-
The two-dimensional (2D) nanomaterial saturable absorber represented by graphene is widely used in ultrafast fiber lasers due to its unique nonlinear optical properties. In this paper, we summarize the research and development of 2D nanomaterials as saturable absorbers in mid-infrared ultrafast mode-locked fiber lasers in recent years, and introduce the atomic structure and nonlinear optical characteristics of 2D nanomaterials, and saturable absorber device integration methods. The laser performance parameters such as center wavelength, repetition frequency and average output power of the laser are discussed, and the femtosecond fiber laser based on black phosphorus saturable absorber in the middle infrared band is highlighted. Finally, the developments and challenges of 2D materials in mid-infrared pulsed fiber laser are also addressed.
-
Keywords:
- two-dimensional materials /
- mid-infrared /
- fiber laser
[1] Hu J J, Meyer J, Richardson K, Shah L 2013 Opt. Mater. Express 3 1571
Google Scholar
[2] Gaimard Q, Triki M, Nguyen-Ba T, Cerutti L, Boissier G, Teissier R, Baranov A, Rouillard Y, Vicet A 2015 Opt. Express 23 19118
Google Scholar
[3] Geiser P 2015 Sensors 15 22724
Google Scholar
[4] Schwaighofer A, Alcaraz M R, Araman C, Goicoechea H, Lendl B 2016 Sci. Rep. 6 33556
Google Scholar
[5] Nishii J, Morimoto S, Inagawa I, Iizuka R, Yamashita T, Yamagishi T 1992 J Non. Cryst. Solids. 140 199
Google Scholar
[6] Spiers G D, Menzies R T, Jacob J, Christensen L E, Phillips M W, Choi Y, Browell E V 2011 Appl. Opt. 50 2098
Google Scholar
[7] Fuller T A 1986 Laser. Surg. Med. 6 399
Google Scholar
[8] Petersen C R, Moller U, Kubat I, Zhou B B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdel-Moneim N, Tang Z Q, Furniss D, Seddon A, Bang O 2014 Nat. Photonics 8 830
Google Scholar
[9] Ouyang D, Zhao J, Zheng Z, Liu M, Li C, Ruan S, Yan P, Pei J 2016 IEEE Photon. J. 8 1600910
Google Scholar
[10] Zhang M, Kelleher E J R, Popov S V, Taylor J R 2014 Opt. Fiber Technol. 20 666
Google Scholar
[11] Wei C, Shi H X, Luo H Y, Zhang H, Lyu Y J, Liu Y 2017 Opt. Express 25 19170
Google Scholar
[12] Tang P H, Qin Z P, Liu J, Zhao C J, Xie G Q, Wen S C, Qian L J 2015 Opt. Lett. 40 4855
Google Scholar
[13] Li P, Ruehl A, Grosse-Wortmann U, Hartl I 2014 Opt. Lett. 39 6859
Google Scholar
[14] Li L, Huang H T, Su L, Shen D Y, Tang D Y, Klimczak M, Zhao L M 2019 Appl. Opt. 58 2745
Google Scholar
[15] Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D Y 2009 Adv. Funct. Mater. 19 3077
Google Scholar
[16] Woodward R I, Kelleher E J R 2015 Appl. Sci-Basel 5 1440
Google Scholar
[17] Du J, Zhang M, Guo Z, Chen J, Zhu X, Hu G, Peng P, Zheng Z, Zhang H 2017 Sci. Rep. 7 42357
Google Scholar
[18] Song Y F, Chen S, Zhang Q, Li L, Zhao L M, Zhang H, Tang D Y 2016 Opt. Express 24 25933
Google Scholar
[19] Howe R C T, Hu G, Yang Z, Hasan T 2015 Proc. SPIE 9553 95530R
Google Scholar
[20] Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photonics 4 611
Google Scholar
