-
As a member of the metal phosphorus trichalcogenide family, MPS3 is widely used in nonlinear optics and devices, which can be regarded as a significant benefit for the excellent photonic and optoelectronic properties. In this work, the MnPS3 nanosheet is prepared by the chemical vapor transport method and the MnPS3 saturable absorber is demonstrated by modifying mechanical exfoliation. To the best of our knowledge, the dual-wavelength self-starting mode-locking erbium-doped fiber laser with MnPS3 saturable absorber is demonstrated for the first time. The dual wavelength mode-locked laser with a pulse repetition rate of 5.102 MHz at 1565.19 nm and 1565.63 nm is proposed. Its maximum output power at the dual-wavelength is 27.2 MW. The mode-locked laser can self-start and stably run for more than 280 h.
-
Keywords:
- MnPS3 nanosheets /
- saturable absorber /
- mode-locking
[1] Penilla E H, Devia Cruz L F, Wieg A T, Martinez Torres P, Cuando Espitia N, Sellappan P, Kodera Y, Aguilar G, Garay J E 2019 Science 365 803
Google Scholar
[2] Fermann M E, Hartl I 2013 Nat. Photonics 7 868
Google Scholar
[3] 王聪, 刘杰, 张晗 2019 68 188101
Google Scholar
Wang C, Liu J, Zhang H 2019 Acta Phys. Sin. 68 188101
Google Scholar
[4] Zhang H, Tang D, Knize R J, Zhao L, Bao Q, Loh K P 2010 Appl. Phys. Lett. 96 111112
Google Scholar
[5] Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M, Ferrari A C 2010 ACS nano 4 803
Google Scholar
[6] Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225
Google Scholar
[7] Wu H S, Song J, Wu J, Xu J, Xiao H, Leng J, Zhou P 2018 IEEE J. Sel. Top. Quant. 24 0901206
Google Scholar
[8] Hong S, Ledee F, Park J, Song S, Lee H, Lee Y S, Kim B, Yeom D I, Deleporte E, Oh K 2018 Laser Photonics Rev. 12 1800118
Google Scholar
[9] 黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光 2014 63 084202
Google Scholar
Huang S S, Wang Y G, Li H Q, Lin R Y, Yan P G 2014 Acta Phys. Sin. 63 084202
Google Scholar
[10] Liu X, Li X, Tang Y, Zhang S 2020 Opt. Lett. 45 161
Google Scholar
[11] Ahmad H, Salim M A M, Thambiratnam K, Norizan S F, Harun S W 2016 Laser Phys. Lett. 13 095103
Google Scholar
[12] Hisyam M B, Rusdi M F M, Latiff A A, Harun S W 2017 Ieee J. Sel. Top. Quant. 23 39
Google Scholar
[13] Wang T, Jin X, Yang J, Wu J, Yu Q, Pan Z, Shi X, Xu Y, Wu H, Wang J, He T, Zhang K, Zhou P 2019 ACS Appl. Mater. Inter. 11 36854
Google Scholar
[14] Wang T, Shi X, Wang J, Xu Y, Chen J, Dong Z, Jiang M, Ma P, Su R, Ma Y, Wu J, Zhang K, Zhou P 2019 Sci. China Inf. Sci. 62 220406
Google Scholar
[15] Liu J, Li X B, Wang D, Lau W M, Peng P, Liu L M 2014 J. Chem. Phys. 140 054707
Google Scholar
[16] Liu J, Zhao F, Wang H, Zhang W, Hu X, Li X, Wang Y 2019 Opt. Mater. 89 100
Google Scholar
[17] 史鑫尧 2019 硕士学位论文 (合肥: 中国科学技术大学)
Shi X Y 2019 M. S. Thesis (Hefei: University of Science and Technology of China) (in Chinese)
[18] Hou X, Zhang X, Ma Q, Tang X, Hao Q, Cheng Y, Qiu T 2020 Adv. Funct. Mater. 30 1910171
Google Scholar
[19] Gusmão R, Sofer Z, Pumera M 2019 Adv. Funct. Mater. 29 1805975
Google Scholar
