Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study on spectroscopic properties of 8 Λ-S and 23 Ω states for BH molecule

Xing Wei Li Sheng–Zhou Sun Jin–Feng Li Wen–Tao Zhu Zun–Lüe Liu Feng

Citation:

Theoretical study on spectroscopic properties of 8 Λ-S and 23 Ω states for BH molecule

Xing Wei, Li Sheng–Zhou, Sun Jin–Feng, Li Wen–Tao, Zhu Zun–Lüe, Liu Feng
PDF
HTML
Get Citation
  • In this work, the potential energy curves of eight low electronic states (X1Σ+, a3Π, A1Π, b3Σ-, 23Π, 13Σ+, 15Σ-, and 15Π) and twenty-three Ω states of BH molecule, and the transition dipole moments among the $ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $, $ {{\text{a}}^{\text{3}}}{\Pi_{{{\text{0}}^ + }}} $, a3Π1, a3Π2, and A1Π1 states are calculated by using the internally contracted multireference configuration interaction (icMRCI) method. In order to obtain the accurate potential energy curve, the errors caused by single and double electron excitation, core-valence correlation effects, relativistic effects and basis set truncation are corrected. The spectral and transition data of BH molecule are in good agreement with the available theoretical and experimental data. The calculation results show that the A1Π1(υ′ = 0-2, J′ = 1, +) →$ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $(υ′′ = 0-2, J′′ = 1, –) transition has large Einstein A-coefficient, weighted absorption oscillator strength, and highly diagonal vibrational branching ratio Rυ′υ′′, and the excited state A1Π1(υ′ = 0, 1) have short spontaneous radiation lifetimes. Moreover, the effects of $ {{\text{a}}^{\text{3}}}{\Pi_{{{\text{0}}^ + }}} $and a3Π1 states on A1Π1(υ′ = 0) ↔ $ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $(υ′′ = 0) cycle transition can be ignored. Therefore, according to the A1Π1(υ′ = 0-1, J′ = 1, +) ↔ $ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $(υ′′ = 0-3, J′′ = 1, –) cycle transition, we propose to apply one main cooling laser (λ00 = 432.45 nm) and two repumping lasers (λ10 = 479.67 nm and λ21 = 481.40 nm) to laser cooling BH molecules, and evaluation of the cooling effect.
      Corresponding author: Xing Wei, wei19820403@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61275132, 11274097), the Natural Science Foundation of Henan Province, China (Grant No. 212300410233), the Key Scientific Research Prgoram of Higher Education of Henan Province, China (Grant No. 21A140023), and the Nanhu Scholars Program for Young Scholars of XYNU, China.
    [1]

    Engvold O 1970 Sol. Phys. 11 183Google Scholar

    [2]

    Karthikeyan B, Raja V, Rajamanickam N, Bagare S P 2006 Astrophys. Space. Sci. 306 231Google Scholar

    [3]

    Karthikeyan B, Bagare S P, Rajamanickam N, Raja V 2009 Astropart. Phys. 31 6Google Scholar

    [4]

    Hendricks R J, Holland D A, Truppe S, Sauer B E, Tarbutt M R 2014 Front. Phys. 2 51Google Scholar

    [5]

    Gao Y F, Gao T 2015 Phys. Chem. Chem. Phys. 17 10830Google Scholar

    [6]

    Johns J W C, Grimm F A, Porter R F 1967 J. Mol. Spectrosc. 22 435Google Scholar

    [7]

    Luh W T, StwalleyW C 1983 J. Mol. Spectrosc. 102 212Google Scholar

    [8]

    Pianalto F S, O’Brien L C, Keller P C, Bernath P F 1988 J. Mol. Spectrosc. 129 348Google Scholar

    [9]

    Douglass C H, Nelson H H, Rice J K 1989 J. Chem. Phys. 90 6940Google Scholar

    [10]

    Fernando W T M L, Bernath P F 1991 J. Mol. Spectrosc. 145 392Google Scholar

    [11]

    Persico M 1994 Mol. Phys. 81 1463Google Scholar

    [12]

    Clark J, Konopka M, Zhang L M, Grant E R 2001 Chem. Phys. Lett. 340 45Google Scholar

