-
当直接半导体中存在强的自旋轨道耦合作用, 且材料结构不具备中心反演对称性时, Rashba效应将会出现, 从而使自旋简并的能带分裂为具有相反自旋态的两个子能带. 这两个子能带会偏离布里渊区的对称中心位置, 致使半导体呈现出间接带隙的特征. 金属卤化物钙钛矿兼具强的自旋轨道耦合和结构中心反演不对称性, 在Rashba效应研究中展现出巨大的潜力. 本文围绕钙钛矿中Rashba效应的理论研究与实验证明, Rashba效应对载流子复合的影响以及目前Rashba效应研究中出现的争论, 系统地进行回顾与梳理; 针对钙钛矿中Rashba效应的研究现状, 提出了几个目前亟待解决的问题, 并展望了该领域未来的研究方向.When there is a strong spin-orbit coupling in some direct semiconductor with an inversion-asymmetric structure, the Rashba effect will exist, splitting the spin-degenerated bands into two sub-bands with opposite spin states. These two sub-bands will deviate from the symmetry center of the Brillouin zone, making the semiconductor an indirect band gap semiconductor. Metal halide perovskites exhibit strong spin-orbit coupling and possess an inversion-asymmetric crystal structure, showing great potential in Rashba effect research. In this review, we systematically review the Rashba effects in perovskites, including the theoretical and experimental studies for demonstrating the Rashba effect in perovskites, the influence of Rashba effect on the carrier recombination, and the current debates concerning the Rashba effect in perovskites. Then, several problems that need to be solved urgently are proposed,they being 1) whether there exists the Rashba effect in the perovskite, 2) whether the Rashba effect can exert a significant influence on carrier recombination, and 3) what the relationship between the Rashba effect and the perovskite stucture is. The prospects are also given for the future research including the study of the Rashba effect in perovskites by various spectral methods and the applications of the Rashba effect in optical-electronic-magnetic devices.
-
Keywords:
- perovskite /
- Rashba effect /
- carrier recombination
[1] Manser J S, Christians J A, Kamat P V 2016 Chem. Rev. 116 12956
Google Scholar
[2] Sutherland B R, Sargent E H 2016 Nat. Photon. 10 295
Google Scholar
[3] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
Google Scholar
[4] Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643
Google Scholar
[5] Yang R, Li R, Cao Y, Wei Y, Miao Y, Tan W L, Jiao X, Chen H, Zhang L, Chen Q, Zhang H, Zou W, Wang Y, Yang M, Yi C, Wang N, Gao F, McNeill C R, Qin T, Wang J, Huang W 2018 Adv. Mater. 30 1804771
[6] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687
Google Scholar
[7] Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W 2016 Nat. Photon. 10 699
Google Scholar
[8] Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249
Google Scholar
[9] NREL 2019 Best Research-Cell Efficiencies 2019 https://www.nrel.gov/pv/cell-efficiency.html [2019-05-05]
[10] Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584
Google Scholar
[11] Bi Y, Hutter E M, Fang Y, Dong Q, Huang J, Savenije T J 2016 J. Phys. Chem. Lett. 7 923
Google Scholar
[12] Alarousu E, El-Zohry A M, Yin J, Zhumekenov A A, Yang C, Alhabshi E, Gereige I, AlSaggaf A, Malko A V, Bakr O M, Mohammed O F 2017 J. Phys. Chem. Lett. 8 4386
Google Scholar
[13] Azarhoosh P, McKechnie S, Frost J M, Walsh A, van Schilfgaarde M 2016 APL Mater. 4 091501
Google Scholar
