搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含自旋-轨道耦合作用的金属-双量子点-超导体混合型系统的热电输运研究

白龙 张荣 张雷

引用本文:
Citation:

含自旋-轨道耦合作用的金属-双量子点-超导体混合型系统的热电输运研究

白龙, 张荣, 张雷

Thermoelectric transport of a normal metal-double quantum dots-superconductor hybrid system with spin-orbit coupling

BAI Long, ZHANG Rong, ZHANG Lei
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 混合型量子点系统是研究热电转换机制的良好平台.本文提出了一个含自旋-轨道作用的双量子点耦合金属和超导体构成的混合型系统模型,进而研究该混合型系统的电荷以及自旋热电输运特征.我们深入讨论了热电系数与系统参数之间的关系, 发现系统存在显著的魏德曼-弗兰兹定律违背现象,这有助于增强热电转换效率.更重要的是, 由于存在超导体能隙外的准粒子隧穿,这个混合型热电器件能够产生纯自旋塞贝克效应.在实践上, 这个效应可以被利用设计和制造一个纯自旋流发生器.在线性响应机制下,我们也讨论了该混合型热电系统作为一个热机的热力学性能.本文的研究结果对于理解混合型热电系统的热电转换特征及其热力学性能具有理论和实践意义.
    The normal metal-quantum dots-superconductor hybrid system is a good platform to study the mechanism of thermoelectric conversion. In terms of non-equilibrium Keldysh Green's function formalism and linear response theory, the charge and spin thermoelectric transport characteristics of a normal-double quantum dot-superconductor hybrid system with spin-orbit coupling are studied in this paper. We deeply discuss the relationship between thermoelectric coefficients and the system parameters, and find both charge and spin thermoelectric coefficients exhibit distinct symmetry characteristics in the parameter space composed of temperature and energy. An increase in temperature leads to a decrease in the conductance within the energy gap, which is attributed to a reduction in Andreev transport. However, outside the energy gap, the conductance gradually increases, and the thermal conductance is gradually enhanced. This is because more quasiparticles outside the energy gap participate in thermoelectric transport, and a large charge thermopower is generated in the region far from the energy gap. It is found that the thermoelectric figure of merit is greater than 1, indicating a strong violation of the Wiedemann-Franz law. With the increase of temperature, the large spin thermopower as well as spin thermoelectric figure of merit can be obtained outside the energy gap. The charge (spin) thermopower and the thermoelectric figure of merit show the rich evolutionary characteristics as functions of the energy level and the Zeeman energy. With the disappearance of the charge thermopower, the spin thermopower still has a finite value, which leads to the emergence of a pure spin Seebeck effect. This is helpful for designing a pure spin current thermoelectric generator. Due to a competitive mechanism between the spin-orbit coupling effect and the Zeeman field, thermoelectric coefficients are decreased with increasing the strength of spin-orbit interaction, but one still can obtain the spin thermoelectric quantities which meet the practical needs by regulating the strength of spin-orbit coupling and the Zeeman energy. The evolution pattern of the thermoelectric coefficients in the energy space indicates that the enhancement of thermoelectric conversion efficiency can be achieved by modulating the energy levels of double quantum dots. In addition, this hybrid system can function as a heat engine to achieve the conversion of heat to work. Although its power and efficiency do not evolve synchronously, in some parameter regions, people can still obtain the thermodynamic performance that meets practical needs. The research results of this paper hold theoretical and practical significance for understanding the thermoelectric transport and thermodynamic performance of hybrid thermoelectric systems.
  • 图 1  混合型双量子点结构模型. N表示与量子点1连接的金属电极, S表示与量子点2连接的超导电极. $t_{c}$为量子点之间的耦合强度, θ为自旋-轨道耦合场${\alpha}$与z轴方向的外磁场B 之间的夹角

    Fig. 1.  The model of hybrid double quantum dots, where N is a normal-metal electrode that is attached to the quantum dot 1, and S represents the superconducting electrode that is connected with the quantum dot 2. $t_{c}$ is the interdot coupling strength, and θ denotes the included angle between the spin-orbit coupling field ${\alpha}$ and the external field B along the z axis.