    [13]

    Shayesteh A, Ghazizadeh E 2015 J. Mol. Spectrosc. 312 110Google Scholar

    [14]

    Brazier C R 1996 J. Mol. Spectrosc. 177 90Google Scholar

    [15]

    Petsalakis I D, Theodorakopoulos G 2006 Mol. Phys. 104 103Google Scholar

    [16]

    Petsalakis I D, Theodorakopoulos G 2007 Mol. Phys. 105 333Google Scholar

    [17]

    Miliordos E, Mavridis A 2008 J. Chem. Phys. 128 144308Google Scholar

    [18]

    王新强, 杨传路, 苏涛, 王美山 2009 58 6873Google Scholar

    Wang X Q, Yang C L, Su T, Wang M S 2009 Acta Phys. Sin. 58 6873Google Scholar

    [19]

    Koput J 2015 J. Comput. Chem. 36 2219Google Scholar

    [20]

    Yan P Y, Yan B 2016 Commun. Comput. Chem. 4 109Google Scholar

    [21]

    Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M 2010 MOLPRO, version 2010.1, a package of ab initio programs, http://www.molpro.net [2021–12–8]

    [22]

    Van Mourik T, Dunning Jr T H 2000 Int. J. Quantum Chem. 76 205Google Scholar

    [23]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61Google Scholar

    [24]

    Peterson K A, Dunning Jr T H 2002 J. Chem. Phys. 117 10548Google Scholar

    [25]

    De Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 114 48Google Scholar

    [26]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215Google Scholar

    [27]

    Oyeyemi V B, Krisiloff D B, Keith J A, Libisch F, Pavone M, Carter E A 2014 J. Chem. Phys. 140 044317Google Scholar

    [28]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [29]

    Le Roy R J 2017 J. Quant. Spectrosc. Radiat. Transf 186 167

    [30]

    Kramida A E, Ryabtsev A N 2007 Phys. Scr. 76 544Google Scholar

    [31]

    Strasburger K 2020 Phys. Rev. A 102 052806Google Scholar

    [32]

    Di Rosa M D 2004 Eur. Phys. J. D 31 395Google Scholar

    [33]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

  • 图 1  BH分子8个Λ-S态的势能曲线

    Figure 1.  Potential energy curves of 8Λ-S states of the BH molecule.

    图 2  BH分子23个Ω态的势能曲线

    Figure 2.  Potential energy curves of 23 Ω states of the BH molecule.

    图 3  BH分子6对跃迁的跃迁偶极矩曲线

    Figure 3.  Curves of the transition dipole moments versus internuclear separation of six-pair states of the BH molecule.

    图 4  利用A1Π1(υ′) ↔$ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $(υ′′)跃迁进行激光冷却BH分子的方案. 虚线表示A1Π1(υ′ = 0, 1) →$ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $(υ′′ = 0 –3)跃迁的自发辐射振动分支比(Rυ′υ′′). 红色实线表示激光驱动$ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $(υ′′) → A1Π1 (υ′)跃迁

    Figure 4.  The proposed laser cooling scheme for the BH using A1Π1(υ′) ↔$ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $(υ′′) transition. The dotted line indicate the spontaneous radiation vibrational branching ratio (Rυ′υ′′) of A1Π1(υ′ = 0, 1) →$ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $(υ′′ = 0 – 3) transition. The red solid line indicate the wavelength (λυ′′υ′) at which the laser drives the $ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $(υ′′) →A1Π1 (υ′). transition.

    表 1  BH分子前两个离解极限产生的8个Λ-S态的离解关系

    Table 1.  Dissociation relationships of the 8 Λ –S states generated from the first two dissociation asymptotes of the BH molecule

    离解极限Λ-S态能级a/cm–1
    本文实验[30]理论[31]
    B(2Pu) + H(2Sg)X1Σ+, a3Π, A1Π, 13Σ+0.000.000.00
    B(4Pg) + H(2Sg)b3Σ, 15Σ, 23Π, 15Π28907.6628644.99+xb28932.70
    a, 4Pg态能级为4P1/2, 4P3/24P5/2能级的算术平均值减去2P3/22P1/2能级的算术平均值; b, 4P5/2能级外推值的不确定度.
    DownLoad: CSV

    表 2  icMRCI + Q/56 + CV + SR理论水平上BH分子7个Λ-S态的光谱常数

    Table 2.  Spectroscopic parameters of the 7 Λ-S states of BH at level of icMRCI + Q/56 + CV + SR.