[14] Ambrosio F, Wiktor J, de Angelis F, Pasquarello A 2018 Energy Environ. Sci. 11 101
Google Scholar
[15] Chen T, Chen W L, Foley B J, Lee J, Ruff J P C, Ko J Y P, Brown C M, Harriger L W, Zhang D, Park C, Yoon M, Chang Y M, Choi J J, Lee S H 2017 PNAS 114 7519
Google Scholar
[16] Frost J M, Butler K T, Brivio F, Hendon C H, van Schilfgaarde M, Walsh A 2014 Nano Lett. 14 2584
Google Scholar
[17] Zhang C, Sun D, Vardeny Z V 2017 Adv. Electron. Mater. 3 1600426
Google Scholar
[18] Zhang Z, Long R, Tokina M V, Prezhdo O V 2017 J. Am. Chem. Soc. 139 17327
Google Scholar
[19] Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y 2014 J. Am. Chem. Soc. 136 11610
Google Scholar
[20] Stranks S D, Burlakov V M, Leijtens T, Ball J M, Goriely A, Snaith H J 2014 Phys. Rev. Appl. 2 034007
Google Scholar
[21] Ma J, Wang L W 2015 Nano Lett. 15 248
Google Scholar
[22] Pazos-Outón L M, Szumilo M, Lamboll R, Richter J M, Crespo-Quesada M, Abdi-Jalebi M, Beeson H J, Vrućinić M, Alsari M, Snaith H J, Ehrler B, Friend R H, Deschler F 2016 Science 351 1430
Google Scholar
[23] Fang Y, Wei H, Dong Q, Huang J 2017 Nat. Commun. 8 14417
Google Scholar
[24] Zheng F, Tan L Z, Liu S, Rappe A M 2015 Nano Lett. 15 7794
Google Scholar
[25] Etienne T, Mosconi E, De Angelis F 2016 J. Phys. Chem. Lett. 7 1638
Google Scholar
[26] Leppert L, Reyes-Lillo S E, Neaton J B 2016 J. Phys. Chem. Lett. 7 3683
Google Scholar
[27] Pedesseau L, Kepenekian M, Robles R, Sapori D, Katan C, Even J 2016 Proc. of SPIE 9742 97421B
Google Scholar
[28] Yu Z G 2016 J. Phys. Chem. Lett. 7 3078
Google Scholar
[29] Isarov M, Tan L Z, Bodnarchuk M I, Kovalenko M V, Rappe A M, Lifshitz E 2017 Nano Lett. 17 5020
Google Scholar
[30] Kepenekian M, Even J 2017 J. Phys. Chem. Lett. 8 3362
Google Scholar
[31] Yu Z G 2017 Phys. Chem. Chem. Phys. 19 14907
Google Scholar
[32] Che X, Traore B, Katan C, Kepenekian M, Even J 2018 Phys. Chem. Chem. Phys. 20 9638
Google Scholar
[33] Li Z, Kolodziej C, Zhang T, McCleese C, Kovalsky A, Zhao Y, Lambrecht W R L, Burda C 2018 J. Am. Chem. Soc. 140 11811
Google Scholar
[34] Stranks S D, Plochocka P 2018 Nat. Mater. 17 381
Google Scholar
[35] Myung C W, Javaid S, Kim K S, Lee G 2018 ACS Energy Lett. 3 1294
Google Scholar
[36] Niesner D, Hauck M, Shrestha S, Levchuk I, Matt G J, Osvet A, Batentschuk M, Brabec C, Weber H B, Fauster T 2018 PNAS 115 9509
Google Scholar
[37] Stroppa A, Di Sante D, Barone P, Bokdam M, Kresse G, Franchini C, Whangbo M H, Picozzi S 2014 Nat. Commun. 5 5900
Google Scholar
[38] Niesner D, Wilhelm M, Levchuk I, Osvet A, Shrestha S, Batentschuk M, Brabec C, Fauster T 2016 Phys. Rev. Lett. 117 126401
Google Scholar
[39] Mosconi E, Etienne T, de Angelis F 2017 T. Phys. Chem. Lett. 8 2247
Google Scholar
[40] Davies C L, Filip M R, Patel J B, Crothers T W, Verdi C, Wright A D, Milot R L, Giustino F, Johnston M B, Herz L M 2018 Nat. Commun. 9 293
Google Scholar
[41] Sarritzu V, Sestu N, Marongiu D, Chang X, Wang Q, Masi S, Colella S, Rizzo A, Gocalinska A, Pelucchi E, Mercuri M L, Quochi F, Saba M, Mura A, Bongiovanni G 2018 Adv. Opt. Mater. 6 1701254
Google Scholar
