Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

epitaxial growth, intrinsic point defects and electronic transport optimization of MnTe films

Wang Wei Liu Wei Xie Sen Ge Hao-Ran Ouyang Yu-Jie Zhang Cheng Hua Fu-Qiang Zhang Min Tang Xin-Feng

Citation:

epitaxial growth, intrinsic point defects and electronic transport optimization of MnTe films

Wang Wei, Liu Wei, Xie Sen, Ge Hao-Ran, Ouyang Yu-Jie, Zhang Cheng, Hua Fu-Qiang, Zhang Min, Tang Xin-Feng
PDF
HTML
Get Citation
  • The NiAs-type MnTe compound is one of important and environmental friendly p-type thermoelectric materials for generating intermediate temperature powern. The low hole concentration in the pristine MnTe greatly restricts its thermoelectric performance. However, the systematic experimental studies of thermoelectric materials are still lacking so far. In this work, MnTe thin films are grown by molecular beam epitaxy (MBE) technique, and their intrinsic point defect structures are characterized by scanning tunneling microscope (STM). Through the regulation of the intrinsic point defects, the electrical transport performances of MnTe films are remarkably improved. The results show that Mn vacancies (VMn) and Te vacancies (VTe) are the dominant intrinsic point defects in MnTe film. With the increase of the substrate temperature (Tsub) and the decrease of the Mn:Te flux ratio, the hole concentration in MnTe film increases greatly, reaching a maximum value of 21.5 × 1019 cm–3, which is one order of magnitude higher than that of the intrinsic MnTe bulk. This is attributed to the significantly increased concentration of p-type VMn in MnTe film, and thus leads the conductivity (σ) and power factor (PF) to increase remarkably. Finally, the MnTe film grown at Tsub = 280 ℃ and Mn∶Te = 1∶12 obtains the maximum PF of 1.3 μW·cm–1·K–2 at 483 K in all grown films. This study clarifies the characteristics of intrinsic point defects and their relationship with the electrical transport properties of MnTe based compounds, which provides an importantguidance for further optimizing their thermoelectric performances.
      Corresponding author: Liu Wei, w.liu@whut.edu.cn ; Tang Xin-Feng, tangxf@whut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program, China(Grant No. 2018YFB0703600) and the Key Program of the National Natural Science Foundation of China (Grant No. 51632006).
    [1]

    Uher, Ctirad 2016 Materials Aspect of Thermoelectricity (New York: Taylor & Francis Group) pp39–94

    [2]

    陈立东, 刘睿恒, 史迅 2018 热电材料与器件 (北京: 科学出版社) 第16—39页

    Chen L D, Liu H R, Si X 2018 Thermoelectric Materials and Devices (Beijing: Science Press) pp16–39 (in Chinese)

    [3]

    Xu Y, Li W, Wang C, Li J, Chen Z, Lin S, Chen Y, Pei Y 2017 J. Mater. Chem. A 5 19143Google Scholar

    [4]

    Zhao L D, Kanatzidis M G 2016 J. Materiomics 2 101Google Scholar

    [5]

    Du B S, Jian J K, Liu H T, Liu J, Qiu L 2018 Chin. Phys. B 27 048102Google Scholar

    [6]

    王步升, 刘永 2016 65 066101Google Scholar

    Wang B S, Yong L 2016 Acta Phys. Sin. 65 066101Google Scholar

    [7]

    Kriegner D, Reichlova H, Grenzer J, Schmidt W, Ressouche E, Godinho J, Wagner T, Martin S, Shick A, Volobuev V 2017 Phys. Rev. B 96 214418Google Scholar

    [8]

    Ren Y, Jiang Q, Zhang D, Zhou Z, Li X, Xin J, He X 2017 J. Mater. Chem. C 5 5076Google Scholar

    [9]

    娄许诺, 邓后权, 李爽, 张青堂, 熊文杰, 唐国栋 2021 无 机 材 料 学 报 36(3)

    Lou X N, Deng H Q, Li S, Zhang Q T, Xiong W J, Tang G D 2021 J. Inorg. Mater. 36 (in Chinese)

    [10]