    Λ-S态来源Te/cm–1Re/nmωe/cm–1ωexe/cm–1Be/cm–1αe/(102 cm–1)De/eV
    X1Σ+本文00.122952367.2848.778212.039537.09853.7137
    实验[8]00.123222366.7349.338412.025542.1516
    实验[10]02366.7349.339812.025842.1565
    实验[12]02364.6647.709812.025742.15913.6476±0.0037a
    实验[13]00.123222366.7349.340512.025542.1450
    理论[5]00.122902352.044.012.0863.6863
    理论[15]00.12301237946.7912.073.70
    理论[16]00.12312237812.0553.578b
    理论[17]00.1230235948.841.83.6773
    理论[18]00.123272368.4850.695712.11043.053.6580
    理论[19]00.123003.6751
    理论[20]00.122932365.6947.231012.080141.63.6851
    a3Π本文10944.320.118992625.9759.417712.891941.64042.3507
    实验[14]xc0.119002625.1455.784012.893141.56102.3867
    理论[5]10645.00.119002961.0109.612.9042.3806
    理论[15]0.11913265362.7012.872.38
    理论[17]105830.11900262560.445.52.3677
    理论[18]9557.670.119252598.9846.630012.940042.532.3135
    A1Π本文23203.520.122232253.2836.831011.834311.62540.8368
    实验[10]23135.440.12195d2251.4656.572512.2003553.76700.697d
    实验[12]23105.102342.41127.761812.1998653.67360.7786±0.0037a
    理论[5]22997.900.122102404.60147.312.27950.9098
    理论[15]0.122132320136.512.240.71
    理论[16]230610.12235229012.200.73b
    理论[17]231440.12222341129.685.10.8109
    理论[18]22260.890.122672280.2693.623312.22960.830.7536
    理论[19]23099.840.122122343.96128.17812.283674.00.8938
    b3Σ本文38238.630.121642440.8954.447712.250833.67122.5959
    实验[14]xc+27152.750.1216252438.1055.56212.342643.0872.5987
    理论[15]0.12256234548.4512.162.54
    理论[17]377080.1217243057.345.92.5845
    理论[18]36859.520.121992428.3355.40912.28444.312.5403
    23Π本文50730.460.192151273.8920.78964.944713.09571.0467
    理论[15]0.19338142557.044.881.04
    理论[17]502160.1931129538.69.91.0321
    13Σ+本文51738.070.125920.0031
    理论[17]516880.123
    15Σ本文58295.540.16981634.868167.6766.51936192.6410.1093
    理论[17]576740.170152887.3153.20.1084
    a, 文献[11]中的值; b, D0值; c, x表示a3Π态相对于X1Σ+态的Te值; d, 文献[7]中的值.
    DownLoad: CSV

    表 3  BH分子23个Ω态的离解关系

    Table 3.  Dissociation relationships of the 23 Ω states of the BH molecule.

    原子态(B + H)Ω态能级/cm–1
    本文实验[30]
    B(2P1/2) + H(2S1/2)0, 0+, 10.000.00
    B(2P3/2) + H(2S1/2)2, 1(2), 0+, 014.57215.287
    B(4P1/2) + H(2S1/2)0, 0+, 128910.6328647.43+x a
    B(4P3/2) + H(2S1/2)2, 1(2), 0+, 028914.6728652.07+x a
    B(4P5/2) + H(2S1/2)3, 2(2), 1(2), 0+, 028921.4128658.40+x a
    a, 4P5/2能级外推值的不确定度.
    DownLoad: CSV

    表 4  利用icMRCI + Q/56 + CV + SR + SOC理论计算获得的17个Ω态的光谱常数

    Table 4.  Spectroscopic parameters obtained by the icMRCI + Q/56 + CV + SR + SOC calculations for the 17 Ω states.