[21] Cusati T, Fiori G, Gahoi A, Passi V, Lemme M C, Fortunelli A, Iannaccone G 2017 Sci. Rep. 7 5109
Google Scholar
[22] Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K M 2013 Opt. Express 21 12797
Google Scholar
[23] Koski K J, Wessells C D, Reed B W, Cha J J, Kong D S, Cui Y 2012 J. Am. Chem. Soc. 134 13773
Google Scholar
[24] Boguslawski J, Sobon G, Zybala R, Sotor J 2015 Opt. Lett. 40 2786
Google Scholar
[25] Dou Z Y, Song Y R, Tian J R, Liu J H, Yu Z H, Fang X H 2014 Opt. Express 22 24055
Google Scholar
[26] Chi C, Lee J, Koo J, Lee J H 2014 Laser Phys 24 105106
Google Scholar
[27] Jung M, Lee J, Koo J, Park J, Song Y W, Lee K, Lee S, Lee J H 2014 Opt. Express 22 7865
Google Scholar
[28] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699
Google Scholar
[29] Xu M S, Liang T, Shi M M, Chen H Z 2013 Chem. Rev. 113 3766
Google Scholar
[30] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
Google Scholar
[31] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Letters 10 1271
Google Scholar
[32] Mao D, Zhang S L, Wang Y D, Gan X T, Zhang W D, Mei T, Wang Y G, Wang Y S, Zeng H B, Zhao J L 2015 Opt. Express 23 27509
Google Scholar
[33] Zhang M, Hu G, Hu G, Howe R C T, Chen L, Zheng Z, Hasan T 2015 Sci. Rep. 5 17482
Google Scholar
[34] Ye Z L, Cao T, O'Brien K, Zhu H Y, Yin X B, Wang Y, Zhang X 2014 Nature 513 214
Google Scholar
[35] Ge Y Q, Zhu Z F, Xu Y H, Chen Y X, Chen S, Liang Z M, Song Y F, Zou Y S, Zeng H B, Xu S X, Zhang H, Fan D Y 2018 Adv. Opt. Mater. 6 1701166
Google Scholar
[36] Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372
Google Scholar
[37] Lu S B, Miao L L, Guo Z N, Qi X, Zhao C J, Zhang H, Wen S C, Tang D Y, Fan D Y 2015 Opt. Express 23 11183
Google Scholar
[38] Low T, Roldan R, Wang H, Xia F N, Avouris P, Moreno L M, Guinea F 2014 Phys. Rev. Lett. 113 106802
Google Scholar
[39] Zhang M, Wu Q, Zhang F, Chen L, Jin X, Hu Y, Zheng Z, Zhang H 2019 Adv. Opt. Mater. 7 1800224
Google Scholar
[40] Sotor J, Sobon G, Kowalczyk M, Macherzynski W, Paletko P, Abramski K M 2015 Opt. Lett. 40 3885
Google Scholar
[41] Zhang Q, Jiang X, Zhang M, Jin X, Zhang H, Zheng Z 2020 Nanoscale 12 4586
Google Scholar
[42] Cho H S, Deng H, Miyasaka K, Dong Z, Cho M, Neimark A V, Kang J K, Yaghi O M, Terasaki O 2015 Nature 527 503
Google Scholar
[43] Maspoch D, Ruiz-Molina D, Wurst K, Domingo N, Cavallini M, Biscarini F, Tejada J, Rovira C, Veciana J 2003 Nat. Mater. 2 190
Google Scholar
[44] Evans O R, Lin W B 2002 Acc. Chem. Res. 35 511
Google Scholar
[45] Qu F, Jiang H, Yang M 2016 Nanoscale 8 16349
Google Scholar
[46] Guo B 2018 Chin. Opt. Lett. 16 020004
Google Scholar
[47] Du Z, Yang S, Li S, Lou J, Zhang S, Wang S, Li B, Gong Y, Song L, Zou X, Ajayan P M 2020 Nature 577 492
Google Scholar
[48] Sotor J, Sobon G, Macherzynski W, Paletko P, Grodecki K, Abramski K M 2014 Opt. Mater. Express 4 1
Google Scholar
[49] Chang Y M, Kim H, Lee J H, Song Y W 2010 Appl. Phys. Lett. 97 211102
Google Scholar
