Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of mode-locked pulsed fiber lasers with high damage threshold saturable absorber

Cui Wen-Wen Xing Xiao-Wei Xiao Yue-Jia Liu Wen-Jun

Citation:

Research progress of mode-locked pulsed fiber lasers with high damage threshold saturable absorber

Cui Wen-Wen, Xing Xiao-Wei, Xiao Yue-Jia, Liu Wen-Jun
PDF
HTML
Get Citation
  • As the basic hardware to promote the development of various fields, fiber laser has great development potential in rail transit, optical communication, new material manufacturing, power battery processing, military defense, medical treatment, and other fields. As the core device of passively mode-locked fiber laser, a high damage threshold saturable absorber plays a decisive role in achieving high power, ultrashort pulse duration, and high energy laser output for a fiber laser. For saturable absorbers of traditional materials and structures, the spot size of light acting on the material is almost the same as the exit diameter of the optical fiber, which is easy to exceed the damage threshold of the saturable absorber and lead to damage. To improve the damage threshold of saturable absorbers, the structure of saturable absorbers based on both real materials and traditional saturable absorbers can be optimized. On the one hand, the preparation technology of the saturable absorber is adjusted, such as using the sol-gel method, which has a good effect on improving the damage threshold of the saturable absorber. Moreover, different materials are selected and used as substrates, such as the use of inorganic materials as material substrates and the selection of a variety of insertion cavity structures, such as “sandwich” transmission structures, tapered fibers, and photonic crystal fibers. These methods are of great significance in improving the damage threshold of the real material saturable absorber and realizing pulsed laser with excellent performance and high stability. On the other hand, the equivalent saturable absorber structure is used to improve the damage threshold and optimize the laser performance, such as hybrid mode-locked structure and nonlinear multimode interference. The continuous optimization of the fiber laser damage threshold will further expand its application range. Therefore, it is important to adjust the preparation process and insert the cavity structure of saturable absorbers for improving the damage threshold of the saturable absorber and achieving high performance and stability of the pulsed laser. This paper reviews the research status of high damage threshold saturable absorbers at home and abroad, summarizes the latest methods to improve material damage threshold and the latest research progress of equivalent saturable absorbers, and also points out the future development direction of high damage threshold saturable absorbers.
      Corresponding author: Liu Wen-Jun, jungliu@bupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875008, 12075034).
    [1]

    Wang X Z, Wang Z H, Wang Y Y, Zhang X, Song J J, Wei Z Y 2021 Chin. Phys. Lett. 38 074202Google Scholar

    [2]

    Jiang J W, Fang S B, Zhang Z Y, Zhu J F, Han H N, Chang G Q, Wei Z Y 2020 Chin. Phys. Lett. 37 054201Google Scholar

    [3]

    Ning F J, Li Z Y, Tan R Q, Hu L M, Liu S Y 2020 Chin. Phys. Lett. 37 034203Google Scholar

    [4]

    Xing Z Q, Zhou Y J, Liu Y H, Wang F 2020 Chin. Phys. Lett. 37 027302Google Scholar

    [5]

    Ni X, Jia K P, Wang X H, et al. 2021 Chin. Phys. Lett. 38 064201Google Scholar

    [6]

    Keller U 2003 Nature 424 831Google Scholar

    [7]

    王井上, 张瑶, 王军利, 魏志义, 常国庆 2021 70 034206Google Scholar

    Wang J S, Zhang Y, Wang J L,Wei Z Y, Chang G Q 2021 Acta Phys. Sin. 70 034206Google Scholar

    [8]

    Lv R C, Teng H, Song J J, Kang R Z, Zhu J F, Wei Z Y 2021 Chin. Phys. B 30 094206Google Scholar

    [9]

    Fermann M E, Hofer M, Haberl F, Craig-Ryan S P 1990 Electron. Lett. 26 1737Google Scholar

    [10]

    Keller U, Knox W H, Roskos H 1990 Springer Berlin Heidelberg 53 69Google Scholar

    [11]