    Ω态Te/cm–1Re/nmωe/cm–1ωexe/cm–1Be/cm–1102αe/cm–1De/eVRe附近主要的Λ–S态/%
    $ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $00.122952367.2848.778312.039537.09853.7138X1Σ+ (100.00)
    ${\text{a} }{}^{\text{3} }{\Pi_{ { {\text{0} }^{{ - } } } }}$10940.360.118992625.9359.416512.891841.64262.3506a3Π (100.00)
    $ {\text{a}}{}^{\text{3}}{\Pi_{{{\text{0}}^ + }}} $10940.370.118992625.9359.419212.891841.64242.3506a3Π (100.00)
    a3Π110944.320.118992625.9759.414012.891941.64032.3513a3Π (100.00)
    a3Π210948.490.118992626.0159.413112.891941.63842.3509a3Π (100.00)
    A1Π123203.520.122232253.2836.831711.833811.70340.9051A1Π (100.00)
    (3)0+第一势阱38244.330.121632438.0844.728112.292538.30411.5501b3Σ (100.00)
    (3)0+第二势阱50725.860.192130.002623Π (100.00)
    (3)138244.350.121632447.6954.293412.316737.61490.8995b3Σ (100.00)
    (4)145758.490.164964850.091293.006.739524.021681.662913Σ+ (100.00)
    ${\text{2} }{}^{\text{3} }{\Pi_{ { {\text{0} }^{ { - } } } } }$50726.070.192141274.0020.84504.944703.096111.046623Π (100.00)
    (4)0+50726.510.188602344.5477.797616.561629.69761.0478b3Σ (99.82), 23Π (0.18)
    (5)150728.050.188632531.33412.6715.2041561.47521.0476b3Σ (99.92), 23Π (0.08)
    23Π250734.850.192151273.8620.79034.944713.095201.046723Π (100.00)
    ${\text{1} }{}^{\text{3} }{\Sigma}_{ { {\text{0} }^{{ - } } } }^ +$51738.080.125920.003113Σ+ (100.00)
    ${\text{1} }{}^{\text{5} }{\Sigma}_{ { {\text{0} }^{{ - } } } }^{{ - } }$58295.530.16981634.857167.6536.51872192.4710.109615Σ (100.00)
    ${\text{1} }{}^{\text{5} }{\Sigma}_{\text{2} }^{{ - } }$58295.550.16981634.862167.6606.51884192.5020.109615Σ (100.00)
    ${\text{1} }{}^{\text{5} }{\Sigma}_{\text{2} }^{{ - } }$58295.570.16981634.867167.6696.51902192.5500.109515Σ (100.00)
    DownLoad: CSV

    表 5  A1Π1(υ′, J′ = 1, +) → $ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $(υ′′, J′′ = 1, –)跃迁的跃迁波数(${\tilde v} $)、爱因斯坦A系数(Aυ′υ′′)、振动分支比(Rυ′υ′′)、波长(λυ′υ′′)、加权的吸收振子强度(gfυ′υ′′)

    Table 5.  The transition wavenumber (${\tilde v} $), Einstein A-coefficients (Aυ′υ′′), vibrational branching ratios (Rυ′υ′′), wavelength (λυ′υ′′), and weighted absorption oscillator strengths (gfυ′υ′′) for the A1Π1(υ′, J′ = 1, +) → $ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $(υ′′, J′′ = 1, –) transitions.