    Deng H, Lou X, Lu W, Zhang J, Li D, Li S, Zhang Q, Zhang X, Chen X, Zhang D 2020 Nano Energy 81 105649

    [11]

    Sreeram P, Ganesan V, Thomas S, Anantharaman M 2020 J. Alloys Compd. 836 155374Google Scholar

    [12]

    Basit A, Yang J, Jiang Q, Zhou Z, Xin J, Li X, Li S 2019 J. Alloys Compd. 777 968Google Scholar

    [13]

    Ren Y, Jiang Q, Yang J, Luo Y, Zhang D, Cheng Y, Zhou Z 2016 J. Materiomics 2 172Google Scholar

    [14]

    Xin J, Yang J, Jiang Q, Li S, Basit A, Hu H, Long Q, Li S, Li X 2019 Nano Energy 57 703Google Scholar

    [15]

    Dong J, Sun F H, Tang H, Hayashi K, Li H, Shang P P, Miyazaki Y, Li J F 2019 ACS Appl. Mater. Interfaces 11 28221Google Scholar

    [16]

    Dong J, Pei J, Hayashi K, Saito W, Li H, Cai B, Miyazaki Y, Li J F 2021 J. Materiomics 7 577Google Scholar

    [17]

    Zhang M, Liu W, Zhang C, Xie S, Li Z, Hua F, Luo J, Wang Z, Wang W, Yan F, Cao Y, Liu Y, Wang Z, Uher C, Tang X 2021 ACS Nano 15 5706Google Scholar

    [18]

    Watanabe R, Yoshimi R, Shirai M, Tanigaki T, Kawamura M, Tsukazaki A, Takahashi K, Arita R, Kawasaki M, Tokura Y 2018 Appl. Phys. Lett. 113 181602Google Scholar

    [19]

    Su S H, Chang J T, Chuang P Y, Tsai M C, Peng Y W, Lee M K, Cheng C M, Huang J C 2021 Nanomaterials 11 3322Google Scholar

    [20]

    He Q L, Yin G, Grutter A J, Pan L, Che X, Yu G, Gilbert D A, Disseler S M, Liu Y, Shafer P, Zhang B, Wu Y, Kirby B J, Arenholz E, Lake R K, Han X, Wang K L 2018 Nat. Commun. 9 2767Google Scholar

    [21]

    Aliev Z S, Amiraslanov I R, Nasonova D I, Shevelkov A V, Abdullayev N A, Jahangirli Z A, Orujlu E N, Otrokov M M, Mamedov N T, Babanly M B, Chulkov E V 2019 J. Alloys Compd. 789 443Google Scholar

    [22]

    Islam M F, Canali C M, Pertsova A, Balatsky A, Mahatha S K, Carbone C, Barla A, Kokh K A, Tereshchenko O E, Jiménez E, Brookes N B, Gargiani P, Valvidares M, Schatz S, Peixoto T R F, Bentmann H, Reinert F, Jung J, Bathon T, Fauth K, Bode M, Sessi P 2018 Phys. Rev. B 97 155429Google Scholar

    [23]

    Li Y, Wang S, Sun B, Chang H, Zhao W, Zhang X, Liu H 2013 ECS Transactions 50 303

    [24]

    Nesbitt H, Banerjee D 1998 Am. Mineral. 83 305Google Scholar

    [25]

    何俊, 李梦, 郭立平, 刘传胜, 付德君 2008 核技术 31 438Google Scholar

    He J, Li M, Guo L P, Liu C S, Fu D J 2008 Nucl. Tech. 31 438Google Scholar

    [26]

    Biesinger M C, Payne B P, Grosvenor A P, Lau L W M, Gerson A R, Smart R S C 2011 Appl. Surf. Sci. 257 2717Google Scholar

    [27]

    Iwanowski R J, Heinonen M H, Witkowska B 2010 J. Alloys Compd. 491 13Google Scholar

    [28]

    吴海飞, 张寒洁, 廖清, 陆豪, 斯剑霄, 李海洋, 鲍世宁, 吴惠祯, 何丕模 2009 58 1310Google Scholar

    Wu H F, Zhang H J, Liao Q, Lu H, Si J X, Li H Y, Bao S N, Wu H Z, He P M 2009 Acta Phys. Sin. 58 1310Google Scholar