    俞强, 郭琨, 陈捷, 王涛, 汪进, 史鑫尧, 吴坚, 张凯, 周朴 2020 69 184208Google Scholar

    Yu Q, Guo K, Chen J, Wang T, Wang J, Shi X Y, Wu J, Zhang K, Zhou P 2020 Acta Phys. Sin. 69 184208Google Scholar

    [12]

    郝倩倩, 宗梦雨, 张振, 黄浩, 张峰, 刘杰, 刘丹华, 苏良碧, 张晗 2020 69 184205Google Scholar

    Hao Q Q, Zong M Y, Zhang Z, Huang H, Zhang F, Liu J, Liu D H, Su L B, Zhang H 2020 Acta Phys. Sin. 69 184205Google Scholar

    [13]

    Valdmanis J A, Fork R L 1986 IEEE J. Quantum Electron. 22 112Google Scholar

    [14]

    Novoselov K S, Geim A K, Morozov S V, et al. 2004 Science 306 666Google Scholar

    [15]

    Delhaes P 2002 Carbon 40 641Google Scholar

    [16]

    Ji D X, Cai S H, Paudel T R, et al. 2019 Nature 570 87Google Scholar

    [17]

    Cicily Rigi V J, Jayaraj M K, Saji K J 2020 Appl. Surf. Sci. 529 147158Google Scholar

    [18]

    Arthur J R 1980 At & T Tech. J. 10 157Google Scholar

    [19]

    Liu W J, Zhu Y N, Liu M L, Wen B, Fang S B, Teng H, Lei M, Liu L M, Wei Z Y 2018 Photonics Res. 6 220Google Scholar

    [20]

    Chen Z, Wang H, Wang Y, Lv R, Yang X, Wang J, Li L, Ren W 2019 Carbon 144 737Google Scholar

    [21]

    Chen Z, Wang Y, Lv R, Liu S, Wang Y 2020 Opt. Fiber Technol. 58 102189Google Scholar

    [22]

    Liu S C, Lv R D, Wang Y G, Shang S G, Ren W, Xu Q 2021 J. Mater. Chem. C 9 9021Google Scholar

    [23]

    Li L, Jiang S Z, Wang Y G, Wang X, Duan L N, Mao D, Li Z, Man B Y, Si J H 2015 Opt. Express 23 28698Google Scholar

    [24]

    Liu S, Wang Y, Lv R, Wang J, Duan L 2020 Nanophotonics 9 2523Google Scholar

    [25]

    Zhang Z F, Li S, Li Y, Kou Y, Liu K, Lin Y Y, Yuan L, Xu Y T, Peng Q J, Xu Z Y 2020 Chin. Phys. Lett. 37 064203Google Scholar

    [26]

    Zhang M, Zhu Y, Li D, Feng P, Xu C 2021 Appl. Surf. Sci. 554 149615Google Scholar

    [27]

    Liu H H, Yang Y, Chow K K 2013 Opt. Express 21 18975Google Scholar

    [28]

    Han X, Zhang H, Jiang S, Zhang C, Li D, Guo Q, Gao J, Man B 2019 Nanomaterials 9 1216Google Scholar

    [29]

    Ma P, Lin W, Zhang H, Xu S, Yang Z 2019 IEEE Photonics J. 11 1Google Scholar

    [30]

    Wang Y, Song C, Zhang H, Jin L, Xu Y, Ma X, Zou Y 2022 Opt. Laser Technol. 145 107542Google Scholar

    [31]

    Salam S, Nizamani B, Yasin M, Harun S W 2021 Results Opt. 2 100036Google Scholar

    [32]

    Wu Q, Jin X, Chen S, Jiang X, Hu Y, Jiang Q, Wu L, Li J, Zheng Z, Zhang M, Zhang H 2019 Opt. Express 27 10159

    [33]

    Song Y W, Yamashita S, Maruyama S 2008 Appl. Phys. Lett. 92 137Google Scholar

    [34]

    Nizamani B, Salam S, Jafry A A A, et al. 2020 Chin. Phys. Lett. 37 054202Google Scholar

