Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation of ultra-fast pulse based on bismuth saturable absorber

Yuan Hao Zhu Fang-Xiang Wang Jin-Tao Yang Rong Wang Nan Yu Yang Yan Pei-Guang Guo Jin-Chuan

Citation:

Generation of ultra-fast pulse based on bismuth saturable absorber

Yuan Hao, Zhu Fang-Xiang, Wang Jin-Tao, Yang Rong, Wang Nan, Yu Yang, Yan Pei-Guang, Guo Jin-Chuan
PDF
HTML
Get Citation
  • We demonstrate a bismuth (Bi) saturable absorber (SA) for generating ultrafast pulse. The Bi SA is fabricated by the Bi film deposited on the surface of microfibers through using magnetron sputtering. Its nonlinear optical properties are investigated. The as-prepared Bi SA has outstanding nonlinear absorption property demonstrated by the open aperture (OA) Z-scan system at 1500 nm and balanced twin-detector method at 1560 nm. The nonlinear optical property of Bi SA shows that the modulation depth, the nonsaturable losses, and the saturable intensity at 1.5 μm are 14% and 79%, and 0.9 MW/cm2, respectively. Besides, the closed aperture (CA) Z-scan measurement is also implemented to estimate the nonlinear refractive index of Bi film. The Bi film shows that the typical CA/OA curve possesses the feature of peak-valley profile, meaning that the sample with a negative nonlinear refractive index is self-defocusing. In our experiments, the parameters of the nonlinear absorption coefficient β and the nonlinear refractive index n2 are estimated at about 2.38 × 10–4 cm/W and –1.47 × 10–9 cm2/W according to the actual experimental data points, respectively. To further investigate its nonlinear optical property, the microfiber-based Bi SA is embedded into an erbium-doped fiber laser with a typical ring cavity structure. Based on the Bi SA device, the stable ultrafast pulses are generated at 1.5 μm with the pulse width of 357 fs, the output power of 45.4 mW, corresponding to the pulse energy of 2.39 nJ, and the signal-to-noise ratio is 84 dB. The stable soliton pulses emitting at 1563 nm are obtained with a 3-dB and 6-nm spectral bandwidth. The experimental results suggest that the microfiber-based Bi SA prepared by magnetron sputtering deposition (MSD) technique can be used as an excellent photonic device for ultrafast pulse generation in the 1.5 μm regime, and the MSD technique opens a promising way to produce high-performance SA with a large modulation depth, low saturable intensity, and high power tolerance, which are conducible to the generation of high power and ultrafast pulse with high stability.
      Corresponding author: Wang Nan, nwang@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704260, 61775146, 61773266, 11904240), the Science and Technology Research and Development Foundation of Shenzhen, China (Grant No. JCYJ20170818144254033, JCYJ20190808141011530), the Natural Science Foundation of Guangdong Province, China (Grant No. 2018A030310637) and the Start-up project of scientific research for new teachers of Shenzhen University, China (Grant No. 2017020)
    [1]

    Woodward R I, Kelleher E J R 2015 Appl. Sci. 5 1440Google Scholar

    [2]

    Keller U, Weingarten K J, Kartner F X, Kopf D, Braun B, Jung I D, Fluck R, Honninger C, Matuschek N, Der Au J A 1996 IEEE J. Sel. Top. Quant. 2 435Google Scholar

    [3]

    Lagatsky A A, Fusari F, Calvez S, Kurilchik S V, Kisel V E, Kuleshov N V, Dawson M D, Brown C T A, Sibbett W 2010 Opt. Lett. 35 172Google Scholar

    [4]

    Popa D, Sun Z, Torrisi F, Hasan T, Wang F, Ferrari A C 2010 Appl. Phys. Lett. 97 203106Google Scholar

    [5]

    Jeong H, Choi S Y, Kim M H, Rotermund F, Cha Y H, Jeong D Y, Lee S B, Lee K, Yeom D I 2016 Opt. Express 24 14152Google Scholar

    [6]

    Bao Q, Zhang H, Ni Z, Wang Y, Polavarapu L, Shen Z, Xu Q, Tang D, Loh K P 2011 Nano Res. 4 297Google Scholar

