时自旋频谱$ \left| {{S_x}(\nu )} \right| $的取值, 驱动参数固定为$ \zeta = 100\sqrt {\hbar /({\text{π}}m\omega )} , $$ \eta = 0 $, 其他参数以及初态选择与图3一致

    Figure 6.  Spin frequency spectrum $ \left| {{S_x}(\nu )} \right| $ for $ \varOmega = 0 $ (blue solid curve) and $ \varOmega = 0.15\omega $ (green dashed curve). The driving parameters are set by $ \zeta = 100\sqrt {\hbar /({\text{π}}m\omega )} , \;\eta = 0 $. The other parameters and the initial state are the same as those in Fig.3.

    图 7  自旋频谱$ \left| {{S_x}(\nu )} \right| $在$ \nu = \tilde \nu = 0.38\omega $处随驱动参数(a) $ \zeta $和(b) $ {\eta _0} $的变化, 其他参数以及初态选择与图3一致

    Figure 7.  Value of spin frequency spectrum $ \left| {{S_x}(\nu )} \right| $ at $ \nu = \tilde \nu = 0.38\omega $ as a function of (a) $ \zeta $ and (b) $ {\eta _0} $. The other parameters and the initial state are the same as those in Fig.3.

    图 8  $ \left| {{S_x}(\nu )} \right| $对于不同脉冲宽度$ \tau $的取值 (a1)—(c1)对应于(3)式描述的高斯型脉冲; (a2)—(c2)对应于(21)式描述的方波型脉冲; $ \zeta = 100\sqrt {\hbar /\left( {\varGamma m\omega } \right)} $, 其中$ \varGamma = \sqrt {\text{π}} $对应于高斯型脉冲, $ \varGamma = 1 $对应于方波型脉冲, 其他参数以及初态选择与图3一致

    Figure 8.  Value of spin frequency spectrum $ \left| {{S_x}(\nu )} \right| $ for different $ \tau $: (a1)–(c1) correspond to the Gaussian pulse defined in Eq.(3); (a1)–(c1) correspond to the square pulse defined in Eq.(21). In these figures, $ \zeta = 100\sqrt {\hbar /\left( {\varGamma m\omega } \right)} $ , where $ \varGamma = \sqrt {\text{π}} $ for the Gaussian pulse and $ \varGamma = 1 $ for the square pulse. The other parameters and the initial state are the same as those in Fig.3.

    图 9  (a) $ \left| {{S_x}(\nu )} \right| $在不同积分时间$ T $下的取值; (b)图(a)中两个谱峰$ {\nu _1} $和$ {\nu _2} $的半高宽度随积分时间$ T $的变化; (c)图(a)中两个谱峰$ {\nu _1} $和$ {\nu _2} $的峰值位置随积分时间$ T $的变化; 所有图中$ \zeta = 250\sqrt {\hbar /\left( {{\text{π}}m\omega } \right)} $, $ {\eta _0}/\omega = 0 $, 其他参数以及初态选择与图3一致

    Figure 9.  (a) Value of spin frequency spectrum $ \left| {{S_x}(\nu )} \right| $ for different $ T $; (b) the half-height width of the spectrum peak $ {\nu _1} $ and $ {\nu _2} $ appearing in panel (a) as functions of $ T $; (c) the peak position of $ {\nu _1} $ and $ {\nu _2} $ appearing in panel (a) as functions of $ T $. In these figures, $ \zeta = 250\sqrt {\hbar /\left( {{\text{π}}m\omega } \right)} $ and $ {\eta _0}/\omega = 0 $. The other parameters and the initial state are the same as those in Fig.3.

    图 10  (a)相互作用$ g $不同时, 自旋频谱$ \left| {{S_x}(\nu )} \right| $的取值; (b)自旋频谱$ \left| {{S_x}(\nu )} \right| $在$ \nu = \tilde \nu = \omega $处随驱动参数$ \zeta $的变化, 不同相互作用$ g $用不同线型表示;其他参数以及初态选择与图3一致

    Figure 10.  (a) Value of spin frequency spectrum $ \left| {{S_x}(\nu )} \right| $ for different interaction coefficient $ g $; (b) the value of spin frequency spectrum $ \left| {{S_x}(\nu )} \right| $ at $ \nu = \tilde \nu = \omega $ as a function of $ \zeta $, and the results of different $ g $ are labelled by different linetypes. The other parameters and the initial state are the same as those in Fig.3.