    [35]

    Liu S, Shang S, Lv R, Wang Y, Wang J, Ren W, Wang Y 2021 ACS Appl. Mater. Interfaces 13 19128Google Scholar

    [36]

    Michaille L F, Taylor D M, Bennett C, Shepherd T J, Jacobsen C, Hansen T P 2004 Physica A 5618 30Google Scholar

    [37]

    Fermann M E, Andrejco M J, Silberberg Y, Stock M L 1993 Opt. Lett. 18 894Google Scholar

    [38]

    Doran N J, Wood D 1988 Opt. Lett. 13 56Google Scholar

    [39]

    Qi Y, Liu M, Luan N, Yang S, Bai Z, Yan B, Lu Z 2022 Infrared Phys. Technol. 121 104017Google Scholar

    [40]

    Zhao L M, Lu C, Tam H Y, Wai P, Tang D Y 2009 Appl. Opt. 48 5131Google Scholar

    [41]

    Wang Y Z, Zhang L Q, Zhuo Z, Guo S Z 2016 Appl. Opt. 55 5766

    [42]

    Szczepanek J, Karda’s T M, Radzewicz C, Stepanenko Y 2017 Opt. Lett. 42 575Google Scholar

    [43]

    Wang Y, Wang C, Zhang F, Guo J, Ma C, Huang W, Song Y, Ge Y, Liu J, Zhang H 2020 Rep. Prog. Phys. 83 116401

    [44]

    Andral U, Fodil R S, Amrani F, Billard F, Hertz E, Grelu P 2015 Optica 2 275Google Scholar

    [45]

    Pu G, Yi L, Zhang L, Hu W 2019 Optica 6 362Google Scholar

    [46]

    Baumeister T, Brunton S L, Kutz J N 2018 J. Opt. Soc. Am. B 35 617Google Scholar

    [47]

    Pu G, Yi L, Zhang L, Luo C, Li Z, Hu W 2020 Light Sci. Appl. 9 1Google Scholar

    [48]

    Liu W J, Pang L H, Han H N, Liu M L, Lei M, Fang S B, Teng H, Wei Z Y 2017 Opt. Express 25 2950Google Scholar

    [49]

    Chernysheva M, Bednyakova A, Al Araimi M, et al. 2017 Sci. Rep. 7 1Google Scholar

    [50]

    Ma C, Huang W, Wang Y, Adams J, Wang Z, Liu J, Zhang H 2020 Nanophotonics 9 2451Google Scholar

    [51]

    Pang L, Wang R, Li L, Wu R, Lv Y 2020 Infrared Phys. Technol. 110 103444Google Scholar

    [52]

    Dou Z Y, Zhang B, Cai J H, Hou J 2020 Chin. Phys. B 29 094201Google Scholar

    [53]

    Santiago-Hernandez H, Pottiez O, Duran-Sanchez M, et al. 2015 Opt. Express 23 18840Google Scholar

    [54]

    Aguergaray C, Broderick N G, Erkintalo M, Chen J S, Kruglov V 2012 Opt. Express 20 10545Google Scholar

    [55]

    Aguergaray C, Hawker R, Runge A F, Erkintalo M, Broderick N G 2013 Appl. Phys. Lett. 103 3550Google Scholar

    [56]

    Yu Y, Teng H, Wang H B, Wang L N, Zhu J F, Fang S B, Chang G Q, Wang J L, Wei Z Y 2018 Opt. Express 26 10428Google Scholar

    [57]

    Deng D, Zhang H, Gong Q, He L, Li D, Gong M 2020 Opt. Laser Technol. 125 106010Google Scholar

    [58]

    Deng D, Zhang H, Zu J, Chen J 2021 Opt. Lett. 46 1612Google Scholar

    [59]

    Nazemosadat E, Mafi A 2013 J. Opt. Soc. Am. B 30 1357Google Scholar

    [60]

    Te˘gin U, Orta c B 2018 Opt. Lett. 43 1611Google Scholar

    [61]