    υ′–υ${\tilde v}/$cm–1Aυ′υ′′/sRυ′υ′′λυ′υ′′/nmgfυ′υ′′ υ′–υ${\tilde v} $/cm–1Aυ′υ′′/sRυ′υ′′λυ′υ′′/nmgfυ′υ′′
    0-023140.447.98×1060.9912432.450.0067 1-025243.779.61×1040.0138396.426.78×10–4
    0-120862.556.67×1040.0083479.676.89×10–41-122965.886.80×1060.9777435.740.0580
    0-218684.363.86×1034.79×10–4535.594.97×10–51-220787.694.72×1040.0068481.404.91×10–4
    0-316602.974.43×1015.50×10–6602.737.22×10–71-318706.301.13×1040.0016534.961.45×10–4
    0-414612.081.752.17×10–7684.853.69×10–81-416715.407.15×1011.03×10–5598.681.15×10–6
    2-027090.981.76×1033.10×10–4369.391.08×10–53-028588.601.08×1032.66×10–4350.045.95×10–6
    2-124813.094.31×1050.0759403.300.00323-126310.721.89×1034.66×10–4380.341.23×10–5
    2-222634.905.22×1060.9192442.110.04583-224132.531.16×1060.2858414.670.0090
    2-320553.511.38×1032.43×10–4486.881.47×10–53-322051.132.80×1060.6887453.810.0259
    2-418562.622.46×1040.0043539.103.21×10–43-420060.244.31×1040.0106498.854.82×10–4
    2-516658.641.50×1012.64×10–6600.722.43×10–73-518156.265.40×1040.1330551.177.37×10–4
    DownLoad: CSV

    表 7  a3Π1(υ′, J′ = 1, +) →$ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $(υ′′, J′′ = 1, –)跃迁的跃迁波数(${\tilde v} $)、爱因斯坦A系数(Aυ′υ′′)、振动分支比(Rυ′υ′′)、波长(λυ′υ′′)、加权的吸收振子强度(gfυ′υ′′)

    Table 7.  The transition wavenumber (${\tilde v} $), Einstein A-coefficients(Aυ′υ′′), vibrational branching ratios (Rυ′υ′′), wavelength (λυ′υ′′), and weighted absorption oscillator strengths (gfυ′υ′′) for the a3Π1(υ′, J′ = 1, +) →$ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $(υ′′, J′′ = 1, –).

    υ′–υ${\tilde v} $/cm–1Aυ′υ′′/sRυ′υ′′λυ′υ′′/nmgfυ′υ′′ υ′–υ${\tilde v} $/cm–1Aυ′υ′′/sRυ′υ′′λυ′υ′′/nmgfυ′υ′′
    0-011039.580.12780.9615906.484.72×10–9 1-013546.430.00810.0607738.731.98×10–10
    0-18761.690.00500.03741142.142.91×10–101-111268.540.11480.8613888.064.07×10–9
    0-26583.501.48×10–40.00111520.031.54×10–111-29090.350.00990.07391100.855.36×10–10
    0-34502.113.00×10–62.25×10–52222.766.65×10–131-37008.965.33×10–40.00401427.764.88×10–11
    0-42511.213.32×10–82.50×10–73984.982.37×10–141-45018.071.86×10–51.39×10–41994.223.32×10–12
    2-015928.882.81×10–52.12×10–4628.244.98×10–133-018182.601.94×10–61.47×10–5550.372.63×10–14
    2-113651.000.01520.1142733.073.66×10–103-115904.715.54×10–54.22×10–4629.199.84×10–13
    2-211472.810.10230.7703872.253.49×10–93-213726.520.02110.1607729.045.04×10–10
    2-39391.410.01410.10591065.567.17×10–103-311645.130.09120.6945859.343.03×10–9
    2-47400.520.00120.00891352.229.71×10–113-49654.230.01680.12771036.558.09×10–10
    DownLoad: CSV

    表 6  $ {{\text{a}}^{\text{3}}}{\Pi_{{{\text{0}}^ + }}} $(υ′, J′ = 0, + ) →$ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $(υ′′, J′′ = 1, –)跃迁的跃迁波数(${\tilde v} $)、爱因斯坦A系数(Aυ′υ′′)、振动分支比(Rυ′υ′′)、波长(λυ′υ′′)、加权的吸收振子强度(gfυ′υ′′)

    Table 6.  The transition wavenumber(${\tilde v} $), Einstein A-coefficients(Aυ′υ′′), vibrational branching ratios (Rυ′υ′′), wavelength (λυ′υ′′), and weighted absorption oscillator strengths (gfυ′υ′′) for the $ {{\text{a}}^{\text{3}}}{\Pi_{{{\text{0}}^ + }}} $(υ′, J′ = 0, + ) →$ {\text{X}}{}^{\text{1}}{\Sigma}_{{{\text{0}}^ + }}^ + $(υ′′, J′′ = 1, –) transitions.