[42] Frohna K, Deshpande T, Harter J, Peng W, Barker B A, Neaton J B, Louie S G, Bakr O M, Hsieh D, Bernardi M 2018 Nat. Commun. 9 1829
Google Scholar
[43] Zhang X, Shen J X, Wang W, Van de Walle C G 2018 ACS Energy Lett. 3 2329
Google Scholar
[44] Zhang X, Shen J X, Van de Walle C G 2018 J. Phys. Chem. Lett. 9 2903
Google Scholar
[45] Rashba E I, Sheka V I 1959 Fiz. Tverd. Tela: Collected Papers 2 162
[46] Rashba E I. 1959 Sov. Phys.-Solid State 1 368
[47] Zhai Y, Baniya S, Zhang C, Li J, Haney P, Sheng C X, Ehrenfreund E, Vardeny Z V 2017 Sci. Adv. 3 e1700704
Google Scholar
[48] Dresselhaus G, Kip A F, Kittel C 1954 Phys. Rev. 95 568
Google Scholar
[49] Zhang X, Liu Q, Luo J W, Freeman A J, Zunger A 2014 Nat. Phys. 10 387
Google Scholar
[50] Ganichev S D, Golub L E 2014 Phys. Status Solidi B 251 1801
Google Scholar
[51] Giglberger S, Golub L E, Bel'kov V V, Danilov S N, Schuh D, Gerl C, Rohlfing F, Stahl J, Wegscheider W, Weiss D, Prettl W, Ganichev S D 2007 Phys. Rev. B 75 035327
[52] Frantzeskakis E, Pons S, Mirhosseini H, Henk J, Ast C R, Grioni M 2008 Phys. Rev. Lett. 101 196805
Google Scholar
[53] King P D, Hatch R C, Bianchi M, Ovsyannikov R, Lupulescu C, Landolt G, Slomski B, Dil J H, Guan D, Mi J L, Rienks E D, Fink J, Lindblad A, Svensson S, Bao S, Balakrishnan G, Iversen B B, Osterwalder J, Eberhardt W, Baumberger F, Hofmann P 2011 Phys. Rev. Lett. 107 096802
Google Scholar
[54] Ishizaka K, Bahramy M S, Murakawa H, Sakano M, Shimojima T, Sonobe T, Koizumi K, Shin S, Miyahara H, Kimura A, Miyamoto K, Okuda T, Namatame H, Taniguchi M, Arita R, Nagaosa N, Kobayashi K, Murakami Y, Kumai R, Kaneko Y, Onose Y, Tokura Y 2011 Nat. Mater. 10 521
Google Scholar
[55] Ganichev S D, Bel'kov V V, Golub L E, Ivchenko E L, Schneider P, Giglberger S, Eroms J, de Boeck J, Borghs G, Wegscheider W, Weiss D, Prettl W 2004 Phys. Rev. Lett. 92 256601
Google Scholar
[56] Kepenekian M, Robles R, Katan C, Sapori D, Pedesseau L, Even J 2015 ACS Nano 9 11557
Google Scholar
[57] Kim M, Im J, Freeman A J, Ihm J, Jin H 2014 PNAS 111 6900
Google Scholar
[58] Etienne T, Mosconi E, de Angelis F 2018 J. Phys. Chem. C 122 124
Google Scholar
[59] Hu S, Gao H, Qi Y, Tao Y, Li Y, Reimers J R, Bokdam M, Franchini C, Sante D D, Stroppa A, Ren W 2017 J. Phys. Chem. C 121 23045
Google Scholar
[60] Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Nazeeruddin M K, Graetzel M, de Angelis F 2014 Nano Lett. 14 3608
Google Scholar
[61] Even J, Pedesseau L, Jancu J M, Katan C 2014 Phys. Status Solidi (RRL)
8 31 Google Scholar
[62] Motta C, El-Mellouhi F, Kais S, Tabet N, Alharbi F, Sanvito S 2015 Nat. Commun. 6 7026
Google Scholar
[63] Marronnier A, Roma G, Carignano M A, Bonnassieux Y, Katan C, Even J, Mosconi E, de Angelis F 2019 J. Phys. Chem. C 123 291
Google Scholar
[64] McKechnie S, Frost J M, Pashov D, Azarhoosh P, Walsh A, van Schilfgaarde M 2018 Phys. Rev. B 98 085108
Google Scholar
[65] Beecher A N, Semonin O E, Skelton J M, Frost J M, Terban M W, Zhai H, Alatas A, Owen J S, Walsh A, Billinge S J L 2016 ACS Energy Lett. 1 880
Google Scholar
[66] Hutter E M, Gélvez-Rueda M C, Osherov A, Bulović V, Grozema F C, Stranks S D, Savenije T J 2017 Nat. Mater. 16 115