    Zhao F Y, Wang H S, Hu X H, Wang Y S, Zhang W, Zhang T, Sun C D, Yan Z J 2018 Laser Phys. Lett. 15 115106Google Scholar

    [62]

    Chen G W, Wang H G, Zhu J, Li H Y, Zhu L Q 2021 Infrared Phys. Technol. 112 103607Google Scholar

    [63]

    Gan Y P, Wu Q C, Yao Y, Liu C Y, Fu Y P, Yang Y F, Tian J J, Xu K 2021 Opt. Commun. 479 126441Google Scholar

    [64]

    Huang L, Zhang Y S, Cui Y D 2021 Chin. Phys. B 30 114203Google Scholar

  • 图 1  HfO2薄膜的损伤点深度图 (a) 353 K, 39.2 J/cm2; (b) 423 K, 38.6 J/cm2; (c) 503 K, 36.6 J/cm2; (d) 573 K, 31.7 J/cm2[26]

    Figure 1.  Damage spot depth map of the HfO2 films: (a) 353 K, 39.2 J/cm2; (b) 423 K, 38.6 J/cm2; (c) 503 K, 36.6 J/cm2; (d) 573 K, 31.7 J/cm2[26].

    图 2  不同SA插入结构的环形腔示意图

    Figure 2.  Schematic diagram of annular cavity with different saturable absorber insertion structures.

    图 3  NPE锁模偏振态示意图

    Figure 3.  Schematic diagram of nonlinear polarization evolution mode-locked polarization state.

    图 4  拉锥光纤WS2 SA被动锁模掺铒光纤激光器的实验结果 (a)脉冲光谱, 中心波长1540 nm的3 dB带宽为114 nm; (b)脉冲宽度为67 fs[48]

    Figure 4.  Experimental results of the passively mode-locked EDF laser with the fiber-taper WS2 SA: (a) Optical spectrum of the generated pulses. The 3 dB spectral width is 114 nm at 1540 nm. (b) Intensity autocorrelation trace with 67 fs pulse duration[48].

    图 5  混合锁模结构示意图

    Figure 5.  Schematic diagram of hybrid mode locking structure.

    图 6  NOLM可饱和吸收原理图

    Figure 6.  Schematic diagram of nonlinear optical loop mirror saturable absorption.

    图 7  非线性多模干涉可饱和吸收原理图

    Figure 7.  Schematic diagram of saturable absorption of nonlinear multimode interference.

    Baidu
  • [1]

    Wang X Z, Wang Z H, Wang Y Y, Zhang X, Song J J, Wei Z Y 2021 Chin. Phys. Lett. 38 074202Google Scholar

    [2]

    Jiang J W, Fang S B, Zhang Z Y, Zhu J F, Han H N, Chang G Q, Wei Z Y 2020 Chin. Phys. Lett. 37 054201Google Scholar

    [3]

    Ning F J, Li Z Y, Tan R Q, Hu L M, Liu S Y 2020 Chin. Phys. Lett. 37 034203Google Scholar

    [4]

    Xing Z Q, Zhou Y J, Liu Y H, Wang F 2020 Chin. Phys. Lett. 37 027302Google Scholar

    [5]

    Ni X, Jia K P, Wang X H, et al. 2021 Chin. Phys. Lett. 38 064201Google Scholar

    [6]

    Keller U 2003 Nature 424 831Google Scholar

    [7]

    王井上, 张瑶, 王军利, 魏志义, 常国庆 2021 70 034206Google Scholar

    Wang J S, Zhang Y, Wang J L,Wei Z Y, Chang G Q 2021 Acta Phys. Sin. 70 034206Google Scholar

    [8]

    Lv R C, Teng H, Song J J, Kang R Z, Zhu J F, Wei Z Y 2021 Chin. Phys. B 30 094206Google Scholar

    [9]

    Fermann M E, Hofer M, Haberl F, Craig-Ryan S P 1990 Electron. Lett. 26 1737Google Scholar

    [10]

    Keller U, Knox W H, Roskos H 1990 Springer Berlin Heidelberg 53 69Google Scholar

    [11]

