搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究

肖嘉星 鲁军 朱礼军 赵建华

引用本文:
Citation:

垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究

肖嘉星, 鲁军, 朱礼军, 赵建华

Perpendicular magnetic properties of ultrathin L10-Mn1.67Ga films grown by molecular-beam epitaxy

Xiao Jia-Xing, Lu Jun, Zhu Li-Jun, Zhao Jian-Hua
PDF
导出引用
  • 具有超强垂直磁各向异性的L10-MnxGa薄膜由于其与半导体材料结构及工艺的高度兼容性而受到广泛关注, 其超高垂直磁各向异性能和极低的磁阻尼因子预示着L10-MnxGa薄膜在高热稳定性自旋电子学器件中将发挥重要作用. 而L10-MnxGa超薄膜对于降低L10-MnxGa基垂直磁各向异性隧道结中的磁矩翻转临界电流密度有着重要的意义. 本文采用分子束外延的方法, 在半导体GaAs衬底上成功制备出了一系列不同厚度的L10-Mn1.67Ga薄膜, 厚度范围为1-5 nm. 生长过程中反射式高能电子衍射原位检测以及X射线衍射结果均表明了其良好的单晶相. 磁性测量结果表明, 厚度在1 nm以上的L10-Mn1.67Ga薄膜均可以保持垂直磁各向异性特征, 厚度为5 nm的L10-Mn1.67Ga薄膜的垂直磁各向异性能可达到14.7 Merg/cm3. 这些结果为基于L10-Mn1.67Ga的垂直磁各向异性隧道结在自旋转移扭矩驱动的磁随机存储器等低功耗器件的集成及应用提供了重要的实验支持.
    Materials with large perpendicular magnetic anisotropies (PMAs) have drawn great attention because of their potential applications in advanced spintronic devices such as spin-transfer-torque magnetic random access memory (STT-MRAM) and ultrahigh-density perpendicular magnetic recording. To date, a large variety of PMA materials have been investigated, such as L10-ordered FePt, CoPt granular films, Co/(Pt,Pd,Ni) multilayers, ultra-thin CoFeB alloys and perpendicularly magnetized Co2FeAl films. Among the various kinds of materials with PMA, MnGa film with L10-structure has received the most attention because it has large PMA (Ku~107 erg/cm3), ultralow Gilbert damping constant (0.008) and theoretically predicted high spin polarization (more than 70%). All these properties make L10-ordered MnGa a good candidate for spintronic devices such as STT-MRAM and spin-torque oscillators. Meanwhile, from the viewpoint of STT related spintronic device, it is necessary to fabricate ultrathin perpendicularly magnetized L10-MnxGa films to lower the critical current for magnetization reversal. However, up to now, in the main researches the ultrathin L10-MnxGa films have been grown on MgO substrates, which makes it difficult to integrate the MnGa-based magnetic tunnel junctions into the semiconductor manufacturing process.In this work, ultrathin L10-Mn1.67Ga films with different thickness values (1-5 nm) are grown on traditional GaAa (001) substrates by a molecule-beam epitaxy system. During the deposition, in situ streaky surface reconstruction patterns are observed from reflection high-energy electron diffraction, which implies high crystalline quality of the L10-Mn1.67Ga film. Only MnGa superlattice (001) and MnGa fundamental (002) peaks can be observed in the X-ray diffraction patterns in a range from 20 to 70, which means that the L10-Mn1.67Ga film is a good single-crystalline with c-axis along the normal direction. The magnetic properties of these films are measured by superconductor quantum interference device magnetometer in a field range of 5 T. The perpendicular M-H curves are almost square, while the in-plane curves are nearly hysteresis-free, each with a remnant magnetization (Mr) of around zero, which clearly evidences the PMA of the ultrathin L10-Mn1.67Ga film. Moreover, as the thickness of L10-Mn1.67Ga film decreases from 5 nm to 1 nm, the ratio of Mr/Ms also decreases from 1 to 0.72, which indicates that the PMA loses as thickness decreases. We also estimate the perpendicular anisotropy constant (Ku) from the relation Ku=Keff+2 Ms2, and the maximum Ku of 14.7 Merg/cm3 is obtained for the 5 nm MnGa film. Although the Ku decreases with thickness decreasing, a Ku value of 8.58 Merg/cm3 is observed in a 2 nm thick film. The obtained results are important for developing the L10-MnGa-based spin-transfer torque Gbit class magnetic random access memory.
      通信作者: 鲁军, lujun@semi.ac.cn;jhzhao@red.semi.ac.cn ; 赵建华, lujun@semi.ac.cn;jhzhao@red.semi.ac.cn
    • 基金项目: 国家高技术研究发展计划(批准号: 2014AA032904)、国家重点基础研究计划(批准号: 2015CB921500)和囯家自然科学基金重点项目(批准号: 61334006, 11304307)资助的课题.
      Corresponding author: Lu Jun, lujun@semi.ac.cn;jhzhao@red.semi.ac.cn ; Zhao Jian-Hua, lujun@semi.ac.cn;jhzhao@red.semi.ac.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA032904), the National Basic Research Program of China (Grant No. 2015CB921500) and the Key Program of the National Natural Science Foundation of China (Grant Nos. 61334006, 11304307).
    [1]