[50] Wang K P, Wang J, Fan J T, Lotya M, O'Neill A, Fox D, Feng Y Y, Zhang X Y, Jiang B X, Zhao Q Z, Zhang H Z, Coleman J N, Zhang L, Blau W J 2013 Acs Nano 7 9260
Google Scholar
[51] Zhang X D, Xie Y 2013 Chem. Soc. Rev. 42 8187
Google Scholar
[52] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
Google Scholar
[53] Lotya M, Hernandez Y, King P J, Smith R J, Nicolosi V, Karlsson L S, Blighe F M, De S, Wang Z M, McGovern I T, Duesberg G S, Coleman J N 2009 J. Am. Chem. Soc. 131 3611
Google Scholar
[54] Smith R J, King P J, Lotya M, Wirtz C, Khan U, De S, O'Neill A, Duesberg G S, Grunlan J C, Moriarty G, Chen J, Wang J Z, Minett A I, Nicolosi V, Coleman J N 2011 Adv. Mater. 23 3944
Google Scholar
[55] Jin X, Hu G, Zhang M, Hu Y, Albrow-Owen T, Howe R C T, Wu Q, Zheng Z, Hasan T 2018 Opt. Express 26 12506
Google Scholar
[56] Zhang M, Kelleher E J R, Torrisi F, Sun Z, Hasan T, Popa D, Wang F, Ferrari A C, Popov S V, Taylor J R 2012 Opt. Express 20 25077
Google Scholar
[57] Sotor J, Pawliszewska M, Sobon G, Kaczmarek P, Przewolka A, Pasternak I, Cajzl J, Peterka P, Honzatko P, Kasik I, Strupinski W, Abramski K 2016 Opt. Lett. 41 2592
Google Scholar
[58] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nature Phys. 5 438
Google Scholar
[59] Moore J E 2010 Nature 464 194
Google Scholar
[60] Wang J, Chen H, Jiang Z, Yin J, Wang J, Zhang M, He T, Li J, Yan P, Ruan S 2018 Opt. Lett. 43 1998
Google Scholar
[61] Wang J, Lu W, Li J, Chen H, Jiang Z, Wang J, Zhang W, Zhang M, Li I L, Xu Z, Liu W, Yan P 2018 IEEE J. Selec. Top. Quant. 24 1100706
Google Scholar
[62] Pawliszewska M, Ge Y, Li Z, Zhang H, Sotor J 2017 Opt. Express 25 16916
Google Scholar
[63] Wang Z, Zhan L, Wu J, Zou Z, Zhang L, Qian K, He L, Fang X 2015 Opt. Lett. 40 3699
Google Scholar
[64] Hasan T, Sun Z, Wang F, Bonaccorso F, Tan P H, Rozhin A G, Ferrari A C 2009 Adv. Mater. 21 3874
Google Scholar
[65] Cui Y D, Lu F F, Liu X M 2017 Sci. Rep. 7 40080
Google Scholar
[66] Hu G, Albrow-Owen T, Jin X, Ali A, Hu Y, Howe R C T, Shehzad K, Yang Z, Zhu X, Woodward R I, Jussila H, Peng P, Sun Z, Kelleher E J R, Zhang M, Xu Y, Hasan T 2017 Nat. Commun. 8 278
Google Scholar
[67] Sobon G, Sotor J, Przewolka A, Pasternak I, Strupinski W, Abramski K 2016 Opt. Express 24 20359
Google Scholar
[68] Sotor J, Boguslawski J, Martynkien T, Mergo P, Krajewska A, Przewloka A, Strupinski W, Sobon G 2017 Opt. Lett. 42 1592
Google Scholar
[69] Zhu G W, Zhu X S, Wang F Q, Xu S, Li Y, Guo X L, Balakrishnan K, Norwood R A, Peyghambarian N 2016 Photonics Technol. Lett. 28 7
Google Scholar
[70] Xu H Y, Wan X J, Ruan Q J, Yang R H, Du T J, Chen N, Cai Z P, Luo Z Q 2018 IEEE J. Selec. Top. Quant. 24 1100209
Google Scholar
[71] Fang Y, Ge Y, Wang C, Zhang H 2020 Laser.Photonics.Rev 14 1900098
Google Scholar
[72] Qin Z P, Xie G Q, Zhao C J, Wen S C, Yuan P, Qian L J 2016 Opt. Lett. 41 56
Google Scholar
[73] Qin Z P, Hai T, Xie G Q, Ma J G, Yuan P, Qian L J, Li L, Zhao L M, Shen D Y 2018 Opt. Express 26 8224
Google Scholar
[74] Wang J, Jiang Z, Chen H, Li J, Yin J, Wang J, He T, Yan P, Ruan S 2017 Opt. Lett. 42 5010