    俞强, 郭琨, 陈捷, 王涛, 汪进, 史鑫尧, 吴坚, 张凯, 周朴 2020 69 184208Google Scholar

    Yu Q, Guo K, Chen J, Wang T, Wang J, Shi X Y, Wu J, Zhang K, Zhou P 2020 Acta Phys. Sin. 69 184208Google Scholar

    [12]

    郝倩倩, 宗梦雨, 张振, 黄浩, 张峰, 刘杰, 刘丹华, 苏良碧, 张晗 2020 69 184205Google Scholar

    Hao Q Q, Zong M Y, Zhang Z, Huang H, Zhang F, Liu J, Liu D H, Su L B, Zhang H 2020 Acta Phys. Sin. 69 184205Google Scholar

    [13]

    Valdmanis J A, Fork R L 1986 IEEE J. Quantum Electron. 22 112Google Scholar

    [14]

    Novoselov K S, Geim A K, Morozov S V, et al. 2004 Science 306 666Google Scholar

    [15]

    Delhaes P 2002 Carbon 40 641Google Scholar

    [16]

    Ji D X, Cai S H, Paudel T R, et al. 2019 Nature 570 87Google Scholar

    [17]

    Cicily Rigi V J, Jayaraj M K, Saji K J 2020 Appl. Surf. Sci. 529 147158Google Scholar

    [18]

    Arthur J R 1980 At & T Tech. J. 10 157Google Scholar

    [19]

    Liu W J, Zhu Y N, Liu M L, Wen B, Fang S B, Teng H, Lei M, Liu L M, Wei Z Y 2018 Photonics Res. 6 220Google Scholar

    [20]

    Chen Z, Wang H, Wang Y, Lv R, Yang X, Wang J, Li L, Ren W 2019 Carbon 144 737Google Scholar

    [21]

    Chen Z, Wang Y, Lv R, Liu S, Wang Y 2020 Opt. Fiber Technol. 58 102189Google Scholar

    [22]

    Liu S C, Lv R D, Wang Y G, Shang S G, Ren W, Xu Q 2021 J. Mater. Chem. C 9 9021Google Scholar

    [23]

    Li L, Jiang S Z, Wang Y G, Wang X, Duan L N, Mao D, Li Z, Man B Y, Si J H 2015 Opt. Express 23 28698Google Scholar

    [24]

    Liu S, Wang Y, Lv R, Wang J, Duan L 2020 Nanophotonics 9 2523Google Scholar

    [25]

    Zhang Z F, Li S, Li Y, Kou Y, Liu K, Lin Y Y, Yuan L, Xu Y T, Peng Q J, Xu Z Y 2020 Chin. Phys. Lett. 37 064203Google Scholar

    [26]

    Zhang M, Zhu Y, Li D, Feng P, Xu C 2021 Appl. Surf. Sci. 554 149615Google Scholar

    [27]

    Liu H H, Yang Y, Chow K K 2013 Opt. Express 21 18975Google Scholar

    [28]

    Han X, Zhang H, Jiang S, Zhang C, Li D, Guo Q, Gao J, Man B 2019 Nanomaterials 9 1216Google Scholar

    [29]

    Ma P, Lin W, Zhang H, Xu S, Yang Z 2019 IEEE Photonics J. 11 1Google Scholar

    [30]

    Wang Y, Song C, Zhang H, Jin L, Xu Y, Ma X, Zou Y 2022 Opt. Laser Technol. 145 107542Google Scholar

    [31]

    Salam S, Nizamani B, Yasin M, Harun S W 2021 Results Opt. 2 100036Google Scholar

    [32]

    Wu Q, Jin X, Chen S, Jiang X, Hu Y, Jiang Q, Wu L, Li J, Zheng Z, Zhang M, Zhang H 2019 Opt. Express 27 10159

    [33]

    Song Y W, Yamashita S, Maruyama S 2008 Appl. Phys. Lett. 92 137Google Scholar

    [34]

    Nizamani B, Salam S, Jafry A A A, et al. 2020 Chin. Phys. Lett. 37 054202Google Scholar