    [29]

    She X Y, Su X L, Xie H Y, Fu J F, Yan Y, Liu W, Poudeu Poudeu P F, Tang X F 2018 ACS Appl. Mater. Interfaces 10 25519Google Scholar

    [30]

    Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L, Feng X, Zhang D, Li W, Song C, Wang L, Yu P, Chen X, Wang Y, Yao H, Duan W, Xu Y, Zhang S C, Ma X, Xue Q K, He K 2019 Chin. Phys. Lett. 36 076801Google Scholar

    [31]

    Netsou A M, Muzychenko D A, Dausy H, Chen T, Song F, Schouteden K, Van Bael M J, Van Haesendonck C 2020 ACS Nano 14 13172Google Scholar

    [32]

    Zhang M, Liu W, Zhang C, Qiu J, Xie S, Hua F, Cao Y, Li Z, Xie H, Uher C 2020 Appl. Phys. Lett. 117 153902Google Scholar

    [33]

    逯旭, 侯绩翀, 张强, 樊建锋, 陈少平, 王晓敏 2021 无机材料学报 36

    Lu X, Hou J C, Zhang Q, Fan J F, Chen S P, Wang X M 2021 J. Inorg. Mater. 36 (in Chinese)

    [34]

    Bahk J H, Shakouri A 2016 Phys. Rev. B 93 165209Google Scholar

    [35]

    Zhang Q, Hou J, Fan J, Chen S, Fan W, Zhang H, Wang W, Wu Y, Xu B 2020 Phys. Chem. Chem. Phys. 22 7012Google Scholar

  • 图 1  (a)六方相MnTe的晶体结构; (b)基板温度为280 ℃ , Sb2Te3∶Te = 1∶1条件下生长Sb2Te3缓冲层的RHEED图谱; (c)基板温度为280 ℃ , Mn∶Te = 1∶9条件下生长的MnTe薄膜的RHEED图谱; (d), (e)不同基板温度和不同Mn∶Te束流比工艺下生长的MnTe薄膜的XRD图谱

    Figure 1.  (a) Crystal structure of hexagonal MnTe; RHEED patterns of (b) Sb2Te3 buffer layer grown at Tsub = 280 ℃ and Sb2Te3∶Te = 1∶1 and (c) MnTe film grown at Tsub = 280 ℃ and Mn∶Te = 1∶9; XRD patterns of MnTe thin films grown at (d) different Tsub and (e) under different Mn∶Te ratios.

    图 2  不同基板温度下生长的MnTe薄膜的XPS能谱 (a) Mn 2p轨道; (b) Te 3d轨道. 不同Mn∶Te束流比下生长的MnTe薄膜的XPS能谱 (c) Mn 2p轨道;(d) Te 3d轨道

    Figure 2.  XPS spectra of MnTe films grown under different Tsub∶ (a) Mn 2p; (b) Te 3d. XPS spectra of MnTe films grown under different Mn∶Te ratios∶ (c) Mn 2p; (d) Te 3d.

    图 3  不同基板温度下生长的MnTe薄膜的原子尺度分辨STM形貌图 (a)Tsub = 260 ℃; (b)Tsub = 280 ℃; (c)—(f)暗凹陷点缺陷与暗三角形缺陷在正负偏压下的STM形貌图; (g) MnTe晶体结构沿c轴的截面图, 其中黄红色粗线条用于示意第二层点缺陷的局域电子态在表面的投影

    Figure 3.  Atomic resolution STM images of MnTe films grown at different Tsub: (a) Tsub = 260 ℃; (b) Tsub = 280 ℃. (c)–(f) STM images of the dark depressions point defect and dark triangle defect under positive and negative STM tip bias. (g) A cross-sectional sketch of the MnTe crystal structure along the c axis, in which the thick yellow-red line is used to indicate the projection of the local electronic state on the surface from the second layer point defects.

