搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高重复频率激光脉冲光束大小对吸收玻璃损伤特征的影响

韩敬华 冯国英 杨李茗 张秋慧 傅玉青 牛瑞华 朱启华 谢旭东 周寿桓

引用本文:
Citation:

高重复频率激光脉冲光束大小对吸收玻璃损伤特征的影响

韩敬华, 冯国英, 杨李茗, 张秋慧, 傅玉青, 牛瑞华, 朱启华, 谢旭东, 周寿桓

Influence of the high-repetition-pulsed laser beam size on the damage characteristics of absorbing glass

Han Jing-Hua, Feng Guo-Ying, Yang Li-Ming, Zhang Qiu-Hui, Fu Yu-Qing, Niu Rui-Hua, Zhu Qi-Hua, Xie Xu-Dong, Zhou Shou-Huan
PDF
导出引用
  • 针对高重复频率对吸收性滤光片损伤问题,研究了高重复频率(kHz量级)激光脉冲的光束半径大小对吸收玻璃的形貌特征和损伤机理.研究发现在总的激光作用个数、单脉冲能量和脉冲作用频率固定时,吸收玻璃的损伤特性发生很大变化:在光束半径较大时,激光能量分散,主要损伤形貌是熔化破坏;随着光束半径的减小,激光脉冲能量变得集中,热量的累积效果变得明显,逐渐变成熔化破坏和气化破坏;当激光光束半径小到一定程度,则会由于光强过大使得介质表面发生击穿而产生激光等离子体冲击波,同时由于热量沉积的集中使光束作用中心处产生超热液体,当满足相爆炸发生的条件时,气化物、液滴和固体颗粒的混合物会向外飞溅,在损伤凹陷的周围形成气化物、液滴的冷凝区和固体颗粒溅射区.
    The influence of the beam size of pulsed laser on damage morphology of absorbing glass, as well as the mechanism of the damage produced by high-repetition-pulsed laser (kHz magnitude), is investigated. We show that the damage morphology changes greatly with the decrease of the beam size under the condition that the energy of each individual pulse,the number of the pulses incident on the glass and the repetition frequency are kept invariant. The damage is induced by melting of the glass material due to dispersed energy of the incident laser with large beam size. With decreased beam size of laser, the material will break resulting from the melting and evaporating of glass induced by the densing and increasingly deposited laser energy in glass material. When the beam size is further reduced, too intensive laser will penetrate the dielectric material on the surface of glass. As a result, the laser induced plasma shock wave occurs. In addition, the super-heated liquid at the center where the laser beam interacts with glass will be produced as a consequence of the tremendous deposited laser energy. When the threshold of phase explosion is reached, the mixture of the evaporated, melted and original solid materials will blast outwards. Consequently, characteristic morphology made up of three regions covered with solid granules of original glass material and the re-crystallized material of the evaporated and melted glass will form around the damage crater.
    • 基金项目: 国家自然科学基金重大项目(批准号:60890203)、国家自然学基金委员会-中国工程物理研究院联合基金(批准号:10676023)和四川大学青年教师科研启动基金(批准号:2009SCU11008)资助的课题.
    [1]

    Wen S C, Fan S C 2000 Acta Phys. Sin. 49 1282 (in Chinese) [文双春、范滇元 2000 49 1282]

    [2]

    Kitriotis D, Merkle L D 1989 Appl. Opt. 28 949

    [3]

    Liu W Q, Shen J, Sun X M, Wang H H 2009 Chin. Phys. B 18 1040

    [4]

    Feng X Q, Han B G 1999 Acta Phys. Sin. 48 1282 (in Chinese)[冯锡淇、韩宝国 1999 48 1282]

    [5]

    Stuart B C, Feit M D, Herman S, Rubenchik A M, Shore B W, Perry M D 1996 Phys. Rev. B 53 1749

    [6]

    Xiao Z Y, Luo W Y, Wang T Y 2007 Acta Phys. Sin. 56 2731 (in Chinese) [肖中银、罗文芸、王廷云 2007 56 2731]

    [7]

    Eronko S B, Zhurkov S N, Chmel A 1978 Soviet Phys. Solid State 20 2064

    [8]

    Yoo J H, Jeong S H, Mao X L, Greif R, Russo R E 2000 Appl. Phys. Lett.76 783

    [9]

    Bleiner D, Bogaerts A 2006 Spec. Acta Part B: Atom. Spec. 61 421

    [10]

    Lu Q, Mao S S, Mao X, Russo R E 2002 Appl. Phys.Lett. 80 3072

    [11]

    Lu Q M 2003 Phys. Rev. E 67 016410

    [12]

    Yoo J H, Jeong S H, Greif R, Russo R E 2000 J. Appl. Phys. 88 1638

    [13]

    Chen Z, Bogaerts A, Vertes A 2006 Appl. Phys. Lett. 89 041503

    [14]

    Yang T Y B, Kraer W L, More R M, Langdon A B 1995 Phys.Plasmas 2 3146

    [15]

    Allcock G, Dyer P E, Elliner G, Snelling H V 1995 J. Appl. Phys. 78 7295

    [16]

    Matthias E, Reichling M, Siegel J, Kding O W, Petzoldt S, Skurk H, Bizenberger P, Neske E 1994 Appl. Phys. A: Mater. Sci. Proc. 58 129

    [17]

    Porneala C, Willis D A 2006 Appl. Phys.Lett. 89 211121.