    Nie S H, Zhu L J, Pan D, Lu J, Zhao J H 2013 Acta Phys. Sin. 62 178103 (in Chinese) [聂帅华, 朱礼军, 潘东, 鲁军, 赵建华 2013 62 178103]

    [2]

    Wang H, Yang F J, Xue S X, Cao X, Wang J A, Gu H S, Zhao Z Q 2005 Acta Phys. Sin. 54 1415 (in Chinese) [王浩, 杨傅军, 薛双喜, 曹歆, 王君安, 顾豪爽, 赵子强 2005 54 1415]

    [3]

    Mizukami S, Kubota T, Wu F, Zhang X, Miyazaki T, Naganuma H, Oogane M, Sakuma A, Ando Y 2012 Phys. Rev. B 85 014416

    [4]

    Zhu Y, Cai J W 2005 Acta Phys. Sin. 54 393 (in Chinese) [竺云, 蔡建旺 2005 54 393]

    [5]

    Balke B, Fecher G H, Winterlik J, Felser C 2007 Appl. Phys. Lett. 90 152504

    [6]

    Zhu L J, Nie S H, Meng K K, Pan D, Zhao J H, Zheng H Z 2012 Adv. Mater. 24 4547

    [7]

    Wu F, Mizukami S, Watanabe D, Naganuma H, Oogane M, Ando Y, Miyazaki T 2009 Appl. Phys. Lett. 94 122503

    [8]

    Mizukami S, Wu F, Sakuma A, Walowski J, Watanabe D, Kubota T, Zhang X, Naganuma H, Oogane M, Ando Y, Miyazaki T 2011 Phys. Rev. Lett. 106 117201

    [9]

    Winterlik J, Balke B, Fecher G H, Felser C, Alves M C M, Bernardi F, Morais J 2008 Phys. Rev. B 77 054406

    [10]

    Bai Z Q, Cai Y Q, Shen L, Yang M, Ko V, Han G C, Feng Y P 2012 Appl. Phys. Lett. 100 022408

    [11]

    Datta S, Das B 1990 Appl. Phys. Lett. 56 665

    [12]

    Hyun Cheol Koo J H K, Eom J, Chang J, Han S H, Johnson M 2009 Science 325 1515

    [13]

    Jrg Wunderlich B G P, Irvine A C, Zarbo L P, Rozkotov E, Nemec P, Novk V, Sinova J, Jungwirth T 2010 Science 330 1801

    [14]

    Kohda M, Kita T, Ohno Y, Matsukura F, Ohno H 2006 Appl. Phys. Lett. 89 012103

    [15]

    Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790

    [16]

    Lou X H, Ademann C, Crooker S A, Garlid E S, Zhang J J, Madhukar Reddy K S, Flexner S D, Palmstrm C J, Crowell P A 2007 Nature Phys. 3 197

    [17]

    Ma Q L, Mizukami S, Kubota T, Zhang X M, Ando Y, Miyazaki T 2014 Phys. Rev. Lett. 112 157202

    [18]

    Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D, Fullerton E E 2006 Nature Mater. 5 210

    [19]

    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nature Mater. 9 721

    [20]

    Mancoff F B, Dunn J H, Clemens B M, White R L 2000 Appl. Phys. Lett. 77 1879

    [21]

    Houssameddine D, Ebels U, Delaet B, Rodmacq B, Firastrau I, Ponthenier F, Brunet M, Thirion C, Michel J P, Prejbeanu-Buda L, Cyrille M C, Redon O, Dieny B 2007 Nature Mater. 6 441

    [22]