    υ′–υ${\tilde v} $/cm–1Aυ′υ′′/sRυ′υ′′λυ′υ′′/nmgfυ′υ′′ υ′–υ${\tilde v} $/cm–1Aυ′υ′′/sRυ′υ′′λυ′υ′′/nmgfυ′υ′′
    0-011039.100.18780.8913906.522.31×10–9 1-013546.355.67×10–40.0030738.734.63×10–12
    0-18761.220.02160.10271142.214.22×10–101-111268.460.14410.7666888.061.70×10–9
    0-26583.030.00120.00581520.144.24×10–111-29090.270.03910.20821100.867.10×10–10
    0-34501.634.60×10–52.18×10–42223.003.40×10–121-37008.880.00390.02091427.781.20×10–10
    0-42510.749.71×10–74.61×10–63985.722.31×10–131-45017.982.33×10–40.00121994.251.39×10–11
    2-015929.213.36×10–40.0020628.221.98×10–123-018183.371.76×10–61.12×10–5550.347.97×10–15
    2-113651.320.00230.0142733.051.84×10–113-115905.489.50×10–40.0061629.165.63×10–12
    2-211473.130.10810.6354872.221.23×10–93-213727.290.00500.0320728.993.99×10–11
    2-39391.740.05070.29821065.528.62×10–103-311645.900.08170.5216859.289.03×10–10
    2-47400.840.00800.04681352.162.18×10–103-49655.010.05420.34641036.478.72×10–10
    DownLoad: CSV

    表 8  A1Π1(υ′, J′ = 1, +), $ {{\text{a}}^{\text{3}}}{\Pi _{{0^ + }}} $(υ′, J′ = 0, + )和a3Π1(υ′, J′ = 1, +)态的辐射寿命(τυ)

    Table 8.  Spontaneous radiative lifetimes(τυ′) for the A1Π1(υ′, J′ = 1, +), $ {{\text{a}}^{\text{3}}}{\Pi _{{0^ + }}} $(υ′, J′ = 0, +)和a3Π1(υ′, J′ = 1, +) transitions

    υ$ {\text{a}}{}^{\text{3}}{\Pi_{{{\text{0}}^ + }}} $/s a3Π1/s A1Π1/ns
    总和/ns$ {\text{A}}{}^{\text{1}}{\Pi_{\text{1}}}{\text{ - }}{{\text{X}}^{\text{1}}}{\Sigma}_{{{\text{0}}^ + }}^ + $/ns$ {\text{A}}{}^{\text{1}}{\Pi_{\text{1}}} $-$ {\text{a}}{}^{\text{3}}{\Pi_{{{\text{0}}^ + }}} $/sA1Π1– a3Π1/sA1Π1– a3Π2/s
    04.75 7.52 124.18124.182.71111.48177.04
    15.327.50143.86143.863.0390.08116.30
    25.887.53176.12176.123.5883.05192.36
    36.397.61246.20246.204.7793.55255.19
    46.857.78
    57.278.09
    DownLoad: CSV
    Baidu
  • [1]

    Engvold O 1970 Sol. Phys. 11 183Google Scholar

    [2]

    Karthikeyan B, Raja V, Rajamanickam N, Bagare S P 2006 Astrophys. Space. Sci. 306 231Google Scholar

    [3]

    Karthikeyan B, Bagare S P, Rajamanickam N, Raja V 2009 Astropart. Phys. 31 6Google Scholar

    [4]

    Hendricks R J, Holland D A, Truppe S, Sauer B E, Tarbutt M R 2014 Front. Phys. 2 51Google Scholar

    [5]

    Gao Y F, Gao T 2015 Phys. Chem. Chem. Phys. 17 10830Google Scholar

    [6]

    Johns J W C, Grimm F A, Porter R F 1967 J. Mol. Spectrosc. 22 435Google Scholar

    [7]

    Luh W T, StwalleyW C 1983 J. Mol. Spectrosc. 102 212Google Scholar

    [8]