[20] Yin Q, Wang J, Shi X Y, Wang T, Yang J, Zhao X X, Shen Z J, Wu J, Zhang K, Zhou P, Jiang Z F 2019 Chin. Phys. B 28 084208
Google Scholar
[21] Liu J, Li X, Xu Y, Ge Y, Wang Y, Zhang F, Wang Y, Fang Y, Yang F, Wang C, Song Y, Xu S, Fan D, Zhang H 2019 Nanoscale 11 14383
Google Scholar
[22] Du K Z, Wang X Z, Liu Y, Hu P, Utama M I B, Gan C K, Xiong Q, Kloc C 2016 ACS Nano 10 1738
Google Scholar
[23] Cheng Z, Shifa T A, Wang F, Gao Y, He P, Zhang K, Jiang C, Liu Q, He J 2018 Adv. Mater. 30 1707433
Google Scholar
[24] Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G, Cheong H 2016 Nano Lett. 16 7433
Google Scholar
[25] Kumar R, Jenjeti R N, Austeria M P, Sampath S 2019 J. Mater. Chem. C 7 324
Google Scholar
[26] Kargar F, Coleman E A, Ghosh S, Lee J, Gomez M J, Liu Y, Magana A S, Barani Z, Mohammadzadeh A, Debnath B, Wilson R B, Lake R K, Balandin A A 2020 ACS Nano 14 2424
Google Scholar
[27] Kinyanjui M K, Koester J, Boucher F, Wildes A, Kaiser U 2018 Phys. Rev. B 98 035417
Google Scholar
[28] 邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉 2019 68 114204
Google Scholar
Qiu X L, Wang S S, Zhang X J, Zhu R J, Zhang P, Guo Y H Y, Song Y R 2019 Acta Phys. Sin. 68 114204
Google Scholar
[29] Shi X, Wang T, Wang J, Xu Y, Yang Z, Yu Q, Wu J, Zhang K, Zhou P 2019 Opt. Mater. Express 9 2348
Google Scholar
[30] Yang J, Hu J, Luo H, Li J, Liu J, Li X, Liu Y 2020 Photon. Res. 8 70
Google Scholar
[31] Wu X, Zhou Z W, Yin J D, Zhang M, Zhou L L, Na Q X, Wang J T, Yu Y, Yang J B, Chi R H, Yan P G 2020 Nanotechnology 31 245204
Google Scholar
[32] Guo C, Wei J, Yan P, Luo R, Ruan S, Wang J, Guo B, Hua P, Lue Q 2020 Appl. Phys. Express 13 012013
Google Scholar
[33] Wang Y M, Zhang J F, Li C H, Ma X L, Ji J T, Jin F, Lei H C, Liu K, Zhang W L, Zhang Q M 2019 Chin. Phys. B 28 056301
Google Scholar
-
图 5 基于MnPS3-SA的脉冲光纤激光器的性能 (a)输出功率与抽运功率的关系; (b)输出光谱; (c)脉冲序列; (d)脉冲脉宽; (e) 0−10 MHz射频信号; (f)射频基频信号
Fig. 5. Performances of the pulse fiber laser based on MnPS3-SA: (a) The output power versus the pump power; (b) output optical spectrum; (c) the pulse trace; (d) the duration of single pulse; (e) the radio frequency spectrum from 0−10 MHz; (f) the radio frequency spectrum with ~64 dB (inset).
-
[1] Penilla E H, Devia Cruz L F, Wieg A T, Martinez Torres P, Cuando Espitia N, Sellappan P, Kodera Y, Aguilar G, Garay J E 2019 Science 365 803
Google Scholar
[2] Fermann M E, Hartl I 2013 Nat. Photonics 7 868
Google Scholar
[3] 王聪, 刘杰, 张晗 2019 68 188101
Google Scholar
Wang C, Liu J, Zhang H 2019 Acta Phys. Sin. 68 188101
Google Scholar
[4] Zhang H, Tang D, Knize R J, Zhao L, Bao Q, Loh K P 2010 Appl. Phys. Lett. 96 111112
Google Scholar
[5] Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M, Ferrari A C 2010 ACS nano 4 803
Google Scholar
[6] Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225
Google Scholar
[7] Wu H S, Song J, Wu J, Xu J, Xiao H, Leng J, Zhou P 2018 IEEE J. Sel. Top. Quant. 24 0901206
Google Scholar
[8] Hong S, Ledee F, Park J, Song S, Lee H, Lee Y S, Kim B, Yeom D I, Deleporte E, Oh K 2018 Laser Photonics Rev. 12 1800118
Google Scholar
[9] 黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光 2014 63 084202
