-
We demonstrate a bismuth (Bi) saturable absorber (SA) for generating ultrafast pulse. The Bi SA is fabricated by the Bi film deposited on the surface of microfibers through using magnetron sputtering. Its nonlinear optical properties are investigated. The as-prepared Bi SA has outstanding nonlinear absorption property demonstrated by the open aperture (OA) Z-scan system at 1500 nm and balanced twin-detector method at 1560 nm. The nonlinear optical property of Bi SA shows that the modulation depth, the nonsaturable losses, and the saturable intensity at 1.5 μm are 14% and 79%, and 0.9 MW/cm2, respectively. Besides, the closed aperture (CA) Z-scan measurement is also implemented to estimate the nonlinear refractive index of Bi film. The Bi film shows that the typical CA/OA curve possesses the feature of peak-valley profile, meaning that the sample with a negative nonlinear refractive index is self-defocusing. In our experiments, the parameters of the nonlinear absorption coefficient β and the nonlinear refractive index n2 are estimated at about 2.38 × 10–4 cm/W and –1.47 × 10–9 cm2/W according to the actual experimental data points, respectively. To further investigate its nonlinear optical property, the microfiber-based Bi SA is embedded into an erbium-doped fiber laser with a typical ring cavity structure. Based on the Bi SA device, the stable ultrafast pulses are generated at 1.5 μm with the pulse width of 357 fs, the output power of 45.4 mW, corresponding to the pulse energy of 2.39 nJ, and the signal-to-noise ratio is 84 dB. The stable soliton pulses emitting at 1563 nm are obtained with a 3-dB and 6-nm spectral bandwidth. The experimental results suggest that the microfiber-based Bi SA prepared by magnetron sputtering deposition (MSD) technique can be used as an excellent photonic device for ultrafast pulse generation in the 1.5 μm regime, and the MSD technique opens a promising way to produce high-performance SA with a large modulation depth, low saturable intensity, and high power tolerance, which are conducible to the generation of high power and ultrafast pulse with high stability.
-
Keywords:
- saturable absorber /
- fiber laser /
- magnetron sputtering deposition /
- bismuth
[1] Woodward R I, Kelleher E J R 2015 Appl. Sci. 5 1440Google Scholar
[2] Keller U, Weingarten K J, Kartner F X, Kopf D, Braun B, Jung I D, Fluck R, Honninger C, Matuschek N, Der Au J A 1996 IEEE J. Sel. Top. Quant. 2 435Google Scholar
[3] Lagatsky A A, Fusari F, Calvez S, Kurilchik S V, Kisel V E, Kuleshov N V, Dawson M D, Brown C T A, Sibbett W 2010 Opt. Lett. 35 172Google Scholar
[4] Popa D, Sun Z, Torrisi F, Hasan T, Wang F, Ferrari A C 2010 Appl. Phys. Lett. 97 203106Google Scholar
[5] Jeong H, Choi S Y, Kim M H, Rotermund F, Cha Y H, Jeong D Y, Lee S B, Lee K, Yeom D I 2016 Opt. Express 24 14152Google Scholar
[6] Bao Q, Zhang H, Ni Z, Wang Y, Polavarapu L, Shen Z, Xu Q, Tang D, Loh K P 2011 Nano Res. 4 297Google Scholar
[7] Li J, Luo H, Wang L, Zhao C, Zhang H, Li H, Liu Y 2015 Opt. Lett. 40 3659Google Scholar
[8] Yan P, Jiang Z, Chen H, Yin J, Lai J, Wang J, He T, Yang J 2018 Opt. Lett. 43 4417Google Scholar
[9] Jiang Z, Li J, Chen H, Wang J, Zhang W, Yan P 2018 Opt. Commun. 406 44Google Scholar