    Pianalto F S, O’Brien L C, Keller P C, Bernath P F 1988 J. Mol. Spectrosc. 129 348Google Scholar

    [9]

    Douglass C H, Nelson H H, Rice J K 1989 J. Chem. Phys. 90 6940Google Scholar

    [10]

    Fernando W T M L, Bernath P F 1991 J. Mol. Spectrosc. 145 392Google Scholar

    [11]

    Persico M 1994 Mol. Phys. 81 1463Google Scholar

    [12]

    Clark J, Konopka M, Zhang L M, Grant E R 2001 Chem. Phys. Lett. 340 45Google Scholar

    [13]

    Shayesteh A, Ghazizadeh E 2015 J. Mol. Spectrosc. 312 110Google Scholar

    [14]

    Brazier C R 1996 J. Mol. Spectrosc. 177 90Google Scholar

    [15]

    Petsalakis I D, Theodorakopoulos G 2006 Mol. Phys. 104 103Google Scholar

    [16]

    Petsalakis I D, Theodorakopoulos G 2007 Mol. Phys. 105 333Google Scholar

    [17]

    Miliordos E, Mavridis A 2008 J. Chem. Phys. 128 144308Google Scholar

    [18]

    王新强, 杨传路, 苏涛, 王美山 2009 58 6873Google Scholar

    Wang X Q, Yang C L, Su T, Wang M S 2009 Acta Phys. Sin. 58 6873Google Scholar

    [19]

    Koput J 2015 J. Comput. Chem. 36 2219Google Scholar

    [20]

    Yan P Y, Yan B 2016 Commun. Comput. Chem. 4 109Google Scholar

    [21]

    Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M 2010 MOLPRO, version 2010.1, a package of ab initio programs, http://www.molpro.net [2021–12–8]

    [22]

    Van Mourik T, Dunning Jr T H 2000 Int. J. Quantum Chem. 76 205Google Scholar

    [23]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61Google Scholar

    [24]

    Peterson K A, Dunning Jr T H 2002 J. Chem. Phys. 117 10548Google Scholar

    [25]

    De Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 114 48Google Scholar

    [26]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215Google Scholar

    [27]

    Oyeyemi V B, Krisiloff D B, Keith J A, Libisch F, Pavone M, Carter E A 2014 J. Chem. Phys. 140 044317Google Scholar

    [28]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [29]

    Le Roy R J 2017 J. Quant. Spectrosc. Radiat. Transf 186 167

    [30]

    Kramida A E, Ryabtsev A N 2007 Phys. Scr. 76 544Google Scholar

    [31]

    Strasburger K 2020 Phys. Rev. A 102 052806Google Scholar

    [32]