    图 4  (a)固定Mn∶Te = 1∶6, 在不同Tsub条件下生长的MnTe薄膜的室温空穴浓度与载流子迁移率; 不同Tsub条件下生长的MnTe薄膜的(b)电导率、(c)Seebeck系数和(d)功率因子随温度的变化关系

    Figure 4.  Room temperature (a) hole concentration and (p) carrier mobility (μ) of MnTe thin films grown at different Tsub. The temperature dependence of (b) electrical conductivity , (c) Seebeck coefficient and (d) power factor for these MnTe films grown at different Tsub.

    图 5  (a)固定Tsub = 280 ℃, 不同Mn∶Te束流比条件下生长的MnTe薄膜的室温空穴浓度与载流子迁移率; 不同Tsub条件下生长的MnTe薄膜的(b)电导率、(c)Seebeck系数和(d)功率因子随温度的变化关系

    Figure 5.  Room temperature (a) hole concentration and (p) carrier mobility (μ) of MnTe thin films grown at different Tsub. The temperature dependence of (b) electrical conductivity, (c) Seebeck coefficient and (d) power factor for these MnTe films grown at different Tsub.

    图 6  MnTe材料中(a)室温电导率、(b)室温Seebeck系数随载流子浓度的变化关系以及文献块体MnTe报道结果

    Figure 6.  Carrier density dependence of the (a) electrical conductivity and (b) Seebeck coefficient for MnTe films at room temperature, and the comparison with reported results.

    Baidu
  • [1]

    Uher, Ctirad 2016 Materials Aspect of Thermoelectricity (New York: Taylor & Francis Group) pp39–94

    [2]

    陈立东, 刘睿恒, 史迅 2018 热电材料与器件 (北京: 科学出版社) 第16—39页

    Chen L D, Liu H R, Si X 2018 Thermoelectric Materials and Devices (Beijing: Science Press) pp16–39 (in Chinese)

    [3]

    Xu Y, Li W, Wang C, Li J, Chen Z, Lin S, Chen Y, Pei Y 2017 J. Mater. Chem. A 5 19143Google Scholar

    [4]

    Zhao L D, Kanatzidis M G 2016 J. Materiomics 2 101Google Scholar

    [5]

    Du B S, Jian J K, Liu H T, Liu J, Qiu L 2018 Chin. Phys. B 27 048102Google Scholar

    [6]

    王步升, 刘永 2016 65 066101Google Scholar

    Wang B S, Yong L 2016 Acta Phys. Sin. 65 066101Google Scholar

    [7]

    Kriegner D, Reichlova H, Grenzer J, Schmidt W, Ressouche E, Godinho J, Wagner T, Martin S, Shick A, Volobuev V 2017 Phys. Rev. B 96 214418Google Scholar

    [8]

    Ren Y, Jiang Q, Zhang D, Zhou Z, Li X, Xin J, He X 2017 J. Mater. Chem. C 5 5076Google Scholar

    [9]

    娄许诺, 邓后权, 李爽, 张青堂, 熊文杰, 唐国栋 2021 无 机 材 料 学 报 36(3)

    Lou X N, Deng H Q, Li S, Zhang Q T, Xiong W J, Tang G D 2021 J. Inorg. Mater. 36 (in Chinese)

    [10]

    Deng H, Lou X, Lu W, Zhang J, Li D, Li S, Zhang Q, Zhang X, Chen X, Zhang D 2020 Nano Energy 81 105649

    [11]

    Sreeram P, Ganesan V, Thomas S, Anantharaman M 2020 J. Alloys Compd. 836 155374Google Scholar

    [12]

    Basit A, Yang J, Jiang Q, Zhou Z, Xin J, Li X, Li S 2019 J. Alloys Compd. 777 968Google Scholar

    [13]

    Ren Y, Jiang Q, Yang J, Luo Y, Zhang D, Cheng Y, Zhou Z 2016 J. Materiomics 2 172Google Scholar

    [14]

    Xin J, Yang J, Jiang Q, Li S, Basit A, Hu H, Long Q, Li S, Li X 2019 Nano Energy 57 703Google Scholar

    [15]

    Dong J, Sun F H, Tang H, Hayashi K, Li H, Shang P P, Miyazaki Y, Li J F 2019 ACS Appl. Mater. Interfaces 11 28221Google Scholar

    [16]