[10] Luo Z, Li Y, Zhong M, Huang Y, Wan X, Peng J, Weng J 2015 Photonics Res. 3 A79Google Scholar
[11] Mao D, Du B, Yang D, Zhang S, Wang Y, Zhang W, She X, Cheng H, Zeng H, Zhao J 2016 Small 12 1489Google Scholar
[12] Wang J, Jiang Z, Chen H, Li J, Yin J, Wang J, He T, Yan P, Ruan S 2018 Photonics Res. 6 535Google Scholar
[13] Luo Z C, Liu M, Guo Z N, Jiang X F, Luo A P, Zhao C J, Yu X F, Xu W C, Zhang H 2015 Opt. Express 23 20030Google Scholar
[14] Sotor J, Sobon G, Kowalczyk M, Macherzynski W, Paletko P, Abramski K M 2015 Opt. Lett. 40 3885Google Scholar
[15] Qin Z, Xie G, Zhao C, Wen S, Yuan P, Qian L 2016 Opt. Lett. 41 56Google Scholar
[16] Song Y W, Jang S Y, Han W S, Bae M K 2010 Appl. Phys. Lett. 96 051122Google Scholar
[17] Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K M 2015 Opt. Mater. Express 5 2884Google Scholar
[18] Chen Y, Chen S, Liu J, Gao Y, Zhang W 2016 Opt. Express 24 13316Google Scholar
[19] Zhang S, Xie M, Li F, Yan Z, Li Y, Kan E, Liu W, Chen Z, Zeng H 2016 Angew. Chem. Int. Ed. 55 1666Google Scholar
[20] Wang G, Pandey R, Karna S P 2015 ACS Appl. Mater. Interfaces 7 11490Google Scholar
[21] Zhang S, Yan Z, Li Y, Chen Z, Zeng H 2015 Angew. Chem. Int. Ed. 54 3112Google Scholar
[22] Zhao M, Zhang X, Li L 2015 Sci. Rep. 5 16108Google Scholar
[23] Pizzi G, Gibertini M, Dib E, Marzari N, Iannaccone G, Fiori G 2016 Nat. Commun. 7 12585Google Scholar
[24] Ares P, Aguilar-Galindo F, Rodríguez-San-Miguel D, Aldave D A, Díaz-Tendero S, Alcamí M, Martín F, Gómez-Herrero J, Zamora F 2016 Adv. Mater. 28 6515Google Scholar
[25] Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S, Su M, Liao L, Wang W, Ni Z, Hao Y, Zeng H 2016 Nat. Commun. 7 13352Google Scholar
[26] Jiang Z, Chen H, Li J, Yin J, Wang J, Yan P 2017 Appl. Phys. Express 10 122702Google Scholar
[27] Haro-Poniatowski E, Jouanne M, Morhange J F, Kanehisa M, Serna R, Afonso C N 1999 Phys. Rev. B 60 10080Google Scholar
[28] Lu L, Liang Z, Wu L, Chen Y, Song Y, Dhanabalan S C, Ponraj J S, Dong B, Xiang Y, Xing F, Fan D, Zhang H 2018 Laser Photonics Rev. 12 1700221Google Scholar
[29] Chai T, Li X, Feng T, Guo P, Song Y, Chen Y, Zhang H 2018 Nanoscale 10 17617Google Scholar
[30] Guo B, Wang S, Wu Z, Wang Z, Wang D, Huang H, Zhang F, Ge Y, Zhang H 2018 Opt. Express 26 22750Google Scholar
[31] Yang Q, Liu R, Huang C, Huang Y, Gao L, Sun B, Huang Z, Zhang L, Hu C, Zhang Z, Sun C, Wang Q, Tang Y, Zhang H 2018 Nanoscale 10 21106Google Scholar
[32] Wang C, Wang L, Li X, Luo W, Feng T, Zhang Y, Guo P, Ge Y 2019 Nanotechnology 30 025204
[33] Guo P, Li X, Chai T, Feng T, Ge Y, Song Y, Wang Y 2019 Nanotechnology 30 354002Google Scholar
-
图 1 铋薄膜表征结果 (a)覆盖铋薄膜拉锥光纤的锥区扫描电子显微镜图像, 插图为铋薄膜的表面形貌; (b)镀铋膜的光纤端面; (c)铋薄膜沉积在光纤上的厚度; (d)铋薄膜的拉曼光谱; (e)铋薄膜的XRD图; (f)铋薄膜的线性透过率
Figure 1. Bi film characterization results: (a) Scanning electron microscope images for the taper region of the microfiber coated with the bismuth film (the inset shows the surface morphology of the bismuth film); (b) optical fiber end face with bismuth coating; (c) thickness of bismuth thin film deposited on optical fiber; (d) Raman spectrum of bismuth film; (e) XRD diagram of the bismuth film; (f) linear transmittance of bismuth thin film.