    图 2  (左列)电荷热电系数: (a)电导$G_{c}$、(b)热导$\kappa_{e}$、(c)热功率$S_{c}$和 (d)品质因子$Z_{c}T$作为能级$\varepsilon_{d}$与温度$k_{B}T$的函数. 不同温度条件下, 电导(a')$G_{c}$、(b')热导$\kappa_{e}$、(c')热功率$S_{c}$和 (d')品质因子$Z_{c}T$的截面图被呈现在右列. 其他参数选为$\alpha=0.2\Delta$, $\Delta_{z}=\Delta$以及$\theta=\pi/2$

    Fig. 2.  Charge thermoelectric coefficients: (a) conductance $G_{c}$, (b) heat conductance $\kappa_{e}$, (c) thermopower $S_{c}$ and (d) figure of merit $Z_{c}T$ as a function of the energy level$\varepsilon_{d}$ and temperature $k_{B}T$(left column). For different temperatures, the cross sections of (a') conductance $G_{c}$, (b') heat conductance $\kappa_{e}$, (c') thermopower $S_{c}$ and (d') figure of merit $Z_{c}T$ are shown in the right column. The other parameters are $\alpha=0.2\Delta$, $\Delta_{z}=\Delta$, and $\theta=\pi/2$.

    图 3  (左列) 自旋热电系数: (a)热功率$S_{s}$和 (b)品质因子$Z_{s}T$作为能级$\varepsilon_{d}$与温度$k_{B}T$的函数. 不同温度条件下, (a')热功率$S_{s}$和 (b') 品质因子$Z_{s}T$的截面图被呈现在右列. 其他参数选为$\alpha=0.2\Delta$, $\Delta_{z}=\Delta$以及$\theta=\pi/2$

    Fig. 3.  Spin thermoelectric coefficients: (a) thermopower $S_{s}$ and (b) figure of merit $Z_{s}T$ as a function of the energy level$\varepsilon_{d}$ and temperature $k_{B}T$(left column). For different temperatures, the cross sections of (a') thermopower $S_{c}$ and (b') figure of merit $Z_{s}T$ are shown in the right column. The other parameters are $\alpha=0.2\Delta$, $\Delta_{z}=1\Delta$, and $\theta=\pi/2$.

    图 4  (a)电荷热功率$S_{c}$和(b)自旋热功率$S_{s}$作为能级$\varepsilon_{d}$与塞曼能$\Delta_{z}$的函数. (c)不同塞曼能条件下, $S_{c}$(实线)和$S_{s}$(虚线)作为$\varepsilon_{d}$的函数. (d)电荷品质因子$Z_{c}T$和(e)自旋品质因子$Z_{s}T$作为能级$\varepsilon_{d}$与塞曼能$\Delta_{z}$的函数. (f)不同塞曼能条件下, $Z_{c}T$(实线)和$Z_{s}T$(虚线)作为$\varepsilon_{d}$的函数. 其他参数选为$\alpha=0.2\Delta$, $k_{B}T=0.3\Delta$以及$\theta=\pi/2$

    Fig. 4.  (a) Charge thermopower $S_{c}$ and (b) spin thermopower $S_{s}$ as a function of the energy level$\varepsilon_{d}$ and the Zeeman energy $\Delta_{z}$. (c) For different Zeeman energies, $S_{c}$ and $S_{s}$ as a function of the energy level$\varepsilon_{d}$. (d) Charge figure of merit $Z_{c}T$ and (e) spin figure of merit $Z_{s}T$ as a function of the energy level$\varepsilon_{d}$ and the Zeeman energy $\Delta_{z}$. (f) For different Zeeman energies, $Z_{c}T$ and $Z_{s}T$) as a function of the energy level$\varepsilon_{d}$. The other parameters are $\alpha=0.2\Delta$, $k_{B}T=0.3\Delta$, and $\theta=\pi/2$.