    Dong J, Pei J, Hayashi K, Saito W, Li H, Cai B, Miyazaki Y, Li J F 2021 J. Materiomics 7 577Google Scholar

    [17]

    Zhang M, Liu W, Zhang C, Xie S, Li Z, Hua F, Luo J, Wang Z, Wang W, Yan F, Cao Y, Liu Y, Wang Z, Uher C, Tang X 2021 ACS Nano 15 5706Google Scholar

    [18]

    Watanabe R, Yoshimi R, Shirai M, Tanigaki T, Kawamura M, Tsukazaki A, Takahashi K, Arita R, Kawasaki M, Tokura Y 2018 Appl. Phys. Lett. 113 181602Google Scholar

    [19]

    Su S H, Chang J T, Chuang P Y, Tsai M C, Peng Y W, Lee M K, Cheng C M, Huang J C 2021 Nanomaterials 11 3322Google Scholar

    [20]

    He Q L, Yin G, Grutter A J, Pan L, Che X, Yu G, Gilbert D A, Disseler S M, Liu Y, Shafer P, Zhang B, Wu Y, Kirby B J, Arenholz E, Lake R K, Han X, Wang K L 2018 Nat. Commun. 9 2767Google Scholar

    [21]

    Aliev Z S, Amiraslanov I R, Nasonova D I, Shevelkov A V, Abdullayev N A, Jahangirli Z A, Orujlu E N, Otrokov M M, Mamedov N T, Babanly M B, Chulkov E V 2019 J. Alloys Compd. 789 443Google Scholar

    [22]

    Islam M F, Canali C M, Pertsova A, Balatsky A, Mahatha S K, Carbone C, Barla A, Kokh K A, Tereshchenko O E, Jiménez E, Brookes N B, Gargiani P, Valvidares M, Schatz S, Peixoto T R F, Bentmann H, Reinert F, Jung J, Bathon T, Fauth K, Bode M, Sessi P 2018 Phys. Rev. B 97 155429Google Scholar

    [23]

    Li Y, Wang S, Sun B, Chang H, Zhao W, Zhang X, Liu H 2013 ECS Transactions 50 303

    [24]

    Nesbitt H, Banerjee D 1998 Am. Mineral. 83 305Google Scholar

    [25]

    何俊, 李梦, 郭立平, 刘传胜, 付德君 2008 核技术 31 438Google Scholar

    He J, Li M, Guo L P, Liu C S, Fu D J 2008 Nucl. Tech. 31 438Google Scholar

    [26]

    Biesinger M C, Payne B P, Grosvenor A P, Lau L W M, Gerson A R, Smart R S C 2011 Appl. Surf. Sci. 257 2717Google Scholar

    [27]

    Iwanowski R J, Heinonen M H, Witkowska B 2010 J. Alloys Compd. 491 13Google Scholar

    [28]

    吴海飞, 张寒洁, 廖清, 陆豪, 斯剑霄, 李海洋, 鲍世宁, 吴惠祯, 何丕模 2009 58 1310Google Scholar

    Wu H F, Zhang H J, Liao Q, Lu H, Si J X, Li H Y, Bao S N, Wu H Z, He P M 2009 Acta Phys. Sin. 58 1310Google Scholar

    [29]

    She X Y, Su X L, Xie H Y, Fu J F, Yan Y, Liu W, Poudeu Poudeu P F, Tang X F 2018 ACS Appl. Mater. Interfaces 10 25519Google Scholar

    [30]

    Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L, Feng X, Zhang D, Li W, Song C, Wang L, Yu P, Chen X, Wang Y, Yao H, Duan W, Xu Y, Zhang S C, Ma X, Xue Q K, He K 2019 Chin. Phys. Lett. 36 076801Google Scholar

    [31]

    Netsou A M, Muzychenko D A, Dausy H, Chen T, Song F, Schouteden K, Van Bael M J, Van Haesendonck C 2020 ACS Nano 14 13172Google Scholar

    [32]

    Zhang M, Liu W, Zhang C, Qiu J, Xie S, Hua F, Cao Y, Li Z, Xie H, Uher C 2020 Appl. Phys. Lett. 117 153902Google Scholar