图 5 1.5 μm锁模特性 (a)锁模光谱; (b)基频为19.0 MHz、分辨率为10 Hz的射频频谱, 插图显示了2 GHz跨度的射频频谱; (c)具有sech2拟合的脉冲持续时间为357 fs输出脉冲的自相关轨迹, 插图是输出脉冲的时间序列图; (d)输出功率/脉冲能量随着输入功率的变化
Figure 5. Mode-locking characteristics at 1.5 μm: (a) Mode-locking optical spectrum; (b) RF spectrum at a fundamental frequency of 19.0 MHz with 10 Hz resolution; the inset shows the RF spectrum of 100 MHz span; (c) autocorrelation trace for an output pulse with a pulse duration of 357 fs with sech2 fit; the inset is the oscilloscope trace of the output pulse train; (d) relationship between the input power and laser output power/pulse energy.
表 1 基于铋SA不同锁模激光器的比较
Table 1. Comparison of different mode-locked lasers based on Bi saturable absorbers.
Fabrication Integration method λc/nm SNR/dB Ppump/Pave/mW E/nJ τ/fs αs/% 来源 LPE Microfiber 1559.18 55 542/1.15 0.13 652 2.03 Ref. [28] LPE Microfiber 1034.4 45 238/8.35 — 30250 2.2 Ref. [29] LPE Microfiber 1561 55 350/5.6 — 193 5.6 Ref. [30] LPE Gold mirror 2030 — 2000/110 6.6 978 — Ref. [31] LPE Microfiber 1557.5 25 —/122.1 — 621.5 2.4 Ref. [32] LPE Microfiber 1531 56.54 314/1.3 0.35 1300 2.5 Ref. [33] MSD Microfiber 1563 84 280/45.4 2.39 357 14 This work -
[1] Woodward R I, Kelleher E J R 2015 Appl. Sci. 5 1440Google Scholar
[2] Keller U, Weingarten K J, Kartner F X, Kopf D, Braun B, Jung I D, Fluck R, Honninger C, Matuschek N, Der Au J A 1996 IEEE J. Sel. Top. Quant. 2 435Google Scholar
[3] Lagatsky A A, Fusari F, Calvez S, Kurilchik S V, Kisel V E, Kuleshov N V, Dawson M D, Brown C T A, Sibbett W 2010 Opt. Lett. 35 172Google Scholar
[4] Popa D, Sun Z, Torrisi F, Hasan T, Wang F, Ferrari A C 2010 Appl. Phys. Lett. 97 203106Google Scholar
[5] Jeong H, Choi S Y, Kim M H, Rotermund F, Cha Y H, Jeong D Y, Lee S B, Lee K, Yeom D I 2016 Opt. Express 24 14152Google Scholar
[6] Bao Q, Zhang H, Ni Z, Wang Y, Polavarapu L, Shen Z, Xu Q, Tang D, Loh K P 2011 Nano Res. 4 297Google Scholar
[7] Li J, Luo H, Wang L, Zhao C, Zhang H, Li H, Liu Y 2015 Opt. Lett. 40 3659Google Scholar
[8] Yan P, Jiang Z, Chen H, Yin J, Lai J, Wang J, He T, Yang J 2018 Opt. Lett. 43 4417Google Scholar
[9] Jiang Z, Li J, Chen H, Wang J, Zhang W, Yan P 2018 Opt. Commun. 406 44Google Scholar
[10] Luo Z, Li Y, Zhong M, Huang Y, Wan X, Peng J, Weng J 2015 Photonics Res. 3 A79Google Scholar
[11] Mao D, Du B, Yang D, Zhang S, Wang Y, Zhang W, She X, Cheng H, Zeng H, Zhao J 2016 Small 12 1489Google Scholar