    Sun J Z 2000 Phys. Rev. B 62 570

    [23]

    Krishnan K M 1992 Appl. Phys. Lett. 61 2365

    [24]

    Wu F, Mizukami S, Watanabe D, Sajitha E P, Naganuma H, Oogane M, Ando Y, Miyazaki T 2010 IEEE Trans. Magn. 46 1863

    [25]

    Khler A, Knez I, Ebke D, Felser C, Parkin S S P 2013 Appl. Phys. Lett. 103 162406

    [26]

    Zheng Y H, Han G C, Lu H, Teo K L 2014 J. Appl. Phys. 115 043902

    [27]

    Suzuki K Z, Ranjbar R, Sugihara A, Miyazaki T, Mizukami S 2016 Jpn. J. Appl. Phys. 55 010305

    [28]

    Tanaka M, Harbison J P, Sands T, Philips B, Cheeks T L, de Boeck J, Florez L T, Keramidas V G 1993 Appl. Phys. Lett. 63 696

    [29]

    Huh Y, Kharel P, Shah V R, Li X Z, Skomski R, Sellmyer D J 2013 J. Appl. Phys. 114 013906

  • [1]

    Nie S H, Zhu L J, Pan D, Lu J, Zhao J H 2013 Acta Phys. Sin. 62 178103 (in Chinese) [聂帅华, 朱礼军, 潘东, 鲁军, 赵建华 2013 62 178103]

    [2]

    Wang H, Yang F J, Xue S X, Cao X, Wang J A, Gu H S, Zhao Z Q 2005 Acta Phys. Sin. 54 1415 (in Chinese) [王浩, 杨傅军, 薛双喜, 曹歆, 王君安, 顾豪爽, 赵子强 2005 54 1415]

    [3]

    Mizukami S, Kubota T, Wu F, Zhang X, Miyazaki T, Naganuma H, Oogane M, Sakuma A, Ando Y 2012 Phys. Rev. B 85 014416

    [4]

    Zhu Y, Cai J W 2005 Acta Phys. Sin. 54 393 (in Chinese) [竺云, 蔡建旺 2005 54 393]

    [5]

    Balke B, Fecher G H, Winterlik J, Felser C 2007 Appl. Phys. Lett. 90 152504

    [6]

    Zhu L J, Nie S H, Meng K K, Pan D, Zhao J H, Zheng H Z 2012 Adv. Mater. 24 4547

    [7]

    Wu F, Mizukami S, Watanabe D, Naganuma H, Oogane M, Ando Y, Miyazaki T 2009 Appl. Phys. Lett. 94 122503

    [8]

    Mizukami S, Wu F, Sakuma A, Walowski J, Watanabe D, Kubota T, Zhang X, Naganuma H, Oogane M, Ando Y, Miyazaki T 2011 Phys. Rev. Lett. 106 117201

    [9]

    Winterlik J, Balke B, Fecher G H, Felser C, Alves M C M, Bernardi F, Morais J 2008 Phys. Rev. B 77 054406

    [10]

    Bai Z Q, Cai Y Q, Shen L, Yang M, Ko V, Han G C, Feng Y P 2012 Appl. Phys. Lett. 100 022408

    [11]

    Datta S, Das B 1990 Appl. Phys. Lett. 56 665

    [12]

    Hyun Cheol Koo J H K, Eom J, Chang J, Han S H, Johnson M 2009 Science 325 1515

    [13]

    Jrg Wunderlich B G P, Irvine A C, Zarbo L P, Rozkotov E, Nemec P, Novk V, Sinova J, Jungwirth T 2010 Science 330 1801

    [14]

    Kohda M, Kita T, Ohno Y, Matsukura F, Ohno H 2006 Appl. Phys. Lett. 89 012103

    [15]

    Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790

    [16]

    Lou X H, Ademann C, Crooker S A, Garlid E S, Zhang J J, Madhukar Reddy K S, Flexner S D, Palmstrm C J, Crowell P A 2007 Nature Phys. 3 197

    [17]

    Ma Q L, Mizukami S, Kubota T, Zhang X M, Ando Y, Miyazaki T 2014 Phys. Rev. Lett. 112 157202

    [18]

    Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D, Fullerton E E 2006 Nature Mater. 5 210

    [19]

    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nature Mater. 9 721

    [20]

    Mancoff F B, Dunn J H, Clemens B M, White R L 2000 Appl. Phys. Lett. 77 1879

    [21]