    [33]

    逯旭, 侯绩翀, 张强, 樊建锋, 陈少平, 王晓敏 2021 无机材料学报 36

    Lu X, Hou J C, Zhang Q, Fan J F, Chen S P, Wang X M 2021 J. Inorg. Mater. 36 (in Chinese)

    [34]

    Bahk J H, Shakouri A 2016 Phys. Rev. B 93 165209Google Scholar

    [35]

    Zhang Q, Hou J, Fan J, Chen S, Fan W, Zhang H, Wang W, Wu Y, Xu B 2020 Phys. Chem. Chem. Phys. 22 7012Google Scholar

  • [1] You Ming-Hui, Li Xue, Li Shi-Jun, Liu Guo-Jun. Growth of lattice matched InAs/AlSb superlattices by molecular beam epitaxy. Acta Physica Sinica, 2023, 72(1): 014203. doi: 10.7498/aps.72.20221383
    [2] Li Pei-Gen, Zhang Ji-Hai, Tao Ye, Zhong Ding-Yong. Two-dimensional magnetic transition metal halides: molecular beam epitaxy growth and physical property modulation. Acta Physica Sinica, 2022, 71(12): 127505. doi: 10.7498/aps.71.20220727
    [3] Nie Xiao-Lei, Yu Hao-Cheng, Zhu Wan-Ting, Sang Xia-Han, Wei Ping, Zhao Wen-Yu. Design, fabrication and performance evaluation of graphene/Bi0.5Sb1.5Te3 flexible thermoelectric films and in-plane heat dissipation devices. Acta Physica Sinica, 2022, 71(15): 157301. doi: 10.7498/aps.71.20220358
    [4] Chen Dan, Shi Dan-Dan, Pan Gui-Jun. Correlation between the electrical transport performance and the communicability sequence entropy in complex networks. Acta Physica Sinica, 2019, 68(11): 118901. doi: 10.7498/aps.68.20190230
    [5] Sun Zhi-Gang, Pang Yu-Yu, Hu Jing-Hua, He Xiong, Li Yue-Chou. Electronic transportation properties and magnetoresistance effects on single TiO2 nanowire under ultraviolet irradiation. Acta Physica Sinica, 2016, 65(9): 097301. doi: 10.7498/aps.65.097301
    [6] Xiao Jia-Xing, Lu Jun, Zhu Li-Jun, Zhao Jian-Hua. Perpendicular magnetic properties of ultrathin L10-Mn1.67Ga films grown by molecular-beam epitaxy. Acta Physica Sinica, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [7] Zhang Ma-Lin, Ge Jian-Feng, Duan Ming-Chao, Yao Gang, Liu Zhi-Long, Guan Dan-Dan, Li Yao-Yi, Qian Dong, Liu Can-Hua, Jia Jin-Feng. Molecular beam epitaxy growth of multilayer FeSe thin film on SrTiO3 (001). Acta Physica Sinica, 2016, 65(12): 127401. doi: 10.7498/aps.65.127401
    [8] Yang Wen-Xian, Ji Lian, Dai Pan, Tan Ming, Wu Yuan-Yuan, Lu Jian-Ya, Li Bao-Ji, Gu Jun, Lu Shu-Long, Ma Zhong-Quan. Study on photoluminescence properties of 1.05 eV InGaAsP layers grown by molecular beam epitaxy. Acta Physica Sinica, 2015, 64(17): 177802. doi: 10.7498/aps.64.177802
    [9] Zhu Meng-Yao, Lu Jun, Ma Jia-Lin, Li Li-Xia, Wang Hai-Long, Pan Dong, Zhao Jian-Hua. Molecular-beam epitaxy of high-quality diluted magnetic semiconductor (Ga, Mn)Sb single-crystalline films. Acta Physica Sinica, 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [10] Wang Jiang-Jing, Shao Rui-Wen, Deng Qing-Song, Zheng Kun. Study on electrical transport properties of strained Si nanowires by in situ transmission electron microscope. Acta Physica Sinica, 2014, 63(11): 117303. doi: 10.7498/aps.63.117303