    [35]

    Liu S, Shang S, Lv R, Wang Y, Wang J, Ren W, Wang Y 2021 ACS Appl. Mater. Interfaces 13 19128Google Scholar

    [36]

    Michaille L F, Taylor D M, Bennett C, Shepherd T J, Jacobsen C, Hansen T P 2004 Physica A 5618 30Google Scholar

    [37]

    Fermann M E, Andrejco M J, Silberberg Y, Stock M L 1993 Opt. Lett. 18 894Google Scholar

    [38]

    Doran N J, Wood D 1988 Opt. Lett. 13 56Google Scholar

    [39]

    Qi Y, Liu M, Luan N, Yang S, Bai Z, Yan B, Lu Z 2022 Infrared Phys. Technol. 121 104017Google Scholar

    [40]

    Zhao L M, Lu C, Tam H Y, Wai P, Tang D Y 2009 Appl. Opt. 48 5131Google Scholar

    [41]

    Wang Y Z, Zhang L Q, Zhuo Z, Guo S Z 2016 Appl. Opt. 55 5766

    [42]

    Szczepanek J, Karda’s T M, Radzewicz C, Stepanenko Y 2017 Opt. Lett. 42 575Google Scholar

    [43]

    Wang Y, Wang C, Zhang F, Guo J, Ma C, Huang W, Song Y, Ge Y, Liu J, Zhang H 2020 Rep. Prog. Phys. 83 116401

    [44]

    Andral U, Fodil R S, Amrani F, Billard F, Hertz E, Grelu P 2015 Optica 2 275Google Scholar

    [45]

    Pu G, Yi L, Zhang L, Hu W 2019 Optica 6 362Google Scholar

    [46]

    Baumeister T, Brunton S L, Kutz J N 2018 J. Opt. Soc. Am. B 35 617Google Scholar

    [47]

    Pu G, Yi L, Zhang L, Luo C, Li Z, Hu W 2020 Light Sci. Appl. 9 1Google Scholar

    [48]

    Liu W J, Pang L H, Han H N, Liu M L, Lei M, Fang S B, Teng H, Wei Z Y 2017 Opt. Express 25 2950Google Scholar

    [49]

    Chernysheva M, Bednyakova A, Al Araimi M, et al. 2017 Sci. Rep. 7 1Google Scholar

    [50]

    Ma C, Huang W, Wang Y, Adams J, Wang Z, Liu J, Zhang H 2020 Nanophotonics 9 2451Google Scholar

    [51]

    Pang L, Wang R, Li L, Wu R, Lv Y 2020 Infrared Phys. Technol. 110 103444Google Scholar

    [52]

    Dou Z Y, Zhang B, Cai J H, Hou J 2020 Chin. Phys. B 29 094201Google Scholar

    [53]

    Santiago-Hernandez H, Pottiez O, Duran-Sanchez M, et al. 2015 Opt. Express 23 18840Google Scholar

    [54]

    Aguergaray C, Broderick N G, Erkintalo M, Chen J S, Kruglov V 2012 Opt. Express 20 10545Google Scholar

    [55]

    Aguergaray C, Hawker R, Runge A F, Erkintalo M, Broderick N G 2013 Appl. Phys. Lett. 103 3550Google Scholar

    [56]

    Yu Y, Teng H, Wang H B, Wang L N, Zhu J F, Fang S B, Chang G Q, Wang J L, Wei Z Y 2018 Opt. Express 26 10428Google Scholar

    [57]

    Deng D, Zhang H, Gong Q, He L, Li D, Gong M 2020 Opt. Laser Technol. 125 106010Google Scholar

    [58]

    Deng D, Zhang H, Zu J, Chen J 2021 Opt. Lett. 46 1612Google Scholar

    [59]

    Nazemosadat E, Mafi A 2013 J. Opt. Soc. Am. B 30 1357Google Scholar

    [60]

    Te˘gin U, Orta c B 2018 Opt. Lett. 43 1611Google Scholar

    [61]