    [7]

    Li J, Luo H, Wang L, Zhao C, Zhang H, Li H, Liu Y 2015 Opt. Lett. 40 3659Google Scholar

    [8]

    Yan P, Jiang Z, Chen H, Yin J, Lai J, Wang J, He T, Yang J 2018 Opt. Lett. 43 4417Google Scholar

    [9]

    Jiang Z, Li J, Chen H, Wang J, Zhang W, Yan P 2018 Opt. Commun. 406 44Google Scholar

    [10]

    Luo Z, Li Y, Zhong M, Huang Y, Wan X, Peng J, Weng J 2015 Photonics Res. 3 A79Google Scholar

    [11]

    Mao D, Du B, Yang D, Zhang S, Wang Y, Zhang W, She X, Cheng H, Zeng H, Zhao J 2016 Small 12 1489Google Scholar

    [12]

    Wang J, Jiang Z, Chen H, Li J, Yin J, Wang J, He T, Yan P, Ruan S 2018 Photonics Res. 6 535Google Scholar

    [13]

    Luo Z C, Liu M, Guo Z N, Jiang X F, Luo A P, Zhao C J, Yu X F, Xu W C, Zhang H 2015 Opt. Express 23 20030Google Scholar

    [14]

    Sotor J, Sobon G, Kowalczyk M, Macherzynski W, Paletko P, Abramski K M 2015 Opt. Lett. 40 3885Google Scholar

    [15]

    Qin Z, Xie G, Zhao C, Wen S, Yuan P, Qian L 2016 Opt. Lett. 41 56Google Scholar

    [16]

    Song Y W, Jang S Y, Han W S, Bae M K 2010 Appl. Phys. Lett. 96 051122Google Scholar

    [17]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K M 2015 Opt. Mater. Express 5 2884Google Scholar

    [18]

    Chen Y, Chen S, Liu J, Gao Y, Zhang W 2016 Opt. Express 24 13316Google Scholar

    [19]

    Zhang S, Xie M, Li F, Yan Z, Li Y, Kan E, Liu W, Chen Z, Zeng H 2016 Angew. Chem. Int. Ed. 55 1666Google Scholar

    [20]

    Wang G, Pandey R, Karna S P 2015 ACS Appl. Mater. Interfaces 7 11490Google Scholar

    [21]

    Zhang S, Yan Z, Li Y, Chen Z, Zeng H 2015 Angew. Chem. Int. Ed. 54 3112Google Scholar

    [22]

    Zhao M, Zhang X, Li L 2015 Sci. Rep. 5 16108Google Scholar

    [23]

    Pizzi G, Gibertini M, Dib E, Marzari N, Iannaccone G, Fiori G 2016 Nat. Commun. 7 12585Google Scholar

    [24]

    Ares P, Aguilar-Galindo F, Rodríguez-San-Miguel D, Aldave D A, Díaz-Tendero S, Alcamí M, Martín F, Gómez-Herrero J, Zamora F 2016 Adv. Mater. 28 6515Google Scholar

    [25]

    Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S, Su M, Liao L, Wang W, Ni Z, Hao Y, Zeng H 2016 Nat. Commun. 7 13352Google Scholar

    [26]

    Jiang Z, Chen H, Li J, Yin J, Wang J, Yan P 2017 Appl. Phys. Express 10 122702Google Scholar

    [27]

    Haro-Poniatowski E, Jouanne M, Morhange J F, Kanehisa M, Serna R, Afonso C N 1999 Phys. Rev. B 60 10080Google Scholar

    [28]

    Lu L, Liang Z, Wu L, Chen Y, Song Y, Dhanabalan S C, Ponraj J S, Dong B, Xiang Y, Xing F, Fan D, Zhang H 2018 Laser Photonics Rev. 12 1700221Google Scholar

    [29]

    Chai T, Li X, Feng T, Guo P, Song Y, Chen Y, Zhang H 2018 Nanoscale 10 17617Google Scholar

    [30]

    Guo B, Wang S, Wu Z, Wang Z, Wang D, Huang H, Zhang F, Ge Y, Zhang H 2018 Opt. Express 26 22750Google Scholar