    图 5  (左列) 自旋热电系数: (a)热功率$S_{s}$和 (b)品质因子$Z_{s}T$作为能级$\varepsilon_{d}$与自旋-轨道耦合强度α的函数. 不同α条件下, (a')热功率$S_{s}$和 (b') 品质因子$Z_{s}T$的截面图被呈现在右列. 其他参数选为$\Delta_{z}=0.5\Delta$, $k_{B}T=0.3\Delta$以及$\theta=\pi/2$

    Fig. 5.  Spin thermoelectric coefficients: (a) thermopower $S_{s}$ and (b) figure of merit $Z_{s}T$ as a function of the energy level$\varepsilon_{d}$ and spin-orbit coupling strength α(left column). For different temperatures, the cross sections of (a') thermopower $S_{c}$ and (b') figure of merit $Z_{s}T$ are shown in the right column. The other parameters are $\Delta_{z}=0.5\Delta$, $k_{B}T=0.3\Delta$, and $\theta=\pi/2$.

    图 6  电荷热电系数: (a)热功率$S_{c}$和 (b)品质因子$Z_{c}T$作为量子点能级$\varepsilon_{1}$与$\varepsilon_{2}$的函数. 自旋热电系数: (c)热功率$S_{s}$和 (d) 品质因子$Z_{s}T$作为量子点能级$\varepsilon_{1}$与$\varepsilon_{2}$的函数. 其他参数为$\alpha=0.2\Delta$, $\Delta_{z}=\Delta$, $k_{B}T=0.3\Delta$以及$\theta=\pi/2$

    Fig. 6.  Charge thermoelectric coefficients: (a) thermopower $S_{c}$ and (c) figure of merit $Z_{c}T$ as a function of the quantum dot's levels $\varepsilon_{1}$ and $\varepsilon_{2}$. Spin thermoelectric coefficients: (b) thermopower $S_{s}$ and (d) figure of merit $Z_{s}T$ as a function of the quantum dot's levels $\varepsilon_{1}$ and $\varepsilon_{2}$. The other parameters are $\alpha=0.2\Delta$, $k_{B}T=0.3\Delta$, and $\theta=\pi/2$.

    图 7  (a)最大功率$P_{max}$ (以$P_{0}=(k_{B}\Delta T)^{2}/h$为单位) 和 (b) 最大功率时的效率$\eta_{maxP}$ (以 卡诺效率$\eta_{c}$为单位) 作为量子点能级$\varepsilon_{1}$与$\varepsilon_{2}$的函数. 其他参数为$\alpha=0.2\Delta$, $\Delta_{z}=\Delta$, $k_{B}T=0.3\Delta$以及$\theta=\pi/2$

    Fig. 7.  (a) Maximum power $P_{max}$ (in units of $P_{0}=(k_{B}\Delta T)^{2}/h$) and (b) efficiency at maximum power $\eta_{maxP}$ (in units of Carnot efficiency $\eta_{c}$) as a function of the quantum dot's levels $\varepsilon_{1}$ and $\varepsilon_{2}$. The other parameters are $\alpha=0.2\Delta$, $\Delta_{z}=\Delta$, $k_{B}T=0.3\Delta$ and $\theta=\pi/2$.

    Baidu
  • [1]

    陈晓彬, 段文晖 2015 64 186302Google Scholar

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302Google Scholar

    [2]

    Mahan G D, Sofo J O 1996 Proc. Natl. Acad. Sci. USA 93 7436Google Scholar

    [3]

    Liu J, Sun Q F, Xie X C 2010 Phys. Rev. B 81 245323Google Scholar

    [4]

    Swirkowicz R, Wierzbicki M, Barnas J 2009 Phys. Rev. B 80 195409Google Scholar

    [5]

    Mazal Y, Meir Y, Dubi Y 2019 Phys. Rev. B 99 075433Google Scholar

    [6]

    Chida K, Fujiwara A, Nishiguchi K 2022 Appl. Phys. Lett. 121 183501Google Scholar

    [7]

    Sanduleac I, Pflaum J, Casian A 2019 J. Appl. Phys. 126 175501Google Scholar

    [8]