    Di Rosa M D 2004 Eur. Phys. J. D 31 395Google Scholar

    [33]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

  • [1] Xing Wei, Li Sheng-Zhou, Zhang Fang, Sun Jin-Feng, Li Wen-Tao, Zhu Zun-Lüe. Theoretical investigation on spectroscopic characteristics of 14 Λ-S and 27 Ω states of OH+ cation. Acta Physica Sinica, 2024, 73(22): 223101. doi: 10.7498/aps.73.20241301
    [2] Xing Wei, Li Sheng-Zhou, Sun Jin-Feng, Cao Xu, Zhu Zun-Lue, Li Wen-Tao, Li Yue-Yi, Bai Chun-Xu. Theoretical study on spectroscopic properties of 10 Λ-S and 26 Ω states for AlH molecule. Acta Physica Sinica, 2023, 72(16): 163101. doi: 10.7498/aps.72.20230615
    [3] Gao Feng, Zhang Hong, Zhang Chang-Zhe, Zhao Wen-Li, Meng Qing-Tian. Accurate theoretical study of potential energy curves, spectroscopic parameters, vibrational energy levels and spin-orbit coupling interaction on SiH+(X1Σ+) ion. Acta Physica Sinica, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [4] Luo Hua-Feng, Wan Ming-Jie, Huang Duo-Hui. Potential energy curves and transition properties for the ground and excited states of BH+ cation. Acta Physica Sinica, 2018, 67(4): 043101. doi: 10.7498/aps.67.20172409
    [5] Li Chen-Xi, Guo Ying-Chun, Wang Bing-Bing. Ab initio calculation of the potential curve of B3u- state of O2. Acta Physica Sinica, 2017, 66(10): 103101. doi: 10.7498/aps.66.103101
    [6] Huang Duo-Hui, Wan Ming-Jie, Wang Fan-Hou, Yang Jun-Sheng, Cao Qi-Long, Wang Jin-Hua. Potential energy curves and spectroscopic properties of GeS molecules: in ground states and low-lying excited states. Acta Physica Sinica, 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [7] Huang Duo-Hui, Wang Fan-Hou, Yang Jun-Sheng, Wan Ming-Jie, Cao Qi-Long, Yang Ming-Chao. Potential energy curves and spectroscopic properties of SnO (X1Σ+, a3Π and A1Π) molecule. Acta Physica Sinica, 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [8] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. MRCI+Q study on spectroscopic parameters and molecular constants of X1Σ+ and A1Π electronic states of the SiSe molecule. Acta Physica Sinica, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [9] Chen Heng-Jie. Potential energy curves and vibrational levels of ground and excited states of LiAl. Acta Physica Sinica, 2013, 62(8): 083301. doi: 10.7498/aps.62.083301
    [10] Zhu Zun-Lüe, Lang Jian-Hua, Qiao Hao. Spectroscopic properties and molecular constants of the ground and excited states of SF molecule. Acta Physica Sinica, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [11] Li Song, Han Li-Bo, Chen Shan-Jun, Duan Chuan-Xi. Potential energy function and spectroscopic parameters of SN- molecular ion. Acta Physica Sinica, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [12] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun Lüe. Potential energy curve and spectroscopic properties of PS (X2Π) radical. Acta Physica Sinica, 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [13] Guo Yu-Wei, Zhang Xiao-Mei, Liu Yan-Lei, Liu Yu-Fang. Investigation on the potential energy curves and spectroscopic properties of the low-lying excited states of BP. Acta Physica Sinica, 2013, 62(19): 193301. doi: 10.7498/aps.62.193301
    [14] Shi De-Heng, Niu Xiang-Hong, Sun Jin-Feng, Zhu Zun-Lue. Spectroscopic parameters and molecular constants of X1+ and a3 electronic states of BF radical. Acta Physica Sinica, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [15] Wang Jie-Min, Sun Jin-Feng. Multireference configuration interaction study on spectroscopic parameters and molecular constants of AsN(X1 +) radical. Acta Physica Sinica, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [16] Liu Hui, Xing Wei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng. Study on spectroscopic parameters and molecular constants of CS+(X2Σ+) and CS+(A2Π) by MRCI. Acta Physica Sinica, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [17] Sun Jin-Feng, Zhu Zun, Liu Hui, Shi De-Heng. Spectroscopic parameters and molecular constants of CSe(X1Σ+) radical. Acta Physica Sinica, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [18] Wang Xin-Qiang, Yang Chuan-Lu, Su Tao, Wang Mei-Shan. Analytical potential energy functions and spectroscopic properties of the ground and excited states of BH molecule. Acta Physica Sinica, 2009, 58(10): 6873-6878. doi: 10.7498/aps.58.6873
    [19] Gao Feng, Yang Chuan_Lu, Zhang Xiao_Yan. MRCI potential curves and analytical potential energy functions of the low-lying excited states (1∏,3∏) of ZnHg. Acta Physica Sinica, 2007, 56(5): 2547-2552. doi: 10.7498/aps.56.2547
    [20] Qian Qi, Yang Chuan-Lu, Gao Feng, Zhang Xiao-Yan. Multi-reference configuration interaction study on analytical potential energy function and spectroscopic constants of XOn(X=S,Cl; n=0,±1). Acta Physica Sinica, 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
Metrics
  • Abstract views:  4465
  • PDF Downloads:  87
  • Cited By: 0
Publishing process
  • Received Date:  07 January 2022
  • Accepted Date:  07 February 2022
  • Available Online:  15 February 2022
  • Published Online:  20 May 2022

/

返回文章
返回
Baidu
map