    Zhao F Y, Wang H S, Hu X H, Wang Y S, Zhang W, Zhang T, Sun C D, Yan Z J 2018 Laser Phys. Lett. 15 115106Google Scholar

    [62]

    Chen G W, Wang H G, Zhu J, Li H Y, Zhu L Q 2021 Infrared Phys. Technol. 112 103607Google Scholar

    [63]

    Gan Y P, Wu Q C, Yao Y, Liu C Y, Fu Y P, Yang Y F, Tian J J, Xu K 2021 Opt. Commun. 479 126441Google Scholar

    [64]

    Huang L, Zhang Y S, Cui Y D 2021 Chin. Phys. B 30 114203Google Scholar

  • [1] Tao Meng-Meng, Wang Ya-Min, Wu Hao-Long, Li Guo-Hua, Wang Sheng, Tao Bo, Ye Jing-Feng, Feng Guo-Bin, Ye Xi-Sheng, Chen Wei-Biao. Hyperspectral absorption of water around 2 μm based on a boradband tunable, narrow linewidth Tm-doped fiber laser. Acta Physica Sinica, 2022, 71(11): 114203. doi: 10.7498/aps.71.20212127
    [2] Dai Chuan-Sheng, Dong Zhi-Peng, Lin Jia-Qiang, Yao Pei-Jun, Xu Li-Xin, Gu Chun. Passively Q-switched and mode-locked 1.9 μm Tm-doped fiber laser based on pure water as saturable absorber. Acta Physica Sinica, 2022, 71(17): 174202. doi: 10.7498/aps.71.20212125
    [3] Tian Kang-Zhen, Hu Yong-Sheng, Ren He, Qi Si-Sheng, Yang An-Ping, Feng Xian, Yang Zhi-Yong. Ge-As-S chalcogenide glass fiber with high laser damage threshold and mid-infrared supercontinuum generation. Acta Physica Sinica, 2021, 70(4): 047801. doi: 10.7498/aps.70.20201324
    [4] Tao Meng-Meng, Tao Bo, Ye Jing-Feng, Shen Yan-Long, Huang Ke, Ye Xi-Sheng, Zhao Jun. Linewidth compression of tunable Tm-doped fiber laser and its hyperspectral absorption application. Acta Physica Sinica, 2020, 69(3): 034205. doi: 10.7498/aps.69.20191515
    [5] Hao Qian-Qian, Zong Meng-Yu, Zhang Zhen, Huang Hao, Zhang Feng, Liu Jie, Liu Dan-Hua, Su Liang-Bi, Zhang Han. Bismuth nanosheets based saturable-absorption passively Q-switching mid-infrared single-crystal fiber laser. Acta Physica Sinica, 2020, 69(18): 184205. doi: 10.7498/aps.69.20200337
    [6] Yu Qiang, Guo Kun, Chen Jie, Wang Tao, Wang Jin, Shi Xin-Yao, Wu Jian, Zhang Kai, Zhou Pu. Dual-wavelength self-starting mode-locking Er-doped fiber laser with MnPS3 saturable absorber. Acta Physica Sinica, 2020, 69(18): 184208. doi: 10.7498/aps.69.20200342
    [7] Zhang Qian, Jin Xin-Xin, Zhang Meng, Zheng Zheng. Two-dimensional material as a saturable absorber for mid-infrared ultrafast fiber laser. Acta Physica Sinica, 2020, 69(18): 188101. doi: 10.7498/aps.69.20200472
    [8] Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong. Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures. Acta Physica Sinica, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [9] Long Hui, Hu Jian-Wei, Wu Fu-Gen, Dong Hua-Feng. Ultrafast pulse lasers based on two-dimensional nanomaterial heterostructures as saturable absorber. Acta Physica Sinica, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [10] Yuan Hao, Zhu Fang-Xiang, Wang Jin-Tao, Yang Rong, Wang Nan, Yu Yang, Yan Pei-Guang, Guo Jin-Chuan. Generation of ultra-fast pulse based on bismuth saturable absorber. Acta Physica Sinica, 2020, 69(9): 094203. doi: 10.7498/aps.69.20191995