    Baidu
  • [1]

    Chu S 1998 Rev. Mod. Phys. 70 685Google Scholar

    [2]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [3]

    Dalibard J, Gerbier F, Juzeliūnas G, Öhberg P 2011 Rev. Mod. Phys. 83 1523Google Scholar

    [4]

    Qiu X Z, Zoller P, Li X P 2020 PRX Quantum 1 020311Google Scholar

    [5]

    Jayaseelan M, Manikandan S K, Jordan A N, Bigelow N P 2021 Nat. Commun. 12 1847Google Scholar

    [6]

    Kaufman A M, Ni K K 2021 Nat. Phys. 17 1324Google Scholar

    [7]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969Google Scholar

    [8]

    Anderson M H, Ensher J R, Matthewa M R, Wieman C E, Cornell E A 1995 Science 269 198Google Scholar

    [9]

    Pitaevskii L, Stringari S 2016 Bose-Einstein Condensation and Superfluidity (Oxford University Press

    [10]

    Jie J W, Guan Q, Blume D 2019 Phys. Rev. A 100 043606Google Scholar

    [11]

    Jie J W, Guan Q, Zhong S, Schwettmann A, Blume D 2020 Phys. Rev. A 102 023324Google Scholar

    [12]

    Jie J W, Zhong S, Zhang Q, Morgenstern I, Ooi H G, Guan Q, Bhagat A, Nematollahi D, Schwettmann A, and Blume D 2023 Phys. Rev. A 107 053309Google Scholar

    [13]

    Huang Y X, Zhang Y B, Lu R, Wang X G, Yi S 2012 Phys. Rev. A 86 043625Google Scholar

    [14]

    Xing H, Wang A, Tan Q S, Zhang W, Yi S 2016 Phys. Rev. A 93 043615Google Scholar

    [15]

    Lewenstein M, Sanpera A, Ahufinger V 2012 Ultracold Atoms in Optical Lattices (Oxford University Press

    [16]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 83Google Scholar

    [17]

    Wang C, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403Google Scholar

    [18]

    Sinha S, Nath R, Santos L 2011 Phys. Rev. Lett. 107 270401Google Scholar

    [19]

    Hu H, Ramachandhran B, Pu H, Liu X J 2012 Phys. Rev. Lett. 108 010402Google Scholar

    [20]

    Pan J S, Zhang W, Yi W, Guo G C 2016 Phys. Rev. A 94 043619Google Scholar

    [21]

    Li J R, Lee J, Huang W, Burchesky S, Shteynas B, Top F C, Jamison A O, and Ketterle W 2017 Nature 543 91Google Scholar

    [22]

    Liao R Y 2018 Phys. Rev. Lett. 120 140403Google Scholar

    [23]

    Campbell D L, Price R M, Putra A, Valdés-Curiel A, Trypogeorgos D, Spielman I B 2016 Nat. Commun. 7 10897Google Scholar

    [24]

    Vaishnav J Y, Clark C W 2008 Phys. Rev. Lett. 100 153002Google Scholar

    [25]

    Zhang Y P, Mao L, Zhang C W 2012 Phys. Rev. Lett. 108 035302Google Scholar

    [26]

    Zhang Y P, Chen G, Zhang C W 2013 Sci. Rep. 3 1937Google Scholar

    [27]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301Google Scholar

    [28]

    Qu C L, Hamner C, Gong M, Zhang C W, Engels P 2013 Phys. Rev. A 88 021604(R

    [29]

    Hamner C, Qu C, Zhang Y, Chang J, Gong M, Zhang C, Engels P 2014 Nat. Commun. 5 4023Google Scholar

    [30]

    Khamehchi M A, Hossain K, Mossman M E, Zhang Y, Busch T, Forbes M M, Engels P 2017 Phys. Rev. Lett. 118 155301Google Scholar

    [31]

    Wu C H, Fan J T, Chen J, Jia S T 2019 Phys. Rev. A 99 013617Google Scholar

    [32]

    Fan G, Chen X L, Zou P 2022 Front. Phys. 17 52502Google Scholar

    [33]

    Bednarek S, Szumniak P, Szafran B 2010 Phys. Rev. B 82 235319Google Scholar

    [34]

    Pawlowski J, Szumniak P, Skubis A, Bednarek S 2014 J. Phys. : Condens. Matter 26 345302Google Scholar

    [35]

    Golovach V N, Borhani M, Loss D 2006 Phys. Rev. B 74 165319Google Scholar

    [36]

    Li R, You J Q, Sun C P, Nori F 2013 Phys. Rev. Lett. 111 086805Google Scholar

    [37]

    Widera A, Gerbier F, Fölling S, Gericke T, Mandel O, Bloch I 2006 New. J. Phys. 8 152Google Scholar

    [38]

    Ho T L 1998 Phys. Rev. Lett. 81 742Google Scholar

    [39]

    Grossmann F 2008 Theoretical Femtosecond Physics: Atoms and Molecules in Strong Laser Fields (Springer Berlin Heidelberg

    [40]

    Baudon J, Mathevet R, Robert J 1999 J. Phys. B: At. Mol. Opt. Phys. 32 R173Google Scholar

    [41]

    Shevchenko S N, Ashhab S, Nori F 2010 Phys. Rep. 492 1Google Scholar

    [42]

    Li Y Q, Feng G S, Xu R D, Wang X F, Wu J Z, Chen G, Dai X C, Ma J, Xiao L T, Jia S T 2015 Phys. Rev. A 91 053604Google Scholar