Google Scholar
[67] Eldridge P S, Leyland W J H, Lagoudakis P G, Harley R T, Phillips R T, Winkler R, Henini M, Taylor D 2010 Phys. Rev. B 82 045317
Google Scholar
[68] Wang T, Daiber B, Frost J M, Mann S A, Garnett E C, Walsh A, Ehrler B 2017 Energy Environ. Sci. 10 509
Google Scholar
[69] Wu B, Nguyen H T, Ku Z, Han G, Giovanni D, Mathews N, Fan H J, Sum T C 2016 Adv. Energy Mater. 6 1600551
Google Scholar
[70] Priest A N, Nicholas R J, Cheng H H, Van der Burgt M, Harris J J, Foxon C T 1998 Physica B 249–251 562
[71] Choi Y J, Debbichi L, Lee D K, Park N G, Kim H, Kim D 2019 J. Phys. Chem. Lett. 10 2135
Google Scholar
[72] Chen X, Lu H, Li Z, Zhai Y, Ndione P F, Berry J J, Zhu K, Yang Y, Beard M C 2018 ACS Energy Lett. 3 2273
Google Scholar
[73] Yin J, Maity P, Xu L, El-Zohry A M, Li H, Bakr O M, Brédas J L, Mohammed O F 2018 Chem. Mater. 30 8538
Google Scholar
[74] Even J, Pedesseau L, Jancu J M, Katan C 2013 J. Phys. Chem. Lett. 4 2999
Google Scholar
[75] König U, Weinberger P, Redinger J, Erschbaumer H, Freeman A J 1989 Phys. Rev. B 39 7492
Google Scholar
[76] Bertoni R, Nicholson C W, Waldecker L, Hübener H, Monney C, de Giovannini U, Puppin M, Hoesch M, Springate E, Chapman R T, Cacho C, Wolf M, Rubio A, Ernstorfer R 2016 Phys. Rev. Lett. 117 277201
Google Scholar
[77] Bel’kov V V, Ganichev S D, Ivchenko E L, Tarasenko S A, Weber W, Giglberger S, Olteanu M, Tranitz H P, Danilov S N, Schneider P, Wegscheider W, Weiss D, Prettl W 2005 J. Phys.: Conden. Matter 17 3405
Google Scholar
[78] Jusserand B, Richards D, Allan G, Priester C, Etienne B 1995 Phys. Rev. B 51 4707
Google Scholar
[79] Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213
Google Scholar
[80] Datta S, Das B 1990 Appl. Phys. Lett. 56 665
Google Scholar
-
图 4 (a)具有不同自旋极化的Rashba分裂子带偏离了k空间的Γ点[61]; (b)通过调控材料的铁电性改变Rashba分裂子带的自旋螺旋性[57]; (c)通过控制外电场调控自旋分裂子带中的自旋构造[37]
Fig. 4. (a) Rashba-splitting sub-bands with different spin polarization deviate from the Γ point in the k space [61]; (b) changing the spin helicity of the Rashba-spliting sub-bands by tuning the ferroelectricity of the material[57]; (c) tuning the spin texture of the spin-splitting sub-bands by controlling the external electric field [37].
图 5 (a)密度泛函计算表明晶格的扭曲致使钙钛矿成为间接带隙半导体[62]; (b)分子动力学分析指出钙钛矿中的Rashba效应随时间变化[58]; (c)基于分子动力学和冻结声子分析法的研究表明钙钛矿中动态的Rashba效应源自非简谐结构波动[63]; (d) ab initio计算分子动力学、密度泛函理论以及准粒子GW理论的综合分析结果表明钙钛矿中动态Rashba效应来源于材料中热无序导致的势能波动[64]
Fig. 5. (a) Density functional calculations show that perovskite becomes an indirect semiconductor due to the lattice distortion[62]; (b) molecular dynamics analysis shows that the Rashba effect in perovskite varies with time[58]; (c) molecular dynamics and frozen phonon analysis show that the dynamic Rashba effect in perovskite originates from the fluctuation of anharmonic structure[63]; (d) the combination analysis of ab initio molecular dynamics, density functional theory and quasiparticle GW theory shows that the dynamic Rashba effect in perovskite originates from the potential energy fluctuation caused by thermal disorder in perovskite [64].