Google Scholar
[75] Zhao J Q, Zhou J, Li L, Klimczak M, Komarov A, Su L, Tang D Y, Shen D Y, Zhao L M 2019 Opt. Express 27 29770
Google Scholar
[76] Tamura K, Ippen E P, Haus H A, Nelson L E 1993 Opt. Lett. 18 1080
Google Scholar
[77] Zhao L M, Tang D Y, Wu X, Lei D J, Wen S C 2007 Opt. Lett. 32 3191
Google Scholar
[78] Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K M 2015 Opt. Express 23 31446
Google Scholar
[79] Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K M 2015 Opt. Express 23 9339
Google Scholar
[80] Pawliszewska M, Martynkien T, Przewloka A, Sotor J 2018 Opt. Lett. 43 38
Google Scholar
[81] Yin K, Zhang B, Li L, Jiang T, Zhou X, Hou J 2015 Photon. Res. 3 72
Google Scholar
[82] Lee J, Koo J, Lee J, Jhon Y M, Lee J H 2017 Opt. Mater. Express 7 2968
Google Scholar
[83] Zhang Q, Jin X, Hu G, Zhang M, Jiang X, Zheng Z, Hasan T 2020 Conference on Lasers and Electro-Optics San Jose, USA, May 11–15, 2020 pSW4R.7
-
图 7 二维纳米材料光纤集成: 传输集成法((a)三明治结构材料转移至光纤端面[66]); 倏逝波集成法((b) D型光纤[65]、(c)锥形光纤[41])
Fig. 7. Fiber integration with two-dimensional materials: Transmission integration method ((a) sandwiching structure transferring SA on fiber end[66]); evanescent-wave integration method ((b) D-typed fiber[65], (c) tapered fiber[41]).
表 1 二维纳米材料带隙与载流子弛豫时间总结
Table 1. Bandgaps and carrier lifetime of 2D materials.
2D material Graphene TIs TMDs BP MOFs Bandgap/eV 0 0.2—0.3 1—2.0 0.3—2 0.85 Carrier
lifetimeFast: < 200 fs
Slow: ~1 psFast: 0.3—2 ps
Slow: 3—23 psFast: ~1—3 ps
Slow: 70—400 psFast: 360 fs
Slow: 1.3 ps— 表 2 中红外波段各种二维纳米材料可饱和吸收体锁模光纤激光器性能总结
Table 2. Summary of mid-infrared mode-locked fiber lasers using 2D material based SAs.
2D material Fabrication method Laser type λ/nm Pulse width/ps Repetition rate/MHz Power/mW Ref. Graphene LPE TDF 1940 3.6 6.46 2 [56] Graphene CVD TDF 1884 1.2 20.5 1.35 [22] Graphene NPE TDF 1950 0.255 23.5 1210 [67] Graphene CVD TDF 1945 0.2 58.87 13 [68] Graphene CVD Er:ZBLAN 2800 42 25.4 18 [69] BP ME TDF 1910 0.739 36.8 1.5 [40] BP ME Er:ZBLAN 2800 42 24 613 [72] BP Sonication Er:ZBLAN 3.5 34600 28.91 40 [73] TMDs-WTe2 MSD TDF 1915 1.25 18.72 39.9 [74] TIs-Bi2Te3 ME Tm/Ho 1935 0.795 27.9 20 [27] MOFs Solvothermal TDF 1882 1.3 13.9 2.87 [41] 表 3 基于二维纳米材料可饱和吸收体掺铥/钬超快锁模光纤激光器性能对比
Table 3. Output Performance Comparison of reported thulium-doped and holmium-doped fiber lasers mode-locked with nanomaterial SAs
2D material Fabrication method Laser type λ/nm Pulse width/fs Repetition rate/MHz Spectral width /nm Ref. Graphene CVD Tm 1940 260 6.46 9.4 [78] Graphene CVD Tm 1876 603 41 6.6 [79] Graphene CVD Tm 1945 205 58.87 27.5 [68] Graphene — Ho 2060 190 20.98 53.6 [80] TIs-Bi2Te3 Optically Tm/Ho 1909 1260 21.5 3.6 [81] TIs-Bi2Te3 ME Tm/Ho 1935 795 27.9 5.6 [27] TMDs-WSe2 CVD Tm 1864 1160 11.36 3.19 [61] TMDs-MoTe2 CVD Tm 1930 952 14.35 4.45 [60] TMDs-MoSe2 LPE Tm/Ho 1912 920 18.21 4.62 [82] BP ME Tm 1910 739 36.8 5.8 [40] BP LPE Tm 1886 139 20.95 55.6 [83] -
[1] Hu J J, Meyer J, Richardson K, Shah L 2013 Opt. Mater. Express 3 1571