    [31]

    Yang Q, Liu R, Huang C, Huang Y, Gao L, Sun B, Huang Z, Zhang L, Hu C, Zhang Z, Sun C, Wang Q, Tang Y, Zhang H 2018 Nanoscale 10 21106Google Scholar

    [32]

    Wang C, Wang L, Li X, Luo W, Feng T, Zhang Y, Guo P, Ge Y 2019 Nanotechnology 30 025204

    [33]

    Guo P, Li X, Chai T, Feng T, Ge Y, Song Y, Wang Y 2019 Nanotechnology 30 354002Google Scholar

  • 图 1  铋薄膜表征结果 (a)覆盖铋薄膜拉锥光纤的锥区扫描电子显微镜图像, 插图为铋薄膜的表面形貌; (b)镀铋膜的光纤端面; (c)铋薄膜沉积在光纤上的厚度; (d)铋薄膜的拉曼光谱; (e)铋薄膜的XRD图; (f)铋薄膜的线性透过率

    Figure 1.  Bi film characterization results: (a) Scanning electron microscope images for the taper region of the microfiber coated with the bismuth film (the inset shows the surface morphology of the bismuth film); (b) optical fiber end face with bismuth coating; (c) thickness of bismuth thin film deposited on optical fiber; (d) Raman spectrum of bismuth film; (e) XRD diagram of the bismuth film; (f) linear transmittance of bismuth thin film.

    图 2  微纳光纤-铋SA的非线性表征 (a)没有和(b)具有650 nm引导光时样品腰部区域的光学显微镜图像; (c) SA的饱和吸收特性

    Figure 2.  Nonlinear characterization of micro-nano fiber-bismuth SA: Optical microscope images of the waist region of the sample (a) without and (b) with the guiding 650 nm light; (c) saturable absorption property of SA.

    图 3  (a)不同激发功率下的标准开孔Z扫描曲线; (b)标准化的闭孔/开孔Z扫描曲线

    Figure 3.  (a) Normalized open-aperture Z-scan traces with different excitation powers; (b) normalized close-aperture/ open-aperture Z-scan trace.

    图 4  实验装置图

    Figure 4.  Experimental device diagram.

    图 5  1.5 μm锁模特性 (a)锁模光谱; (b)基频为19.0 MHz、分辨率为10 Hz的射频频谱, 插图显示了2 GHz跨度的射频频谱; (c)具有sech2拟合的脉冲持续时间为357 fs输出脉冲的自相关轨迹, 插图是输出脉冲的时间序列图; (d)输出功率/脉冲能量随着输入功率的变化

    Figure 5.  Mode-locking characteristics at 1.5 μm: (a) Mode-locking optical spectrum; (b) RF spectrum at a fundamental frequency of 19.0 MHz with 10 Hz resolution; the inset shows the RF spectrum of 100 MHz span; (c) autocorrelation trace for an output pulse with a pulse duration of 357 fs with sech2 fit; the inset is the oscilloscope trace of the output pulse train; (d) relationship between the input power and laser output power/pulse energy.

    表 1  基于铋SA不同锁模激光器的比较

    Table 1.  Comparison of different mode-locked lasers based on Bi saturable absorbers.

    FabricationIntegration methodλc/nmSNR/dBPpump/Pave/mWE/nJτ/fsαs/%来源
    LPEMicrofiber1559.1855542/1.150.136522.03Ref. [28]
    LPEMicrofiber1034.445238/8.35302502.2Ref. [29]
    LPEMicrofiber156155350/5.61935.6Ref. [30]
    LPEGold mirror20302000/1106.6978Ref. [31]
    LPEMicrofiber1557.525—/122.1621.52.4Ref. [32]
    LPEMicrofiber153156.54314/1.30.3513002.5Ref. [33]
    MSDMicrofiber156384280/45.42.3935714This work
    DownLoad: CSV
    Baidu
  • [1]

    Woodward R I, Kelleher E J R 2015 Appl. Sci. 5 1440Google Scholar

    [2]