图 9 (a), (b)利用磁光效应研究钙钛矿中的Rashba效应[29]; (c)通过测试高压下的钙钛矿光电性质研究钙钛矿中的Rashba效应[68]; (d)利用电诱导吸收谱和瞬态光谱测试法研究钙钛矿中的Rashba效应[47]
Fig. 9. (a), (b) Studying the Rashba effect in perovskite by measuring the magneto-optical effects [29]; (c) studying the Rashba effect in perovskite by measuring the optoelectronic properties of perovskite at high pressure[68]; (d) studying the Rashba effect in perovskite by measuring the electroabsorption spectra and transient spectroscopy [47].
图 12 利用准粒子自洽场GW法研究不同激发密度和不同温度下Rashba效应对钙钛矿中光生载流子辐射复合速率的影响[13]
Fig. 12. Studying the influence of the Rashba effect on the radiative recombination rates of photo-generated carriers in perovskite under different excitation densities and temperatures by quasiparticle self-consistent field GW method [13].
图 13 (a), (b)基于1PE和2PE的瞬态光谱测试研究Rashba效应对钙钛矿表面和内部载流子复合速率的影响[33]; (c)基于瞬态PL研究不同晶粒大小的钙钛矿中Rashba效应对载流子复合的影响[71]
Fig. 13. (a), (b) Studying the influences of Rashba effect on the carrier recombination rates on the surface and interior of perovskite by transient spectroscopy measurements based on single-photon (1PE) and two-photon (2PE) excitations [33]; (c) studying the impacts of Rashba effect on the carrier recombination in perovskite with different grain size based on transient PL investigation [71].
图 14 (a)利用瞬态反射谱研究不同n值的二维钙钛矿中Rashba效应对载流子寿命的影响[72]; (b)利用圆偏振时间分辨光谱研究Rashba效应对钙钛矿中载流子自旋寿命的影响[72]
Fig. 14. (a) Studying the influences of Rashba effect on carrier lifetime in two-dimensional perovskite with different n values by using the transient reflection spectroscopy[72]; (b) studying the influences of Rashba effect on spin lifetime of the carriers in the perovskites by circularly polarized time-resolved spectroscopy [72].
图 19 (a)第一性原理计算结果表明虽然钙钛矿中存在Rashba效应, 但载流子复合并不是自旋禁阻的[44]; (b) Rashba效应引起的动量不匹配对载流子复合速率的影响十分微弱[43]
Fig. 19. Results of first-principles calculations show that the Rashba effect in perovskite does not lead to the spin forbidden of the carrier recombination [44]; (b) the influence of momentum mismatch caused by the Rashba effect on the carriers recombination is very weak [43].