Google Scholar
[2] Gaimard Q, Triki M, Nguyen-Ba T, Cerutti L, Boissier G, Teissier R, Baranov A, Rouillard Y, Vicet A 2015 Opt. Express 23 19118
Google Scholar
[3] Geiser P 2015 Sensors 15 22724
Google Scholar
[4] Schwaighofer A, Alcaraz M R, Araman C, Goicoechea H, Lendl B 2016 Sci. Rep. 6 33556
Google Scholar
[5] Nishii J, Morimoto S, Inagawa I, Iizuka R, Yamashita T, Yamagishi T 1992 J Non. Cryst. Solids. 140 199
Google Scholar
[6] Spiers G D, Menzies R T, Jacob J, Christensen L E, Phillips M W, Choi Y, Browell E V 2011 Appl. Opt. 50 2098
Google Scholar
[7] Fuller T A 1986 Laser. Surg. Med. 6 399
Google Scholar
[8] Petersen C R, Moller U, Kubat I, Zhou B B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdel-Moneim N, Tang Z Q, Furniss D, Seddon A, Bang O 2014 Nat. Photonics 8 830
Google Scholar
[9] Ouyang D, Zhao J, Zheng Z, Liu M, Li C, Ruan S, Yan P, Pei J 2016 IEEE Photon. J. 8 1600910
Google Scholar
[10] Zhang M, Kelleher E J R, Popov S V, Taylor J R 2014 Opt. Fiber Technol. 20 666
Google Scholar
[11] Wei C, Shi H X, Luo H Y, Zhang H, Lyu Y J, Liu Y 2017 Opt. Express 25 19170
Google Scholar
[12] Tang P H, Qin Z P, Liu J, Zhao C J, Xie G Q, Wen S C, Qian L J 2015 Opt. Lett. 40 4855
Google Scholar
[13] Li P, Ruehl A, Grosse-Wortmann U, Hartl I 2014 Opt. Lett. 39 6859
Google Scholar
[14] Li L, Huang H T, Su L, Shen D Y, Tang D Y, Klimczak M, Zhao L M 2019 Appl. Opt. 58 2745
Google Scholar
[15] Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D Y 2009 Adv. Funct. Mater. 19 3077
Google Scholar
[16] Woodward R I, Kelleher E J R 2015 Appl. Sci-Basel 5 1440
Google Scholar
[17] Du J, Zhang M, Guo Z, Chen J, Zhu X, Hu G, Peng P, Zheng Z, Zhang H 2017 Sci. Rep. 7 42357
Google Scholar
[18] Song Y F, Chen S, Zhang Q, Li L, Zhao L M, Zhang H, Tang D Y 2016 Opt. Express 24 25933
Google Scholar
[19] Howe R C T, Hu G, Yang Z, Hasan T 2015 Proc. SPIE 9553 95530R
Google Scholar
[20] Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photonics 4 611
Google Scholar
[21] Cusati T, Fiori G, Gahoi A, Passi V, Lemme M C, Fortunelli A, Iannaccone G 2017 Sci. Rep. 7 5109
Google Scholar
[22] Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K M 2013 Opt. Express 21 12797
Google Scholar
[23] Koski K J, Wessells C D, Reed B W, Cha J J, Kong D S, Cui Y 2012 J. Am. Chem. Soc. 134 13773
Google Scholar
[24] Boguslawski J, Sobon G, Zybala R, Sotor J 2015 Opt. Lett. 40 2786
Google Scholar
[25] Dou Z Y, Song Y R, Tian J R, Liu J H, Yu Z H, Fang X H 2014 Opt. Express 22 24055
Google Scholar
[26] Chi C, Lee J, Koo J, Lee J H 2014 Laser Phys 24 105106
Google Scholar
[27] Jung M, Lee J, Koo J, Park J, Song Y W, Lee K, Lee S, Lee J H 2014 Opt. Express 22 7865
Google Scholar
[28] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699
Google Scholar
[29] Xu M S, Liang T, Shi M M, Chen H Z 2013 Chem. Rev. 113 3766
Google Scholar
[30] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
Google Scholar
[31] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Letters 10 1271