    Keller U, Weingarten K J, Kartner F X, Kopf D, Braun B, Jung I D, Fluck R, Honninger C, Matuschek N, Der Au J A 1996 IEEE J. Sel. Top. Quant. 2 435Google Scholar

    [3]

    Lagatsky A A, Fusari F, Calvez S, Kurilchik S V, Kisel V E, Kuleshov N V, Dawson M D, Brown C T A, Sibbett W 2010 Opt. Lett. 35 172Google Scholar

    [4]

    Popa D, Sun Z, Torrisi F, Hasan T, Wang F, Ferrari A C 2010 Appl. Phys. Lett. 97 203106Google Scholar

    [5]

    Jeong H, Choi S Y, Kim M H, Rotermund F, Cha Y H, Jeong D Y, Lee S B, Lee K, Yeom D I 2016 Opt. Express 24 14152Google Scholar

    [6]

    Bao Q, Zhang H, Ni Z, Wang Y, Polavarapu L, Shen Z, Xu Q, Tang D, Loh K P 2011 Nano Res. 4 297Google Scholar

    [7]

    Li J, Luo H, Wang L, Zhao C, Zhang H, Li H, Liu Y 2015 Opt. Lett. 40 3659Google Scholar

    [8]

    Yan P, Jiang Z, Chen H, Yin J, Lai J, Wang J, He T, Yang J 2018 Opt. Lett. 43 4417Google Scholar

    [9]

    Jiang Z, Li J, Chen H, Wang J, Zhang W, Yan P 2018 Opt. Commun. 406 44Google Scholar

    [10]

    Luo Z, Li Y, Zhong M, Huang Y, Wan X, Peng J, Weng J 2015 Photonics Res. 3 A79Google Scholar

    [11]

    Mao D, Du B, Yang D, Zhang S, Wang Y, Zhang W, She X, Cheng H, Zeng H, Zhao J 2016 Small 12 1489Google Scholar

    [12]

    Wang J, Jiang Z, Chen H, Li J, Yin J, Wang J, He T, Yan P, Ruan S 2018 Photonics Res. 6 535Google Scholar

    [13]

    Luo Z C, Liu M, Guo Z N, Jiang X F, Luo A P, Zhao C J, Yu X F, Xu W C, Zhang H 2015 Opt. Express 23 20030Google Scholar

    [14]

    Sotor J, Sobon G, Kowalczyk M, Macherzynski W, Paletko P, Abramski K M 2015 Opt. Lett. 40 3885Google Scholar

    [15]

    Qin Z, Xie G, Zhao C, Wen S, Yuan P, Qian L 2016 Opt. Lett. 41 56Google Scholar

    [16]

    Song Y W, Jang S Y, Han W S, Bae M K 2010 Appl. Phys. Lett. 96 051122Google Scholar

    [17]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K M 2015 Opt. Mater. Express 5 2884Google Scholar

    [18]

    Chen Y, Chen S, Liu J, Gao Y, Zhang W 2016 Opt. Express 24 13316Google Scholar

    [19]

    Zhang S, Xie M, Li F, Yan Z, Li Y, Kan E, Liu W, Chen Z, Zeng H 2016 Angew. Chem. Int. Ed. 55 1666Google Scholar

    [20]

    Wang G, Pandey R, Karna S P 2015 ACS Appl. Mater. Interfaces 7 11490Google Scholar

    [21]

    Zhang S, Yan Z, Li Y, Chen Z, Zeng H 2015 Angew. Chem. Int. Ed. 54 3112Google Scholar

    [22]

    Zhao M, Zhang X, Li L 2015 Sci. Rep. 5 16108Google Scholar

    [23]

    Pizzi G, Gibertini M, Dib E, Marzari N, Iannaccone G, Fiori G 2016 Nat. Commun. 7 12585Google Scholar

    [24]

    Ares P, Aguilar-Galindo F, Rodríguez-San-Miguel D, Aldave D A, Díaz-Tendero S, Alcamí M, Martín F, Gómez-Herrero J, Zamora F 2016 Adv. Mater. 28 6515Google Scholar

    [25]

    Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S, Su M, Liao L, Wang W, Ni Z, Hao Y, Zeng H 2016 Nat. Commun. 7 13352Google Scholar

    [26]

    Jiang Z, Chen H, Li J, Yin J, Wang J, Yan P 2017 Appl. Phys. Express 10 122702Google Scholar

    [27]

    Haro-Poniatowski E, Jouanne M, Morhange J F, Kanehisa M, Serna R, Afonso C N 1999 Phys. Rev. B 60 10080Google Scholar

    [28]

    Lu L, Liang Z, Wu L, Chen Y, Song Y, Dhanabalan S C, Ponraj J S, Dong B, Xiang Y, Xing F, Fan D, Zhang H 2018 Laser Photonics Rev. 12 1700221Google Scholar

    [29]

    Chai T, Li X, Feng T, Guo P, Song Y, Chen Y, Zhang H 2018 Nanoscale 10 17617Google Scholar

    [30]

    Guo B, Wang S, Wu Z, Wang Z, Wang D, Huang H, Zhang F, Ge Y, Zhang H 2018 Opt. Express 26 22750Google Scholar

    [31]

    Yang Q, Liu R, Huang C, Huang Y, Gao L, Sun B, Huang Z, Zhang L, Hu C, Zhang Z, Sun C, Wang Q, Tang Y, Zhang H 2018 Nanoscale 10 21106Google Scholar

    [32]

    Wang C, Wang L, Li X, Luo W, Feng T, Zhang Y, Guo P, Ge Y 2019 Nanotechnology 30 025204

    [33]

    Guo P, Li X, Chai T, Feng T, Ge Y, Song Y, Wang Y 2019 Nanotechnology 30 354002Google Scholar