    [11] Wang Meng, Ou Yun-Bo, Li Fang-Sen, Zhang Wen-Hao, Tang Chen-Jia, Wang Li-Li, Xue Qi-Kun, Ma Xu-Cun. Molecular beam epitaxy of single unit-cell FeSe superconducting films on SrTiO3(001). Acta Physica Sinica, 2014, 63(2): 027401. doi: 10.7498/aps.63.027401
    [12] Nie Shuai-Hua, Zhu Li-Jun, Pan Dong, Lu Jun, Zhao Jian-Hua. Structural characterization and magnetic properties of perpendicularly magnetized MnAl films grown by molecular-beam epitaxy. Acta Physica Sinica, 2013, 62(17): 178103. doi: 10.7498/aps.62.178103
    [13] Su Shao-Jian, Wang Wei, Zhang Guang-Ze, Hu Wei-Xuan, Bai An-Qi, Xue Chun-Lai, Zuo Yu-Hua, Cheng Bu-Wen, Wang Qi-Ming. Epitaxial growth of Ge0.975Sn0.025alloy films on Si(001) substrates by molecular beam epitaxy. Acta Physica Sinica, 2011, 60(2): 028101. doi: 10.7498/aps.60.028101
    [14] Zhao Ming-Hai, Sun Jing-Jing, Wang Dan, Zou Zhi-Qiang, Liang Qi. STM studies of the epitaxial growth of C60 molecules on Si(111)-7×7 surface. Acta Physica Sinica, 2010, 59(1): 636-642. doi: 10.7498/aps.59.636
    [15] Tang Jun, Liu Zhong-Liang, Ren Peng, Yao Tao, Yan Wen-Sheng, Xu Peng-Shou, Wei Shi-Qiang. Structural characterization of Mn doped SiC magnetic thin films. Acta Physica Sinica, 2010, 59(7): 4774-4780. doi: 10.7498/aps.59.4774
    [16] Zhang Yan-Hui, Chen Ping-Ping, Li Tian-Xin, Yin Hao. InNSb single crystal films prepared on GaAs (001) substrates by molecular beam epitaxy. Acta Physica Sinica, 2010, 59(11): 8026-8030. doi: 10.7498/aps.59.8026
    [17] Zhang Fei-Peng, Lu Qing-Mei, Zhang Jiu-Xing, Zhang Xin. Texture and electrical transport properties of Ba and Ag double substituted BaxAgyCa3-x-yCo4O9 oxide. Acta Physica Sinica, 2009, 58(4): 2697-2701. doi: 10.7498/aps.58.2697
    [18] Cui Xiu-Zhi, Zhang Tian-Chong, Mei Zeng-Xia, Liu Zhang-Long, Liu Yao-Ping, Guo Yang, Su Xi-Yu, Xue Qi-Kun, Du Xiao-Long. Influence of wet etching on the morphologies of Si patterned substrates and ZnO epilayers. Acta Physica Sinica, 2009, 58(1): 309-314. doi: 10.7498/aps.58.309
    [19] Ren Peng, Liu Zhong-Liang, Ye Jian, Jiang Yong, Liu Jin-Feng, Sun Yu, Xu Peng-Shou, Sun Zhi-Hu, Pan Zhi-Yun, Yan Wen-Sheng, Wei Shi-Qiang. Structural study of MnxSi1-x magnetic semiconductor thin films. Acta Physica Sinica, 2008, 57(7): 4322-4327. doi: 10.7498/aps.57.4322
    [20] JING CHAO, JIN XIAO-FENG, DONG GUO-SHENG, GONG XIAO-YAN, YU LI-MING, ZHENG WEI-MIN. EXCHANGE BIASING IN MOLECULAR-BEAM-EPITAXY-GROWN Fe/Fe50Mn50 BILAYERS. Acta Physica Sinica, 2000, 49(10): 2022-2026. doi: 10.7498/aps.49.2022
Metrics
  • Abstract views:  6242
  • PDF Downloads:  220
  • Cited By: 0
Publishing process
  • Received Date:  20 December 2021
  • Accepted Date:  15 March 2022
  • Available Online:  10 June 2022
  • Published Online:  05 July 2022

/

返回文章
返回
Baidu
map