-
[1] Manser J S, Christians J A, Kamat P V 2016 Chem. Rev. 116 12956
Google Scholar
[2] Sutherland B R, Sargent E H 2016 Nat. Photon. 10 295
Google Scholar
[3] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
Google Scholar
[4] Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643
Google Scholar
[5] Yang R, Li R, Cao Y, Wei Y, Miao Y, Tan W L, Jiao X, Chen H, Zhang L, Chen Q, Zhang H, Zou W, Wang Y, Yang M, Yi C, Wang N, Gao F, McNeill C R, Qin T, Wang J, Huang W 2018 Adv. Mater. 30 1804771
[6] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687
Google Scholar
[7] Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W 2016 Nat. Photon. 10 699
Google Scholar
[8] Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249
Google Scholar
[9] NREL 2019 Best Research-Cell Efficiencies 2019 https://www.nrel.gov/pv/cell-efficiency.html [2019-05-05]
[10] Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584
Google Scholar
[11] Bi Y, Hutter E M, Fang Y, Dong Q, Huang J, Savenije T J 2016 J. Phys. Chem. Lett. 7 923
Google Scholar
[12] Alarousu E, El-Zohry A M, Yin J, Zhumekenov A A, Yang C, Alhabshi E, Gereige I, AlSaggaf A, Malko A V, Bakr O M, Mohammed O F 2017 J. Phys. Chem. Lett. 8 4386
Google Scholar
[13] Azarhoosh P, McKechnie S, Frost J M, Walsh A, van Schilfgaarde M 2016 APL Mater. 4 091501
Google Scholar
[14] Ambrosio F, Wiktor J, de Angelis F, Pasquarello A 2018 Energy Environ. Sci. 11 101
Google Scholar
[15] Chen T, Chen W L, Foley B J, Lee J, Ruff J P C, Ko J Y P, Brown C M, Harriger L W, Zhang D, Park C, Yoon M, Chang Y M, Choi J J, Lee S H 2017 PNAS 114 7519
Google Scholar
[16] Frost J M, Butler K T, Brivio F, Hendon C H, van Schilfgaarde M, Walsh A 2014 Nano Lett. 14 2584
Google Scholar
[17] Zhang C, Sun D, Vardeny Z V 2017 Adv. Electron. Mater. 3 1600426
Google Scholar
[18] Zhang Z, Long R, Tokina M V, Prezhdo O V 2017 J. Am. Chem. Soc. 139 17327
Google Scholar
[19] Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y 2014 J. Am. Chem. Soc. 136 11610
Google Scholar
[20] Stranks S D, Burlakov V M, Leijtens T, Ball J M, Goriely A, Snaith H J 2014 Phys. Rev. Appl. 2 034007
Google Scholar
[21] Ma J, Wang L W 2015 Nano Lett. 15 248
Google Scholar
[22] Pazos-Outón L M, Szumilo M, Lamboll R, Richter J M, Crespo-Quesada M, Abdi-Jalebi M, Beeson H J, Vrućinić M, Alsari M, Snaith H J, Ehrler B, Friend R H, Deschler F 2016 Science 351 1430
Google Scholar
[23] Fang Y, Wei H, Dong Q, Huang J 2017 Nat. Commun. 8 14417
Google Scholar
[24] Zheng F, Tan L Z, Liu S, Rappe A M 2015 Nano Lett. 15 7794
Google Scholar
[25] Etienne T, Mosconi E, De Angelis F 2016 J. Phys. Chem. Lett. 7 1638
Google Scholar
[26] Leppert L, Reyes-Lillo S E, Neaton J B 2016 J. Phys. Chem. Lett. 7 3683
Google Scholar
[27] Pedesseau L, Kepenekian M, Robles R, Sapori D, Katan C, Even J 2016 Proc. of SPIE 9742 97421B
Google Scholar
[28] Yu Z G 2016 J. Phys. Chem. Lett. 7 3078
Google Scholar
[29] Isarov M, Tan L Z, Bodnarchuk M I, Kovalenko M V, Rappe A M, Lifshitz E 2017 Nano Lett. 17 5020
Google Scholar
[30] Kepenekian M, Even J 2017 J. Phys. Chem. Lett. 8 3362
Google Scholar
[31] Yu Z G 2017 Phys. Chem. Chem. Phys. 19 14907