Google Scholar
[32] Mao D, Zhang S L, Wang Y D, Gan X T, Zhang W D, Mei T, Wang Y G, Wang Y S, Zeng H B, Zhao J L 2015 Opt. Express 23 27509
Google Scholar
[33] Zhang M, Hu G, Hu G, Howe R C T, Chen L, Zheng Z, Hasan T 2015 Sci. Rep. 5 17482
Google Scholar
[34] Ye Z L, Cao T, O'Brien K, Zhu H Y, Yin X B, Wang Y, Zhang X 2014 Nature 513 214
Google Scholar
[35] Ge Y Q, Zhu Z F, Xu Y H, Chen Y X, Chen S, Liang Z M, Song Y F, Zou Y S, Zeng H B, Xu S X, Zhang H, Fan D Y 2018 Adv. Opt. Mater. 6 1701166
Google Scholar
[36] Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372
Google Scholar
[37] Lu S B, Miao L L, Guo Z N, Qi X, Zhao C J, Zhang H, Wen S C, Tang D Y, Fan D Y 2015 Opt. Express 23 11183
Google Scholar
[38] Low T, Roldan R, Wang H, Xia F N, Avouris P, Moreno L M, Guinea F 2014 Phys. Rev. Lett. 113 106802
Google Scholar
[39] Zhang M, Wu Q, Zhang F, Chen L, Jin X, Hu Y, Zheng Z, Zhang H 2019 Adv. Opt. Mater. 7 1800224
Google Scholar
[40] Sotor J, Sobon G, Kowalczyk M, Macherzynski W, Paletko P, Abramski K M 2015 Opt. Lett. 40 3885
Google Scholar
[41] Zhang Q, Jiang X, Zhang M, Jin X, Zhang H, Zheng Z 2020 Nanoscale 12 4586
Google Scholar
[42] Cho H S, Deng H, Miyasaka K, Dong Z, Cho M, Neimark A V, Kang J K, Yaghi O M, Terasaki O 2015 Nature 527 503
Google Scholar
[43] Maspoch D, Ruiz-Molina D, Wurst K, Domingo N, Cavallini M, Biscarini F, Tejada J, Rovira C, Veciana J 2003 Nat. Mater. 2 190
Google Scholar
[44] Evans O R, Lin W B 2002 Acc. Chem. Res. 35 511
Google Scholar
[45] Qu F, Jiang H, Yang M 2016 Nanoscale 8 16349
Google Scholar
[46] Guo B 2018 Chin. Opt. Lett. 16 020004
Google Scholar
[47] Du Z, Yang S, Li S, Lou J, Zhang S, Wang S, Li B, Gong Y, Song L, Zou X, Ajayan P M 2020 Nature 577 492
Google Scholar
[48] Sotor J, Sobon G, Macherzynski W, Paletko P, Grodecki K, Abramski K M 2014 Opt. Mater. Express 4 1
Google Scholar
[49] Chang Y M, Kim H, Lee J H, Song Y W 2010 Appl. Phys. Lett. 97 211102
Google Scholar
[50] Wang K P, Wang J, Fan J T, Lotya M, O'Neill A, Fox D, Feng Y Y, Zhang X Y, Jiang B X, Zhao Q Z, Zhang H Z, Coleman J N, Zhang L, Blau W J 2013 Acs Nano 7 9260
Google Scholar
[51] Zhang X D, Xie Y 2013 Chem. Soc. Rev. 42 8187
Google Scholar
[52] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
Google Scholar
[53] Lotya M, Hernandez Y, King P J, Smith R J, Nicolosi V, Karlsson L S, Blighe F M, De S, Wang Z M, McGovern I T, Duesberg G S, Coleman J N 2009 J. Am. Chem. Soc. 131 3611
Google Scholar
[54] Smith R J, King P J, Lotya M, Wirtz C, Khan U, De S, O'Neill A, Duesberg G S, Grunlan J C, Moriarty G, Chen J, Wang J Z, Minett A I, Nicolosi V, Coleman J N 2011 Adv. Mater. 23 3944
Google Scholar
[55] Jin X, Hu G, Zhang M, Hu Y, Albrow-Owen T, Howe R C T, Wu Q, Zheng Z, Hasan T 2018 Opt. Express 26 12506
Google Scholar
[56] Zhang M, Kelleher E J R, Torrisi F, Sun Z, Hasan T, Popa D, Wang F, Ferrari A C, Popov S V, Taylor J R 2012 Opt. Express 20 25077
Google Scholar