Google Scholar
Huang S S, Wang Y G, Li H Q, Lin R Y, Yan P G 2014 Acta Phys. Sin. 63 084202
Google Scholar
[10] Liu X, Li X, Tang Y, Zhang S 2020 Opt. Lett. 45 161
Google Scholar
[11] Ahmad H, Salim M A M, Thambiratnam K, Norizan S F, Harun S W 2016 Laser Phys. Lett. 13 095103
Google Scholar
[12] Hisyam M B, Rusdi M F M, Latiff A A, Harun S W 2017 Ieee J. Sel. Top. Quant. 23 39
Google Scholar
[13] Wang T, Jin X, Yang J, Wu J, Yu Q, Pan Z, Shi X, Xu Y, Wu H, Wang J, He T, Zhang K, Zhou P 2019 ACS Appl. Mater. Inter. 11 36854
Google Scholar
[14] Wang T, Shi X, Wang J, Xu Y, Chen J, Dong Z, Jiang M, Ma P, Su R, Ma Y, Wu J, Zhang K, Zhou P 2019 Sci. China Inf. Sci. 62 220406
Google Scholar
[15] Liu J, Li X B, Wang D, Lau W M, Peng P, Liu L M 2014 J. Chem. Phys. 140 054707
Google Scholar
[16] Liu J, Zhao F, Wang H, Zhang W, Hu X, Li X, Wang Y 2019 Opt. Mater. 89 100
Google Scholar
[17] 史鑫尧 2019 硕士学位论文 (合肥: 中国科学技术大学)
Shi X Y 2019 M. S. Thesis (Hefei: University of Science and Technology of China) (in Chinese)
[18] Hou X, Zhang X, Ma Q, Tang X, Hao Q, Cheng Y, Qiu T 2020 Adv. Funct. Mater. 30 1910171
Google Scholar
[19] Gusmão R, Sofer Z, Pumera M 2019 Adv. Funct. Mater. 29 1805975
Google Scholar
[20] Yin Q, Wang J, Shi X Y, Wang T, Yang J, Zhao X X, Shen Z J, Wu J, Zhang K, Zhou P, Jiang Z F 2019 Chin. Phys. B 28 084208
Google Scholar
[21] Liu J, Li X, Xu Y, Ge Y, Wang Y, Zhang F, Wang Y, Fang Y, Yang F, Wang C, Song Y, Xu S, Fan D, Zhang H 2019 Nanoscale 11 14383
Google Scholar
[22] Du K Z, Wang X Z, Liu Y, Hu P, Utama M I B, Gan C K, Xiong Q, Kloc C 2016 ACS Nano 10 1738
Google Scholar
[23] Cheng Z, Shifa T A, Wang F, Gao Y, He P, Zhang K, Jiang C, Liu Q, He J 2018 Adv. Mater. 30 1707433
Google Scholar
[24] Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G, Cheong H 2016 Nano Lett. 16 7433
Google Scholar
[25] Kumar R, Jenjeti R N, Austeria M P, Sampath S 2019 J. Mater. Chem. C 7 324
Google Scholar
[26] Kargar F, Coleman E A, Ghosh S, Lee J, Gomez M J, Liu Y, Magana A S, Barani Z, Mohammadzadeh A, Debnath B, Wilson R B, Lake R K, Balandin A A 2020 ACS Nano 14 2424
Google Scholar
[27] Kinyanjui M K, Koester J, Boucher F, Wildes A, Kaiser U 2018 Phys. Rev. B 98 035417
Google Scholar
[28] 邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉 2019 68 114204
Google Scholar
Qiu X L, Wang S S, Zhang X J, Zhu R J, Zhang P, Guo Y H Y, Song Y R 2019 Acta Phys. Sin. 68 114204
Google Scholar
[29] Shi X, Wang T, Wang J, Xu Y, Yang Z, Yu Q, Wu J, Zhang K, Zhou P 2019 Opt. Mater. Express 9 2348
Google Scholar
[30] Yang J, Hu J, Luo H, Li J, Liu J, Li X, Liu Y 2020 Photon. Res. 8 70
Google Scholar
[31] Wu X, Zhou Z W, Yin J D, Zhang M, Zhou L L, Na Q X, Wang J T, Yu Y, Yang J B, Chi R H, Yan P G 2020 Nanotechnology 31 245204
Google Scholar
[32] Guo C, Wei J, Yan P, Luo R, Ruan S, Wang J, Guo B, Hua P, Lue Q 2020 Appl. Phys. Express 13 012013
Google Scholar
[33] Wang Y M, Zhang J F, Li C H, Ma X L, Ji J T, Jin F, Lei H C, Liu K, Zhang W L, Zhang Q M 2019 Chin. Phys. B 28 056301
Google Scholar
计量
- 文章访问数: 11480
- PDF下载量: 327
- 被引次数: 0