  • [1] BAI Long, ZHANG Rong, ZHANG Lei. Thermoelectric transport of the normal metal-double quantum dots-superconductor hybrid system with spin-orbit coupling. Acta Physica Sinica, doi: 10.7498/aps.74.20241756
    [2] Wang Huan, He Xia-Yao, Li Shuai, Liu Bo. Quench dynamics of a spin-orbital coupled Bose-Einstein condensate with nonlinear interactions. Acta Physica Sinica, doi: 10.7498/aps.72.20222401
    [3] Li Xin-Yue, Qi Juan-Juan, Zhao Dun, Liu Wu-Ming. Soliton solutions of the spin-orbit coupled binary Bose-Einstein condensate system. Acta Physica Sinica, doi: 10.7498/aps.72.20222319
    [4] Qiu Xu, Wang Lin-Xue, Chen Guang-Ping, Hu Ai-Yuan, Wen Lin. Dynamics of spin-tensor-momentum coupled Bose-Einstein condensates. Acta Physica Sinica, doi: 10.7498/aps.72.20231076
    [5] Yuan Jia-Wang, Chen Li, Zhang Yun-Bo. Adiabatic elimination theory of multi-level system in spin-orbit coupled Bose-Einstein condensate. Acta Physica Sinica, doi: 10.7498/aps.72.20231052
    [6] Zhou Yong-Xiang, Xue Xun. Electron vortices in spin-orbit coupling system. Acta Physica Sinica, doi: 10.7498/aps.71.20220751
    [7] Ma Yun-E, Qiao Xin, Gao Rui, Liang Jun-Cheng, Zhang Ai-Xia, Xue Ju-Kui. Tunneling dynamics of tunable spin-orbit coupled Bose-Einstein condensates. Acta Physica Sinica, doi: 10.7498/aps.71.20220697
    [8] Li Ji, Liu Bin, Bai Jing, Wang Huan-Yu, He Tian-Chen. Ground state of spin-orbit coupled rotating ferromagnetic Bose-Einstein condensate in toroidal trap. Acta Physica Sinica, doi: 10.7498/aps.69.20200372
    [9] Wen Lin, Liang Yi, Zhou Jing, Yu Peng, Xia Lei, Niu Lian-Bin, Zhang Xiao-Fei. Effects of linear Zeeman splitting on the dynamics of bright solitons in spin-orbit coupled Bose-Einstein condensates. Acta Physica Sinica, doi: 10.7498/aps.68.20182013
    [10] Li Ji, Liu Wu-Ming. Ground state of spin-orbit coupled rotating two-component Bose-Einstein condensate in gradient magnetic field. Acta Physica Sinica, doi: 10.7498/aps.67.20180539
    [11] He Li, Yu Zeng-Qiang. Landau critical velocity of spin-orbit-coupled Bose-Einstein condensate across quantum phase transition. Acta Physica Sinica, doi: 10.7498/aps.66.220301
    [12] He Li, Yu Zeng-Qiang. Dynamic structure factors and sum rules in two-component quantum gases with spin-orbit coupling. Acta Physica Sinica, doi: 10.7498/aps.65.131101
    [13] Huang Zhen, Zeng Wen, Gu Yi, Liu Li, Zhou Lu, Zhang Wei-Ping. Double reflection of spin-orbit-coupled cold atoms. Acta Physica Sinica, doi: 10.7498/aps.65.164201
    [14] Li Zhi, Cao Hui. Klein tunneling in spin-orbit coupled Bose-Einstein condensate scattered by cusp barrier. Acta Physica Sinica, doi: 10.7498/aps.63.110306
    [15] Li Zhi, Wang Jian-Zhong. Barrier scattering properties in spin-orbit coupled Bose-Einstein condensate. Acta Physica Sinica, doi: 10.7498/aps.62.100306
    [16] Wang Jian-Zhong, Cao Hui, Dou Fu-Quan. Many-body quantum fluctuation effects of Rosen-Zener transition in Bose-Einstein condensates. Acta Physica Sinica, doi: 10.7498/aps.61.220305
    [17] Song Li-Jun, Yan Dong, Liu Yie. Quantum Fisher information and chaos in the system of Bose-Einstein condensate. Acta Physica Sinica, doi: 10.7498/aps.60.120302
    [18] Yan Dong, Song Li-Jun, Chen Dian-Wei. Spin squeezing of two-component Bose-Einstein condensate. Acta Physica Sinica, doi: 10.7498/aps.58.3679
    [19] Li Ju-Ping, Tan Lei, Zang Xiao-Fei, Yang Ke. Dynamics of dipolar spinor condensates in the external magnetic field. Acta Physica Sinica, doi: 10.7498/aps.57.7467
    [20] Wang Guan-Fang, Liu Hong. Irregular spin tunneling for Bose-Einstein condensates in a sweeping magnetic field. Acta Physica Sinica, doi: 10.7498/aps.57.667
Metrics
  • Abstract views:  254
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Received Date:  26 December 2024
  • Accepted Date:  05 March 2025
  • Available Online:  12 March 2025

/

返回文章
返回
Baidu
map