  • [1] Cui Wen-Wen, Xing Xiao-Wei, Xiao Yue-Jia, Liu Wen-Jun. Research progress of mode-locked pulsed fiber lasers with high damage threshold saturable absorber. Acta Physica Sinica, 2022, 71(2): 024206. doi: 10.7498/aps.71.20212442
    [2] Dai Chuan-Sheng, Dong Zhi-Peng, Lin Jia-Qiang, Yao Pei-Jun, Xu Li-Xin, Gu Chun. Passively Q-switched and mode-locked 1.9 μm Tm-doped fiber laser based on pure water as saturable absorber. Acta Physica Sinica, 2022, 71(17): 174202. doi: 10.7498/aps.71.20212125
    [3] Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong. Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures. Acta Physica Sinica, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [4] Zhang Qian, Jin Xin-Xin, Zhang Meng, Zheng Zheng. Two-dimensional material as a saturable absorber for mid-infrared ultrafast fiber laser. Acta Physica Sinica, 2020, 69(18): 188101. doi: 10.7498/aps.69.20200472
    [5] Long Hui, Hu Jian-Wei, Wu Fu-Gen, Dong Hua-Feng. Ultrafast pulse lasers based on two-dimensional nanomaterial heterostructures as saturable absorber. Acta Physica Sinica, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [6] Jia Meng-Yuan, Zhao Gang, Zhou Yue-Ting, Liu Jian-Xin, Guo Song-Jie, Wu Yong-Qian, Ma Wei-Guang, Zhang Lei, Dong Lei, Yin Wang-Bao, Xiao Lian-Tuan, Jia Suo-Tang. Frequency locking of fiber laser to 1530.58 nm NH3 sub-Doppler saturation spectrum based on noise-immune cavity-enhanced optical heterodyne molecular spectroscopy technique. Acta Physica Sinica, 2018, 67(10): 104207. doi: 10.7498/aps.67.20172541
    [7] Ling Wei-Jun, Xia Tao, Dong Zhong, Liu Qing, Lu Fei-Ping, Wang Yong-Gang. Passively Q-switched mode-locked Tm, Ho:LLF laser with a WS2 saturable absorber. Acta Physica Sinica, 2017, 66(11): 114207. doi: 10.7498/aps.66.114207
    [8] Zhang Li-Ming, Zhou Shou-Huan, Zhao Hong, Zhang Kun, Hao Jin-Ping, Zhang Da-Yong, Zhu Chen, Li Yao, Wang Xiong-Fei, Zhang Hao-Bin. 780 W narrow linewidth all fiber laser. Acta Physica Sinica, 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [9] Xiong Shui-Dong, Xu Pan, Ma Ming-Xiang, Hu Zheng-Liang, Hu Yong-Ming. Experimental study on mode hopping triggered by transient characteristics of saturable absorber gratings in Er-doped fiber ring lasers. Acta Physica Sinica, 2014, 63(13): 134206. doi: 10.7498/aps.63.134206
    [10] Feng De-Jun, Hang Wen-Yu, Jiang Shou-Zhen, Ji Wei, Jia Dong-Fang. Few-layer graphene membrane as an ultrafast mode-locker in erbium-doped fiber laser. Acta Physica Sinica, 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [11] Li Ying-Hua, Chang Jing-Zhen, Li Xue-Mei, Yu Yu-Ying, Dai Cheng-Da, Zhang Lin. Multiphase equation of states of solid and liquid phases for bismuth. Acta Physica Sinica, 2012, 61(20): 206203. doi: 10.7498/aps.61.206203
    [12] Fang Xiao-Hui, Hu Ming-Lie, Song You-Jian, Xie Chen, Chai Lu, Wang Qing-Yue. Mode locked multi-core photonic crystal fiber laser. Acta Physica Sinica, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [13] Tan Ye, Yu Yu-Ying, Dai Cheng-Da, Tan Hua, Wang Qing-Song, Wang Xiang. Measurement of low-pressure Hugoniot data for bismuth with reverse-impact geometry. Acta Physica Sinica, 2011, 60(10): 106401. doi: 10.7498/aps.60.106401
    [14] Zhou Peng, Su Liang-Bi, Li Hong-Jun, Yu Jun, Zheng Li-He, Yang Qiu-Hong, Xu Jun. Preparation and near-infrared luminescence properties of Bi-doped BaF2 crystal. Acta Physica Sinica, 2010, 59(4): 2827-2830. doi: 10.7498/aps.59.2827
    [15] Ren Guang-Jun, Wei Zhen, Yao Jian-Quan. Q-switched pulse polarization-maintaining Nd3+-doped fiber laser. Acta Physica Sinica, 2009, 58(2): 941-945. doi: 10.7498/aps.58.941
    [16] Lei Bing, Feng Ying, Liu Ze-Jin. Phase locking of three fiber lasers using an all-fiber coupling loop. Acta Physica Sinica, 2008, 57(10): 6419-6424. doi: 10.7498/aps.57.6419
    [17] Wang Jian-Ming, Duan Kai-Liang, Wang Yi-Shan. Experimental study of coherent beam combining of two fiber lasers. Acta Physica Sinica, 2008, 57(9): 5627-5631. doi: 10.7498/aps.57.5627
    [18] Chai Lu, Yan Shi, Xue Ying-Hong, Liu Qing-Wen, Ge Wen-Qi, Wang Qing-Yue, Su Liang-Bi, Xu Xiao-Dong, Zhao Guang-Jun, Xu Jun. Saturable absorption of Yb3+/Na+ codoped CaF2 crystals at 1050nm. Acta Physica Sinica, 2008, 57(5): 2966-2970. doi: 10.7498/aps.57.2966
    [19] Ren Guang-Jun, Zhang Qiang, Wang Peng, Yao Jian-Quan. Study of Nd3+-doped polarization-maintaining fiber laser. Acta Physica Sinica, 2007, 56(7): 3917-3923. doi: 10.7498/aps.56.3917
    [20] Lü Chang-Gui, Cui Yi-Ping, Wang Zhu-Yuan, Yun Bin-Feng. A study on the longitudinal mode behavior of Fabry-Perot cavity composed of fiber Bragg grating. Acta Physica Sinica, 2004, 53(1): 145-150. doi: 10.7498/aps.53.145
Metrics
  • Abstract views:  8668
  • PDF Downloads:  162
  • Cited By: 0
Publishing process
  • Received Date:  30 December 2019
  • Accepted Date:  15 February 2020
  • Published Online:  05 May 2020

/

返回文章
返回
Baidu
map