    Gomes T C S C, Marchal N, Araujo F A, Piraux L 2019 Appl. Phys. Lett. 115 242402Google Scholar

    [9]

    Wierzbicki M, Swirkowicz R 2010 J. Phys.: Condens. Matter 22 185302Google Scholar

    [10]

    Wang R Q, Shen L, Shen R, Wang B G, Xing D Y 2010 Phys. Rev. Lett. 105 057202Google Scholar

    [11]

    Bao W S, Liu Y S, Lei X L 2010 J. Phys.: Condens. Matter 22 315502Google Scholar

    [12]

    Ghawri B, Mahapatra P S, Garg M, Mandal S, Jayaraman A, Watanabe K, Taniguchi T, Jain M, Chandni U, Ghosh A 2024 Phys. Rev. B 109 045436Google Scholar

    [13]

    Anderson L E, Laitinen A, Zimmerman A, Werkmeister T, Shackleton H, Kruchkov A, Taniguchi T, Watanabe K, Sachdev S, Kim P 2024 Phys. Rev. Lett. 132 246502Google Scholar

    [14]

    Li J, Niquet Y M, Delerue C 2019 Phys. Rev. B 99 075433Google Scholar

    [15]

    Xu Y, Gan Z X, Zhang S C 2014 Phys. Rev. Lett. 112 226801Google Scholar

    [16]

    Blasi G, Taddei F, Arrachea L, Carrega M, Braggio A 2020 Phys. Rev. Lett. 124 227701Google Scholar

    [17]

    Sebastian Bergeret F, Silaev M, Virtanen P, Heikkilä T T 2018 Rev. Mod. Phys. 90 041001Google Scholar

    [18]

    Hwang S Y, Lopez R, Sanchez D 2016 Phys. Rev. B 94 054506Google Scholar

    [19]

    Hwang S Y, Sanchez D, Lopez R 2016 New. J. Phys. 18 093024Google Scholar

    [20]

    Trocha P, Barnas J 2017 Phys. Rev. B 95 165439Google Scholar

    [21]

    Michaek G, Urbaniak M, Bulka B R, Domanski T, Wysokinski K I, 2016 Phys. Rev. B 93 235440Google Scholar

    [22]

    Dutta P, Alves K R, Black-Schaffer A M 2020 Phys. Rev. B 102 094513Google Scholar

    [23]

    Linder J, Balatsky A V 2019 Rev. Mod. Phys. 91 045005Google Scholar

    [24]

    Kubala B, Konig J 2002 Phys. Rev. B 65 245301Google Scholar

    [25]

    Chi F, Li S S 2006 J. Appl. Phys. 100 113703Google Scholar

    [26]

    Kang K, Cho S Y 2004 J. Phys.: Condens. Matter 16 117Google Scholar

    [27]

    Lu H Z, Lü R, Zhu B F 2005 Phys. Rev. B 71 235320Google Scholar

    [28]

    Kubo T, Tokura Y, Tarucha S 2011 Phys. Rev. B 83 115310Google Scholar

    [29]

    Pan H, Lin T H 2006 Phys. Rev. B 74 235312Google Scholar

    [30]

    Bordoloi A, Zannier V, Sorba L, Schrnenberger C, Baumgartner A 2020 Commun. Phys. 3 135Google Scholar

    [31]

    Bittermann L, Dominguez F, Recher P 2024 Phys. Rev. B 110 045429Google Scholar

    [32]

    Bułka B R 2021 Phys. Rev. B 102 155410

    [33]

    Yao H, Zhang C, Li Z J, Nie Y H, Niu P B 2018 J. Phys. D: Appl. Phys. 51 175301Google Scholar

    [34]

    Bai L, Zhang L, Tang F R, Zhang R 2023 J. Appl. Phys. 134 184304Google Scholar

    [35]

    Hussein R, Governale M, Sigmund Kohler S, Belzig W, Giazotto F, Alessandro Braggio A 2019 Phys. Rev. B 99 075429Google Scholar

    [36]