    [18]

    Pakhomov A V, Thompson M S, Gregory D A 2003 J. Phys. D: Appl. Phys. 36 2067

    [19]

    Xu X 2002 Appl. Surf. Sci. 197 61

    [20]

    Yang T Y B, Kruer W L, More R M, Langdon A B 1995 Phys. Plasmas 2 3146

    [21]

    Rethfeld B, Sokolowski-Tinten K, Linde D von der 2004 Appl. Phys.A: Mater. Sci. Proc. 79 767

    [22]

    Pamela K. W, Bletzer K, James L H, Francois Y G, Hester M, Yoshiyama J M 1999 SPIE 3578 681

    [23]

    Ou Q, Chen J G, Zhang W, Lan L, Feng G Y 2006 Opt. Las. Tech. 38 631

    [24]

    Han J H 2009 Ph.D. Dissertation (Chengdu:Sichuan University) (in Chinese) [韩敬华 2009 博士学位论文(成都: 四川大学)]

  • [1]

    Wen S C, Fan S C 2000 Acta Phys. Sin. 49 1282 (in Chinese) [文双春、范滇元 2000 49 1282]

    [2]

    Kitriotis D, Merkle L D 1989 Appl. Opt. 28 949

    [3]

    Liu W Q, Shen J, Sun X M, Wang H H 2009 Chin. Phys. B 18 1040

    [4]

    Feng X Q, Han B G 1999 Acta Phys. Sin. 48 1282 (in Chinese)[冯锡淇、韩宝国 1999 48 1282]

    [5]

    Stuart B C, Feit M D, Herman S, Rubenchik A M, Shore B W, Perry M D 1996 Phys. Rev. B 53 1749

    [6]

    Xiao Z Y, Luo W Y, Wang T Y 2007 Acta Phys. Sin. 56 2731 (in Chinese) [肖中银、罗文芸、王廷云 2007 56 2731]

    [7]

    Eronko S B, Zhurkov S N, Chmel A 1978 Soviet Phys. Solid State 20 2064

    [8]

    Yoo J H, Jeong S H, Mao X L, Greif R, Russo R E 2000 Appl. Phys. Lett.76 783

    [9]

    Bleiner D, Bogaerts A 2006 Spec. Acta Part B: Atom. Spec. 61 421

    [10]

    Lu Q, Mao S S, Mao X, Russo R E 2002 Appl. Phys.Lett. 80 3072

    [11]

    Lu Q M 2003 Phys. Rev. E 67 016410

    [12]

    Yoo J H, Jeong S H, Greif R, Russo R E 2000 J. Appl. Phys. 88 1638

    [13]

    Chen Z, Bogaerts A, Vertes A 2006 Appl. Phys. Lett. 89 041503

    [14]

    Yang T Y B, Kraer W L, More R M, Langdon A B 1995 Phys.Plasmas 2 3146

    [15]

    Allcock G, Dyer P E, Elliner G, Snelling H V 1995 J. Appl. Phys. 78 7295

    [16]

    Matthias E, Reichling M, Siegel J, Kding O W, Petzoldt S, Skurk H, Bizenberger P, Neske E 1994 Appl. Phys. A: Mater. Sci. Proc. 58 129

    [17]

    Porneala C, Willis D A 2006 Appl. Phys.Lett. 89 211121.

    [18]

    Pakhomov A V, Thompson M S, Gregory D A 2003 J. Phys. D: Appl. Phys. 36 2067

    [19]

    Xu X 2002 Appl. Surf. Sci. 197 61

    [20]

    Yang T Y B, Kruer W L, More R M, Langdon A B 1995 Phys. Plasmas 2 3146

    [21]

    Rethfeld B, Sokolowski-Tinten K, Linde D von der 2004 Appl. Phys.A: Mater. Sci. Proc. 79 767

    [22]

    Pamela K. W, Bletzer K, James L H, Francois Y G, Hester M, Yoshiyama J M 1999 SPIE 3578 681

    [23]

    Ou Q, Chen J G, Zhang W, Lan L, Feng G Y 2006 Opt. Las. Tech. 38 631

    [24]

    Han J H 2009 Ph.D. Dissertation (Chengdu:Sichuan University) (in Chinese) [韩敬华 2009 博士学位论文(成都: 四川大学)]