Google Scholar
[32] Che X, Traore B, Katan C, Kepenekian M, Even J 2018 Phys. Chem. Chem. Phys. 20 9638
Google Scholar
[33] Li Z, Kolodziej C, Zhang T, McCleese C, Kovalsky A, Zhao Y, Lambrecht W R L, Burda C 2018 J. Am. Chem. Soc. 140 11811
Google Scholar
[34] Stranks S D, Plochocka P 2018 Nat. Mater. 17 381
Google Scholar
[35] Myung C W, Javaid S, Kim K S, Lee G 2018 ACS Energy Lett. 3 1294
Google Scholar
[36] Niesner D, Hauck M, Shrestha S, Levchuk I, Matt G J, Osvet A, Batentschuk M, Brabec C, Weber H B, Fauster T 2018 PNAS 115 9509
Google Scholar
[37] Stroppa A, Di Sante D, Barone P, Bokdam M, Kresse G, Franchini C, Whangbo M H, Picozzi S 2014 Nat. Commun. 5 5900
Google Scholar
[38] Niesner D, Wilhelm M, Levchuk I, Osvet A, Shrestha S, Batentschuk M, Brabec C, Fauster T 2016 Phys. Rev. Lett. 117 126401
Google Scholar
[39] Mosconi E, Etienne T, de Angelis F 2017 T. Phys. Chem. Lett. 8 2247
Google Scholar
[40] Davies C L, Filip M R, Patel J B, Crothers T W, Verdi C, Wright A D, Milot R L, Giustino F, Johnston M B, Herz L M 2018 Nat. Commun. 9 293
Google Scholar
[41] Sarritzu V, Sestu N, Marongiu D, Chang X, Wang Q, Masi S, Colella S, Rizzo A, Gocalinska A, Pelucchi E, Mercuri M L, Quochi F, Saba M, Mura A, Bongiovanni G 2018 Adv. Opt. Mater. 6 1701254
Google Scholar
[42] Frohna K, Deshpande T, Harter J, Peng W, Barker B A, Neaton J B, Louie S G, Bakr O M, Hsieh D, Bernardi M 2018 Nat. Commun. 9 1829
Google Scholar
[43] Zhang X, Shen J X, Wang W, Van de Walle C G 2018 ACS Energy Lett. 3 2329
Google Scholar
[44] Zhang X, Shen J X, Van de Walle C G 2018 J. Phys. Chem. Lett. 9 2903
Google Scholar
[45] Rashba E I, Sheka V I 1959 Fiz. Tverd. Tela: Collected Papers 2 162
[46] Rashba E I. 1959 Sov. Phys.-Solid State 1 368
[47] Zhai Y, Baniya S, Zhang C, Li J, Haney P, Sheng C X, Ehrenfreund E, Vardeny Z V 2017 Sci. Adv. 3 e1700704
Google Scholar
[48] Dresselhaus G, Kip A F, Kittel C 1954 Phys. Rev. 95 568
Google Scholar
[49] Zhang X, Liu Q, Luo J W, Freeman A J, Zunger A 2014 Nat. Phys. 10 387
Google Scholar
[50] Ganichev S D, Golub L E 2014 Phys. Status Solidi B 251 1801
Google Scholar
[51] Giglberger S, Golub L E, Bel'kov V V, Danilov S N, Schuh D, Gerl C, Rohlfing F, Stahl J, Wegscheider W, Weiss D, Prettl W, Ganichev S D 2007 Phys. Rev. B 75 035327
[52] Frantzeskakis E, Pons S, Mirhosseini H, Henk J, Ast C R, Grioni M 2008 Phys. Rev. Lett. 101 196805
Google Scholar
[53] King P D, Hatch R C, Bianchi M, Ovsyannikov R, Lupulescu C, Landolt G, Slomski B, Dil J H, Guan D, Mi J L, Rienks E D, Fink J, Lindblad A, Svensson S, Bao S, Balakrishnan G, Iversen B B, Osterwalder J, Eberhardt W, Baumberger F, Hofmann P 2011 Phys. Rev. Lett. 107 096802
Google Scholar
[54] Ishizaka K, Bahramy M S, Murakawa H, Sakano M, Shimojima T, Sonobe T, Koizumi K, Shin S, Miyahara H, Kimura A, Miyamoto K, Okuda T, Namatame H, Taniguchi M, Arita R, Nagaosa N, Kobayashi K, Murakami Y, Kumai R, Kaneko Y, Onose Y, Tokura Y 2011 Nat. Mater. 10 521
Google Scholar
[55] Ganichev S D, Bel'kov V V, Golub L E, Ivchenko E L, Schneider P, Giglberger S, Eroms J, de Boeck J, Borghs G, Wegscheider W, Weiss D, Prettl W 2004 Phys. Rev. Lett. 92 256601