    Tabatabaei S M, Sánchez D, Yeyati A L, Sánchez R 2022 Phys. Rev. B 106 115419Google Scholar

    [37]

    Sánchez R, Burset P, Yeyati A L 2018 Phys. Rev. B 98 241414Google Scholar

    [38]

    Gresta D, Real M, Arrachea L 2019 Phys. Rev. Lett. 123 186801Google Scholar

  • [1] 刘铭婕, 田亚莉, 王瑜, 李晓筱, 和小虎, 宫廷, 孙小聪, 郭古青, 邱选兵, 李传亮. 含自旋-轨道耦合的$ {{\bf{O}}}_{2}^{ - } $光谱常数计算.  , doi: 10.7498/aps.74.20241435
    [2] 樊景涛, 贾锁堂. 自旋-轨道耦合玻色凝聚体中的自旋频谱动力学响应.  , doi: 10.7498/aps.74.20241783
    [3] 温丽, 卢卯旺, 陈嘉丽, 陈赛艳, 曹雪丽, 张安琪. 电子在自旋-轨道耦合调制下磁受限半导体纳米结构中的传输时间及其自旋极化.  , doi: 10.7498/aps.73.20240285
    [4] 王欢, 贺夏瑶, 李帅, 刘博. 非线性相互作用的自旋-轨道耦合玻色-爱因斯坦凝聚体的淬火动力学.  , doi: 10.7498/aps.72.20222401
    [5] 贺亚萍, 陈明霞, 潘杰锋, 李冬, 林港钧, 黄新红. Rashba自旋-轨道耦合调制的单层半导体纳米结构中电子的自旋极化效应.  , doi: 10.7498/aps.72.20221381
    [6] 袁家望, 陈立, 张云波. 自旋-轨道耦合玻色爱因斯坦凝聚中多能级绝热消除理论.  , doi: 10.7498/aps.72.20231052
    [7] 李新月, 祁娟娟, 赵敦, 刘伍明. 自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解.  , doi: 10.7498/aps.72.20222319
    [8] 高建华, 黄旭光, 梁作堂, 王群, 王新年. 强相互作用自旋-轨道耦合与夸克-胶子等离子体整体极化.  , doi: 10.7498/aps.72.20230102
    [9] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学.  , doi: 10.7498/aps.71.20220697
    [10] 周永香, 薛迅. 自旋-轨道耦合系统的电子涡旋.  , doi: 10.7498/aps.71.20220751
    [11] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究.  , doi: 10.7498/aps.70.20210450
    [12] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态.  , doi: 10.7498/aps.69.20200372
    [13] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响.  , doi: 10.7498/aps.68.20182013
    [14] 李吉, 刘伍明. 梯度磁场中自旋-轨道耦合旋转两分量玻色-爱因斯坦凝聚体的基态研究.  , doi: 10.7498/aps.67.20180539
    [15] 贺丽, 余增强. 自旋-轨道耦合作用下玻色-爱因斯坦凝聚在量子相变附近的朗道临界速度.  , doi: 10.7498/aps.66.220301
    [16] 黄珍, 曾文, 古艺, 刘利, 周鲁, 张卫平. 自旋-轨道耦合下冷原子的双反射.  , doi: 10.7498/aps.65.164201
    [17] 贺丽, 余增强. 自旋-轨道耦合作用下双组分量子气体中的动力学结构因子与求和规则.  , doi: 10.7498/aps.65.131101
    [18] 李志, 曹辉. 自旋轨道耦合玻色-爱因斯坦凝聚体在尖端势垒散射中的Klein隧穿.  , doi: 10.7498/aps.63.110306
    [19] 李志, 王建忠. 自旋-轨道耦合玻色-爱因斯坦凝聚势垒散射特性的研究.  , doi: 10.7498/aps.62.100306
    [20] 杜菲, 李旭, 黄祖飞, 李昂, 王春忠, 陈岗. 反尖晶石LiNiVO4中几何失措的抑制与磁有序.  , doi: 10.7498/aps.58.541
计量
  • 文章访问数:  371
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-13

/

返回文章
返回
Baidu
map