-
本文基于自旋-轨道耦合玻色凝聚体,提出了一种凝聚体的自旋频谱对外场调控参数的动力学响应效应。该效应由对凝聚体的快速晃动和外加的迅变塞曼场来驱动。研究发现,自旋频谱的谱峰对外场驱动参数呈现出简单的线性关系。通过对模型作适当近似和简化,本文给出了该线性关系的解析关系式。同时,基于Gross-Pitaevskii方程对系统的动力学演化做了数值计算,数值结果与解析表达式符合得很好。另外,本文还进一步探究了自旋频谱对外场驱动响应的物理本质,发现该效应来源于不同自旋-轨道态之间的量子干涉,可以利用量子多臂干涉仪的图像来理解其内涵。文章的最后对方案的实验可行性及相关参数进行了讨论与估计。本文的结果在量子控制和量子计量学等领域有潜在价值。
-
关键词:
- 玻色-爱因斯坦凝聚1 /
- 自旋-轨道耦合2 /
- 超冷量子气体3 /
- 自旋频谱4
The dynamical characters owned by inner and external states of a Bose-Einstein condensate are generally different and independent, and thereby requires experimentally distinct manipulation techniques. The recently realized spin-orbit coupling in Bose-Einstein condensates essentially connects spin and motional degrees of freedom, which endows spin states with ability to respond to orbit operations and vice versa. In this paper, a dynamical response effect, triggered by simultaneously manipulating the inner and external states of a spin-orbit-coupled Bose-Einstein condensate, is predicted. Here, the “simultaneously manipulation of the inner and external states” means that the driving fields incorporate both the Zeeman field, which imposed on the atomic inner states, and the orbit potential, which influences the external states of atoms. Specifically, the Bose-Einstein condensate is assumed to be activated by an abruptly applied Zeeman field and a sudden shake of the trapping potential. After some reasonable simplification and approximation of the model (i.e., neglecting the inter-atomic interactions and modelling the shake of the trapping potential by a short time-dependent pulse), an analytical relation bridging the spin frequency spectrum and the parameters of the driving fields, is derived. The numerical calculations based on directly integrating the Gross-Pitaevskii equation are in great agreement with the analytical relation. The physical origin of the predicted spin dynamical response can be traced back to the quantum interference among different spin-orbit states. As a series of characteristic parameters of the condensate can be manifested in the spin frequency spectrum, the dynamical response effect predicted here offers a candidate method to determine and calibrate various system parameters by measuring the spin frequency spectrum.-
Keywords:
- Bose-Einstein condensate1 /
- Spin-orbit coupling2 /
- Ultracold quantum gases3 /
- Spin frequency spectrum4
-
[1] Chu S 1998 Rev. Mod. Phys. 70 685
[2] Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885
[3] Dalibard J, Gerbier F, Juzeliūnas G, Öhberg P 2011 Rev. Mod. Phys. 83 1523
[4] Qiu X Z, Zoller P, Li X P 2020 PRX Quantum 1 020311
[5] Jayaseelan M, Manikandan S K, Jordan A N, Bigelow N P 2021 Nat. Commun. 12 1847
[6] Kaufman A M, Ni K K 2021 Nat. Phys. 17 1324
[7] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969
[8] Anderson M H, Ensher J R, Matthewa M R, Wieman C E, Cornell E A 1995 Science 269 198
[9] Pitaevskii L, Stringari S 2016 Bose-Einstein Condensation and Superfluidity (Oxford University Press)
[10] Jie J W, Guan Q, Blume D 2019 Phys. Rev. A 100 043606
[11] Jie J W, Guan Q, Zhong S, Schwettmann A, Blume D 2020 Phys. Rev. A 102 023324
[12] Jie J W, Zhong S, Zhang Q, Morgenstern I, Ooi H G, Guan Q, Bhagat A, Nematollahi D, Schwettmann A, and Blume D 2023 Phys. Rev. A 107 053309
[13] Huang Y, Zhang Y, Lu R, Wang X, Yi S 2012 Phys. Rev. A 86 043625
[14] Xing H, Wang A, Tan Q S, Zhang W, Yi S 2016 Phys. Rev. A 93 043615
[15] Lewenstein M, Sanpera A, Ahufinger V 2012 Ultracold Atoms in Optical Lattices (Oxford University Press)
[16] Lin Y J, Jiménez-García K, Spielman I B 2011 Nature (London) 471 83
[17] Wang C, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403
[18] Sinha S, Nath R, Santos L 2011 Phys. Rev. Lett. 107 270401
[19] Hu H, Ramachandhran B, Pu H, Liu X J 2012 Phys. Rev. Lett. 108 010402
[20] Pan J S, Zhang W, Yi W, Guo G C 2016 Phys. Rev. A 94 043619
[21] Li J R, Lee J, Huang W, Burchesky S, Shteynas B, Top F C, Jamison A O, and Ketterle W 2017 Nature (London) 543 91
[22] Liao R 2018 Phys. Rev. Lett. 120 140403
[23] Campbell D L, Price R M, Putra A, Valdés-Curiel A, Trypogeorgos D, Spielman I B 2016 Nat. Commun. 7 10897
[24] Vaishnav J Y, Clark C W 2008 Phys. Rev. Lett. 100 153002
[25] Zhang Y P, Mao L, Zhang C W 2012 Phys. Rev. Lett. 108 035302
[26] Zhang Y P, Chen G, Zhang C W 2013 Sci. Rep. 3 1937
[27] Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301
[28] Qu C, Hamner C, Gong M, Zhang C, Engels P 2013 Phys. Rev. A 88 021604(R)
[29] Hamner C, Qu C, Zhang Y, Chang J, Gong M, Zhang C, Engels P 2014 Nat. Commun. 5 4023
[30] Khamehchi M A, Hossain K, Mossman M E, Zhang Y, Busch T, Forbes M M, Engels P 2017 Phys. Rev. Lett. 118 155301
[31] Wu C H, Fan J T, Chen J, Jia S T 2019 Phys. Rev. A 99 013617
[32] Fan G, Chen X L, Zou P 2022 Front. Phys. 17, 52502
[33] Bednarek S, Szumniak P, Szafran B 2010 Phys. Rev. B. 82 235319
[34] Pawlowski J, Szumniak P, Skubis A, Bednarek S 2014 J. Phys.: Condens. Matter 26 345302
[35] Golovach V N, Borhani M, Loss D 2006 Phys. Rev. B 74 165319
[36] Li R, You J Q, Sun C P, Nori F 2013 Phys. Rev. Lett. 111 086805
[37] Widera A, Gerbier F, Fölling S, Gericke T, Mandel O, Bloch I 2006 New. J. Phys. 8 152
[38] Ho T-L 1998 Phys. Rev. Lett. 81 742
[39] Grossmann F 2008 Theoretical Femtosecond Physics: Atoms and Molecules in Strong Laser Fields (Springer Berlin Heidelberg)
[40] Baudon J, Mathevet R, Robert J 1999 J. Phys. B: At. Mol. Opt. Phys. 32 R173
[41] Shevchenko S N, Ashhab S, Nori F 2010 Phys. Rep. 492 1
[42] Li Y, Feng G, Xu R, Wang X, Wu J, Chen G, Dai X, Ma J, Xiao L, Jia S 2015 Phys. Rev. A 91 053604
计量
- 文章访问数: 50
- PDF下载量: 2
- 被引次数: 0