[12] Wang J, Jiang Z, Chen H, Li J, Yin J, Wang J, He T, Yan P, Ruan S 2018 Photonics Res. 6 535Google Scholar
[13] Luo Z C, Liu M, Guo Z N, Jiang X F, Luo A P, Zhao C J, Yu X F, Xu W C, Zhang H 2015 Opt. Express 23 20030Google Scholar
[14] Sotor J, Sobon G, Kowalczyk M, Macherzynski W, Paletko P, Abramski K M 2015 Opt. Lett. 40 3885Google Scholar
[15] Qin Z, Xie G, Zhao C, Wen S, Yuan P, Qian L 2016 Opt. Lett. 41 56Google Scholar
[16] Song Y W, Jang S Y, Han W S, Bae M K 2010 Appl. Phys. Lett. 96 051122Google Scholar
[17] Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K M 2015 Opt. Mater. Express 5 2884Google Scholar
[18] Chen Y, Chen S, Liu J, Gao Y, Zhang W 2016 Opt. Express 24 13316Google Scholar
[19] Zhang S, Xie M, Li F, Yan Z, Li Y, Kan E, Liu W, Chen Z, Zeng H 2016 Angew. Chem. Int. Ed. 55 1666Google Scholar
[20] Wang G, Pandey R, Karna S P 2015 ACS Appl. Mater. Interfaces 7 11490Google Scholar
[21] Zhang S, Yan Z, Li Y, Chen Z, Zeng H 2015 Angew. Chem. Int. Ed. 54 3112Google Scholar
[22] Zhao M, Zhang X, Li L 2015 Sci. Rep. 5 16108Google Scholar
[23] Pizzi G, Gibertini M, Dib E, Marzari N, Iannaccone G, Fiori G 2016 Nat. Commun. 7 12585Google Scholar
[24] Ares P, Aguilar-Galindo F, Rodríguez-San-Miguel D, Aldave D A, Díaz-Tendero S, Alcamí M, Martín F, Gómez-Herrero J, Zamora F 2016 Adv. Mater. 28 6515Google Scholar
[25] Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S, Su M, Liao L, Wang W, Ni Z, Hao Y, Zeng H 2016 Nat. Commun. 7 13352Google Scholar
[26] Jiang Z, Chen H, Li J, Yin J, Wang J, Yan P 2017 Appl. Phys. Express 10 122702Google Scholar
[27] Haro-Poniatowski E, Jouanne M, Morhange J F, Kanehisa M, Serna R, Afonso C N 1999 Phys. Rev. B 60 10080Google Scholar
[28] Lu L, Liang Z, Wu L, Chen Y, Song Y, Dhanabalan S C, Ponraj J S, Dong B, Xiang Y, Xing F, Fan D, Zhang H 2018 Laser Photonics Rev. 12 1700221Google Scholar
[29] Chai T, Li X, Feng T, Guo P, Song Y, Chen Y, Zhang H 2018 Nanoscale 10 17617Google Scholar
[30] Guo B, Wang S, Wu Z, Wang Z, Wang D, Huang H, Zhang F, Ge Y, Zhang H 2018 Opt. Express 26 22750Google Scholar
[31] Yang Q, Liu R, Huang C, Huang Y, Gao L, Sun B, Huang Z, Zhang L, Hu C, Zhang Z, Sun C, Wang Q, Tang Y, Zhang H 2018 Nanoscale 10 21106Google Scholar
[32] Wang C, Wang L, Li X, Luo W, Feng T, Zhang Y, Guo P, Ge Y 2019 Nanotechnology 30 025204
[33] Guo P, Li X, Chai T, Feng T, Ge Y, Song Y, Wang Y 2019 Nanotechnology 30 354002Google Scholar
Catalog
Metrics
- Abstract views: 8668
- PDF Downloads: 162
- Cited By: 0