Google Scholar
[56] Kepenekian M, Robles R, Katan C, Sapori D, Pedesseau L, Even J 2015 ACS Nano 9 11557
Google Scholar
[57] Kim M, Im J, Freeman A J, Ihm J, Jin H 2014 PNAS 111 6900
Google Scholar
[58] Etienne T, Mosconi E, de Angelis F 2018 J. Phys. Chem. C 122 124
Google Scholar
[59] Hu S, Gao H, Qi Y, Tao Y, Li Y, Reimers J R, Bokdam M, Franchini C, Sante D D, Stroppa A, Ren W 2017 J. Phys. Chem. C 121 23045
Google Scholar
[60] Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Nazeeruddin M K, Graetzel M, de Angelis F 2014 Nano Lett. 14 3608
Google Scholar
[61] Even J, Pedesseau L, Jancu J M, Katan C 2014 Phys. Status Solidi (RRL)
8 31 Google Scholar
[62] Motta C, El-Mellouhi F, Kais S, Tabet N, Alharbi F, Sanvito S 2015 Nat. Commun. 6 7026
Google Scholar
[63] Marronnier A, Roma G, Carignano M A, Bonnassieux Y, Katan C, Even J, Mosconi E, de Angelis F 2019 J. Phys. Chem. C 123 291
Google Scholar
[64] McKechnie S, Frost J M, Pashov D, Azarhoosh P, Walsh A, van Schilfgaarde M 2018 Phys. Rev. B 98 085108
Google Scholar
[65] Beecher A N, Semonin O E, Skelton J M, Frost J M, Terban M W, Zhai H, Alatas A, Owen J S, Walsh A, Billinge S J L 2016 ACS Energy Lett. 1 880
Google Scholar
[66] Hutter E M, Gélvez-Rueda M C, Osherov A, Bulović V, Grozema F C, Stranks S D, Savenije T J 2017 Nat. Mater. 16 115
Google Scholar
[67] Eldridge P S, Leyland W J H, Lagoudakis P G, Harley R T, Phillips R T, Winkler R, Henini M, Taylor D 2010 Phys. Rev. B 82 045317
Google Scholar
[68] Wang T, Daiber B, Frost J M, Mann S A, Garnett E C, Walsh A, Ehrler B 2017 Energy Environ. Sci. 10 509
Google Scholar
[69] Wu B, Nguyen H T, Ku Z, Han G, Giovanni D, Mathews N, Fan H J, Sum T C 2016 Adv. Energy Mater. 6 1600551
Google Scholar
[70] Priest A N, Nicholas R J, Cheng H H, Van der Burgt M, Harris J J, Foxon C T 1998 Physica B 249–251 562
[71] Choi Y J, Debbichi L, Lee D K, Park N G, Kim H, Kim D 2019 J. Phys. Chem. Lett. 10 2135
Google Scholar
[72] Chen X, Lu H, Li Z, Zhai Y, Ndione P F, Berry J J, Zhu K, Yang Y, Beard M C 2018 ACS Energy Lett. 3 2273
Google Scholar
[73] Yin J, Maity P, Xu L, El-Zohry A M, Li H, Bakr O M, Brédas J L, Mohammed O F 2018 Chem. Mater. 30 8538
Google Scholar
[74] Even J, Pedesseau L, Jancu J M, Katan C 2013 J. Phys. Chem. Lett. 4 2999
Google Scholar
[75] König U, Weinberger P, Redinger J, Erschbaumer H, Freeman A J 1989 Phys. Rev. B 39 7492
Google Scholar
[76] Bertoni R, Nicholson C W, Waldecker L, Hübener H, Monney C, de Giovannini U, Puppin M, Hoesch M, Springate E, Chapman R T, Cacho C, Wolf M, Rubio A, Ernstorfer R 2016 Phys. Rev. Lett. 117 277201
Google Scholar
[77] Bel’kov V V, Ganichev S D, Ivchenko E L, Tarasenko S A, Weber W, Giglberger S, Olteanu M, Tranitz H P, Danilov S N, Schneider P, Wegscheider W, Weiss D, Prettl W 2005 J. Phys.: Conden. Matter 17 3405
Google Scholar
[78] Jusserand B, Richards D, Allan G, Priester C, Etienne B 1995 Phys. Rev. B 51 4707
Google Scholar
[79] Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213
Google Scholar
[80] Datta S, Das B 1990 Appl. Phys. Lett. 56 665
Google Scholar
计量
- 文章访问数: 26091
- PDF下载量: 1408
- 被引次数: 0