    [11] Wang Xiao-Fa, Zhang Jun-Hong, Gao Zi-Ye, Xia Guang-Qiong, Wu Zheng-Mao. Nanosecond mode-locked Tm-doped fiber laser based on graphene saturable absorber. Acta Physica Sinica, 2017, 66(11): 114209. doi: 10.7498/aps.66.114209
    [12] Ling Wei-Jun, Xia Tao, Dong Zhong, Liu Qing, Lu Fei-Ping, Wang Yong-Gang. Passively Q-switched mode-locked Tm, Ho:LLF laser with a WS2 saturable absorber. Acta Physica Sinica, 2017, 66(11): 114207. doi: 10.7498/aps.66.114207
    [13] Feng De-Jun, Hang Wen-Yu, Jiang Shou-Zhen, Ji Wei, Jia Dong-Fang. Few-layer graphene membrane as an ultrafast mode-locker in erbium-doped fiber laser. Acta Physica Sinica, 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [14] Han Jing-Hua, Feng Guo-Ying, Yang Li-Ming, Zhang Qiu-Hui, Fu Yu-Qing, Niu Rui-Hua, Zhu Qi-Hua, Xie Xu-Dong, Zhou Shou-Huan. Influence of the high-repetition-pulsed laser beam size on the damage characteristics of absorbing glass. Acta Physica Sinica, 2011, 60(2): 028106. doi: 10.7498/aps.60.028106
    [15] Cao Shi-Ying, Zhu Yue, Chai Lu, Wang Qing-Yue, Zhang Zhi-Gang. Passively mode-locked Nd:Gd0.1Y0.9VO4 laser with a semiconductor saturable absorber mirror. Acta Physica Sinica, 2009, 58(9): 6269-6272. doi: 10.7498/aps.58.6269
    [16] Chai Lu, Yan Shi, Xue Ying-Hong, Liu Qing-Wen, Ge Wen-Qi, Wang Qing-Yue, Su Liang-Bi, Xu Xiao-Dong, Zhao Guang-Jun, Xu Jun. Saturable absorption of Yb3+/Na+ codoped CaF2 crystals at 1050nm. Acta Physica Sinica, 2008, 57(5): 2966-2970. doi: 10.7498/aps.57.2966
    [17] Liu Jin-Song, Liu Hai, Wang Chun, Lü Jian-Tao, Fan Ting, Wang Xiao-Dong. Threshold and saturation properties of two-dimensional random lasers and mode selection. Acta Physica Sinica, 2006, 55(8): 4123-4131. doi: 10.7498/aps.55.4123
    [18] Wang Zhuan, Wang Qing-Yue, Song You-Jian, Xing Qi-Rong, Chai Lu. Theoretical analysis of the five-mirror femtosecond Ti:sapphire oscillator containing a semiconductor saturable absorber mirror with negative Kerr effect. Acta Physica Sinica, 2005, 54(11): 5164-5167. doi: 10.7498/aps.54.5164
    [19] Chai Lu, Wang Qing-Yue, Zhang Zhi-Gang, Zhao Jiang-Shan, Wang Yong, Zhang Wei-Li, Xing Qi-Rong. . Acta Physica Sinica, 2001, 50(1): 68-72. doi: 10.7498/aps.50.68
    [20] HUANG ZHI-JIAN, SUN JUN-QIANG, HUANG DE-XIU. THEORETICAL ANALYSIS OF FAST AND SLOW SATURABLE ABSORBER MODE LOCKING ERBIUM DOPED FIBER LASERS. Acta Physica Sinica, 1998, 47(1): 9-18. doi: 10.7498/aps.47.9
Metrics
  • Abstract views:  7676
  • PDF Downloads:  316
  • Cited By: 0
Publishing process
  • Received Date:  31 December 2021
  • Accepted Date:  11 January 2022
  • Available Online:  18 January 2022
  • Published Online:  20 January 2022

/

返回文章
返回
Baidu
map