[57] Sotor J, Pawliszewska M, Sobon G, Kaczmarek P, Przewolka A, Pasternak I, Cajzl J, Peterka P, Honzatko P, Kasik I, Strupinski W, Abramski K 2016 Opt. Lett. 41 2592
Google Scholar
[58] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nature Phys. 5 438
Google Scholar
[59] Moore J E 2010 Nature 464 194
Google Scholar
[60] Wang J, Chen H, Jiang Z, Yin J, Wang J, Zhang M, He T, Li J, Yan P, Ruan S 2018 Opt. Lett. 43 1998
Google Scholar
[61] Wang J, Lu W, Li J, Chen H, Jiang Z, Wang J, Zhang W, Zhang M, Li I L, Xu Z, Liu W, Yan P 2018 IEEE J. Selec. Top. Quant. 24 1100706
Google Scholar
[62] Pawliszewska M, Ge Y, Li Z, Zhang H, Sotor J 2017 Opt. Express 25 16916
Google Scholar
[63] Wang Z, Zhan L, Wu J, Zou Z, Zhang L, Qian K, He L, Fang X 2015 Opt. Lett. 40 3699
Google Scholar
[64] Hasan T, Sun Z, Wang F, Bonaccorso F, Tan P H, Rozhin A G, Ferrari A C 2009 Adv. Mater. 21 3874
Google Scholar
[65] Cui Y D, Lu F F, Liu X M 2017 Sci. Rep. 7 40080
Google Scholar
[66] Hu G, Albrow-Owen T, Jin X, Ali A, Hu Y, Howe R C T, Shehzad K, Yang Z, Zhu X, Woodward R I, Jussila H, Peng P, Sun Z, Kelleher E J R, Zhang M, Xu Y, Hasan T 2017 Nat. Commun. 8 278
Google Scholar
[67] Sobon G, Sotor J, Przewolka A, Pasternak I, Strupinski W, Abramski K 2016 Opt. Express 24 20359
Google Scholar
[68] Sotor J, Boguslawski J, Martynkien T, Mergo P, Krajewska A, Przewloka A, Strupinski W, Sobon G 2017 Opt. Lett. 42 1592
Google Scholar
[69] Zhu G W, Zhu X S, Wang F Q, Xu S, Li Y, Guo X L, Balakrishnan K, Norwood R A, Peyghambarian N 2016 Photonics Technol. Lett. 28 7
Google Scholar
[70] Xu H Y, Wan X J, Ruan Q J, Yang R H, Du T J, Chen N, Cai Z P, Luo Z Q 2018 IEEE J. Selec. Top. Quant. 24 1100209
Google Scholar
[71] Fang Y, Ge Y, Wang C, Zhang H 2020 Laser.Photonics.Rev 14 1900098
Google Scholar
[72] Qin Z P, Xie G Q, Zhao C J, Wen S C, Yuan P, Qian L J 2016 Opt. Lett. 41 56
Google Scholar
[73] Qin Z P, Hai T, Xie G Q, Ma J G, Yuan P, Qian L J, Li L, Zhao L M, Shen D Y 2018 Opt. Express 26 8224
Google Scholar
[74] Wang J, Jiang Z, Chen H, Li J, Yin J, Wang J, He T, Yan P, Ruan S 2017 Opt. Lett. 42 5010
Google Scholar
[75] Zhao J Q, Zhou J, Li L, Klimczak M, Komarov A, Su L, Tang D Y, Shen D Y, Zhao L M 2019 Opt. Express 27 29770
Google Scholar
[76] Tamura K, Ippen E P, Haus H A, Nelson L E 1993 Opt. Lett. 18 1080
Google Scholar
[77] Zhao L M, Tang D Y, Wu X, Lei D J, Wen S C 2007 Opt. Lett. 32 3191
Google Scholar
[78] Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K M 2015 Opt. Express 23 31446
Google Scholar
[79] Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K M 2015 Opt. Express 23 9339
Google Scholar
[80] Pawliszewska M, Martynkien T, Przewloka A, Sotor J 2018 Opt. Lett. 43 38
Google Scholar
[81] Yin K, Zhang B, Li L, Jiang T, Zhou X, Hou J 2015 Photon. Res. 3 72
Google Scholar
[82] Lee J, Koo J, Lee J, Jhon Y M, Lee J H 2017 Opt. Mater. Express 7 2968
Google Scholar
[83] Zhang Q, Jin X, Hu G, Zhang M, Jiang X, Zheng Z, Hasan T 2020 Conference on Lasers and Electro-Optics San Jose, USA, May 11–15, 2020 pSW4R.7
计量
- 文章访问数: 11710
- PDF下载量: 348
- 被引次数: 0