  • [1] 侯佳佳, 张大成, 冯中琦, 朱江峰. 基于温度迭代校正自吸收效应的激光诱导击穿光谱定量分析方法.  , 2024, 73(5): 054205. doi: 10.7498/aps.73.20231541
    [2] 崔文文, 邢笑伟, 肖悦嘉, 刘文军. 高损伤阈值可饱和吸收体锁模脉冲光纤激光器的研究进展.  , 2022, 71(2): 024206. doi: 10.7498/aps.71.20212442
    [3] 刘志超, 许乔, 雷向阳, 耿锋, 王翔峰, 张帅, 王健, 张清华, 刘民才. 大口径氘化磷酸二氢钾晶体离线亚纳秒激光预处理技术.  , 2021, 70(7): 074208. doi: 10.7498/aps.70.20201524
    [4] 赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂. 基于自吸收量化的激光诱导等离子体表征方法.  , 2018, 67(16): 165201. doi: 10.7498/aps.67.20180374
    [5] 张丽娟, 张传超, 陈静, 白阳, 蒋一岚, 蒋晓龙, 王海军, 栾晓雨, 袁晓东, 廖威. 激光诱导熔石英表面损伤修复中的气泡形成和控制研究.  , 2018, 67(1): 016103. doi: 10.7498/aps.67.20171839
    [6] 章春来, 刘春明, 向霞, 戴威, 王治国, 李莉, 袁晓东, 贺少勃, 祖小涛. 裂纹或气泡对熔石英损伤修复坑场调制的近场模拟.  , 2012, 61(12): 124214. doi: 10.7498/aps.61.124214
    [7] 占江徽, 姚欣, 高福华, 阳泽健, 张怡霄, 郭永康. 惯性约束聚变驱动器连续相位板前置时频率转换晶体内部光场研究.  , 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [8] 杨宏道, 李晓红, 李国强, 袁春华, 唐多昌, 徐琴, 邱荣, 王俊波. 1064 nm纳秒脉冲激光诱导硅表面微结构研究.  , 2011, 60(2): 027901. doi: 10.7498/aps.60.027901
    [9] 王凤蕊, 黄进, 刘红婕, 周信达, 蒋晓东, 吴卫东, 郑万国. 激光诱导HF酸刻蚀后熔石英后表面划痕的损伤行为研究.  , 2010, 59(7): 5122-5127. doi: 10.7498/aps.59.5122
    [10] 赵兴海, 胡建平, 高杨, 潘峰, 马平. 真空条件下激光诱导光纤损伤特性研究.  , 2010, 59(6): 3917-3923. doi: 10.7498/aps.59.3917
    [11] 夏志林, 郭培涛, 薛亦渝, 黄才华, 李展望. 短脉冲激光诱导薄膜损伤的等离子体爆炸过程分析.  , 2010, 59(5): 3523-3530. doi: 10.7498/aps.59.3523
    [12] 姚 欣, 高福华, 李剑峰, 张怡霄, 温圣林, 郭永康. 光束取样光栅强激光近场调制及诱导损伤研究.  , 2008, 57(8): 4891-4897. doi: 10.7498/aps.57.4891
    [13] 赵兴海, 高 杨, 徐美健, 段文涛, 於海武. 纳秒激光诱导石英光纤端面损伤特性研究.  , 2008, 57(8): 5027-5034. doi: 10.7498/aps.57.5027
    [14] 姚 欣, 高福华, 温圣林, 张怡霄, 李剑峰, 郭永康. 谐波分离和光束取样集成光学元件强激光近场调制及损伤特性研究.  , 2007, 56(12): 6945-6953. doi: 10.7498/aps.56.6945
    [15] 梁丽萍, 张 磊, 盛永刚, 徐 耀, 吴 东, 孙予罕, 蒋晓东, 魏晓峰. 溶胶-凝胶ZrO2-TiO2高折射率光学膜层的抗激光损伤性能研究.  , 2007, 56(6): 3596-3601. doi: 10.7498/aps.56.3596
    [16] 夏婷婷, 钟建伟, 毛邦宁, 陈 钢, 姚志欣, 潘佰良. 高重复率脉冲放电金属蒸气激光中电泳对金属蒸气分布的影响.  , 2006, 55(1): 202-205. doi: 10.7498/aps.55.202
    [17] 徐世珍, 贾天卿, 孙海轶, 李晓溪, 程兆谷, 冯东海, 李成斌, 徐至展. 飞秒激光在石英玻璃中诱导微爆炸的理论研究.  , 2005, 54(9): 4146-4150. doi: 10.7498/aps.54.4146
    [18] 方本民, 姚志欣, 潘佰良, 陈 星, 陈 钢. 碱土金属蒸气中两种不同机理的高重复率脉冲激光交替振荡现象.  , 2000, 49(8): 1652-1655. doi: 10.7498/aps.49.1652
    [19] 彭景翠. 准一维含铂混合价化合物中的激光诱导光吸收.  , 1992, 41(6): 1019-1026. doi: 10.7498/aps.41.1019
    [20] 彭景翠. 聚丁二炔(polydiacetylene)单晶中的激光诱导光吸收.  , 1991, 40(12): 1980-1985. doi: 10.7498/aps.40.1980
计量
  • 文章访问数:  8798
  • PDF下载量:  718
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-16
  • 修回日期:  2010-04-18
  • 刊出日期:  2011-01-05

/

返回文章
返回
Baidu
map