-
对自旋-轨道耦合玻色-爱因斯坦凝聚中的双势垒散射问题进行了研究, 得到了系统透射系数的解析表达式, 并对如何克服Klein隧穿以及如何束缚Dirac粒子进行了讨论并给出囚禁Dirac粒子的实验方案. 此外, 运用时间劈裂谱方法对Dirac粒子势垒散射问题进行了数值模拟. 分析了Dirac粒子分别在势垒Klein阻塞区域中心以及边缘的透射情况. 最后从排斥和吸引相互作用两方面研究了非线性相互作用对于Dirac粒子演化的影响, 结果表明弱非线性相互作用对散射特性的影响非常小, 而强非线性相互作用会彻底破坏波包的动量分布, 从而改变Dirac粒子的势垒散射效果.In this paper, the phenomenon of double barrier scattering in spin-orbit coupling Bose-Einstein condensate is studied and the analytical expression of transmission coefficient of the system is therefore obtained. On the basis of the above study, how to deal with Klein tunneling and bound Dirac particles is also discussed to devise an experimental scheme of trapping Dirac particles in captivity. Besides, numerical simulation of the barrier scattering pattern of Dirac particles is performed in this paper by the time splitting spectral method. Through the analysis of transmission situation of Dirac particles directing at the Klein barrier in both the center and margin part of blocked area and the study of the influence of non-linear interaction on the evolution of Dirac particles from both repelling and attracting effect, the conclusion can be drawn that although the influence of non-linear interaction on scattering property of particles is negligible to some extent, the strong non-linear interaction will completely destroy the momentum distribution of wave packets so that the result of barrier scattering of Dirac particles can be dramatically changed.
-
Keywords:
- spin-orbit coupled /
- Klein tunneling /
- barrier scattering /
- Bose-Einstein condensate
[1] Dombey N, Calogeracos A 1999 Phys. Rep. 315 41
[2] Lin Y J, Jimenez-Garcia K, Spielman I B 2010 Nature 471 83
[3] Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910
[4] Koning M, Wiedmann S, Bruene C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766
[5] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802
[6] Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757
[7] Hsieh D, Qian D, Xia Y, Hor Y S, Cava R J, Hasan M Z 2008 Nature 452 970
[8] Ruseckas J, Juzeliunas G, Ohberg P, Fleischhauer M 2005 Phys. Rev. Lett. 95 010404
[9] Osterloh K, Baig M, Santos L, Zoller P, Lewenstein M 2005 Phys. Rev. Lett. 95 010403
[10] Satija I I, Dakin D C, Clark C W 2006 Phys. Rev. Lett. 97 216401
[11] Zhu S L, Fu H, Wu C J, Zhang S C, Duan L M 2006 Phys. Rev. Lett. 97 240401
[12] Liu X J, Liu X, Kwek C C 2007 Phys. Rev. Lett. 98 026602
[13] Stanescu T D, Zhang C, Galitski V 2007 Phys. Rev. Lett. 99 110403
[14] Juzeliunas G, Ruseckas J, Dalibard J 2010 Phys. Rev. A 81 053403
[15] Zhang D W, Xue Z Y, Yan H, Wang Z D, Zhu S L 2012 Phys. Rev. A 85 013628
[16] Li Z, Wang J Z, Fu L B 2013 Chin. Phys. Lett. 30 010301
[17] Cheng Y S, Adhikari S K 2010 Phys. Rev. A 81 023620
-
[1] Dombey N, Calogeracos A 1999 Phys. Rep. 315 41
[2] Lin Y J, Jimenez-Garcia K, Spielman I B 2010 Nature 471 83
[3] Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910
[4] Koning M, Wiedmann S, Bruene C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766
[5] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802
[6] Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757
[7] Hsieh D, Qian D, Xia Y, Hor Y S, Cava R J, Hasan M Z 2008 Nature 452 970
[8] Ruseckas J, Juzeliunas G, Ohberg P, Fleischhauer M 2005 Phys. Rev. Lett. 95 010404
[9] Osterloh K, Baig M, Santos L, Zoller P, Lewenstein M 2005 Phys. Rev. Lett. 95 010403
[10] Satija I I, Dakin D C, Clark C W 2006 Phys. Rev. Lett. 97 216401
[11] Zhu S L, Fu H, Wu C J, Zhang S C, Duan L M 2006 Phys. Rev. Lett. 97 240401
[12] Liu X J, Liu X, Kwek C C 2007 Phys. Rev. Lett. 98 026602
[13] Stanescu T D, Zhang C, Galitski V 2007 Phys. Rev. Lett. 99 110403
[14] Juzeliunas G, Ruseckas J, Dalibard J 2010 Phys. Rev. A 81 053403
[15] Zhang D W, Xue Z Y, Yan H, Wang Z D, Zhu S L 2012 Phys. Rev. A 85 013628
[16] Li Z, Wang J Z, Fu L B 2013 Chin. Phys. Lett. 30 010301
[17] Cheng Y S, Adhikari S K 2010 Phys. Rev. A 81 023620
计量
- 文章访问数: 7058
- PDF下载量: 594
- 被引次数: 0