    Houssameddine D, Ebels U, Delaet B, Rodmacq B, Firastrau I, Ponthenier F, Brunet M, Thirion C, Michel J P, Prejbeanu-Buda L, Cyrille M C, Redon O, Dieny B 2007 Nature Mater. 6 441

    [22]

    Sun J Z 2000 Phys. Rev. B 62 570

    [23]

    Krishnan K M 1992 Appl. Phys. Lett. 61 2365

    [24]

    Wu F, Mizukami S, Watanabe D, Sajitha E P, Naganuma H, Oogane M, Ando Y, Miyazaki T 2010 IEEE Trans. Magn. 46 1863

    [25]

    Khler A, Knez I, Ebke D, Felser C, Parkin S S P 2013 Appl. Phys. Lett. 103 162406

    [26]

    Zheng Y H, Han G C, Lu H, Teo K L 2014 J. Appl. Phys. 115 043902

    [27]

    Suzuki K Z, Ranjbar R, Sugihara A, Miyazaki T, Mizukami S 2016 Jpn. J. Appl. Phys. 55 010305

    [28]

    Tanaka M, Harbison J P, Sands T, Philips B, Cheeks T L, de Boeck J, Florez L T, Keramidas V G 1993 Appl. Phys. Lett. 63 696

    [29]

    Huh Y, Kharel P, Shah V R, Li X Z, Skomski R, Sellmyer D J 2013 J. Appl. Phys. 114 013906

  • [1] 王伟, 柳伟, 谢森, 葛浩然, 欧阳雨洁, 张程, 华富强, 张敏, 唐新峰. MnTe单晶薄膜的外延制备、本征点缺陷结构及电输运优化.  , 2022, 71(13): 137102. doi: 10.7498/aps.71.20212350
    [2] 孟婧, 冯心薇, 邵倾蓉, 赵佳鹏, 谢亚丽, 何为, 詹清峰. 具有不同交换偏置方向的外延FeGa/IrMn双层膜的磁各向异性与磁化翻转.  , 2022, 71(12): 127501. doi: 10.7498/aps.71.20220166
    [3] 黄玉昊, 张贵涛, 王如倩, 陈乾, 王金兰. 二维双金属铁磁半导体CrMoI6的电子结构与稳定性.  , 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [4] 姜兴东, 管兴胤, 黄娟娟, 范小龙, 薛德胜. N+注入修复外延Fe膜面内六重磁对称.  , 2019, 68(12): 126102. doi: 10.7498/aps.68.20190131
    [5] 盛宇, 张楠, 王开友, 马星桥. 自旋轨道矩调控的垂直磁各向异性四态存储器结构.  , 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [6] 张马淋, 葛剑峰, 段明超, 姚钢, 刘志龙, 管丹丹, 李耀义, 钱冬, 刘灿华, 贾金锋. SrTiO3(001)衬底上多层FeSe薄膜的分子束外延生长.  , 2016, 65(12): 127401. doi: 10.7498/aps.65.127401
    [7] 祝梦遥, 鲁军, 马佳淋, 李利霞, 王海龙, 潘东, 赵建华. 高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长.  , 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [8] 王萌, 欧云波, 李坊森, 张文号, 汤辰佳, 王立莉, 薛其坤, 马旭村. SrTiO3(001)衬底上单层FeSe超导薄膜的分子束外延生长.  , 2014, 63(2): 027401. doi: 10.7498/aps.63.027401
    [9] 聂帅华, 朱礼军, 潘东, 鲁军, 赵建华. 分子束外延制备的垂直易磁化MnAl薄膜结构和磁性.  , 2013, 62(17): 178103. doi: 10.7498/aps.62.178103
    [10] 陈家洛, 狄国庆. 磁各向异性热电效应对自旋相关器件的影响.  , 2012, 61(20): 207201. doi: 10.7498/aps.61.207201
    [11] 周勋, 杨再荣, 罗子江, 贺业全, 何浩, 韦俊, 邓朝勇, 丁召. 反射式高能电子衍射实时监控的分子束外延生长GaAs晶体衬底温度校准及表面相变的研究.  , 2011, 60(1): 016109. doi: 10.7498/aps.60.016109
    [12] 苏少坚, 汪巍, 张广泽, 胡炜玄, 白安琪, 薛春来, 左玉华, 成步文, 王启明. Si(001)衬底上分子束外延生长Ge0.975Sn0.025合金薄膜.  , 2011, 60(2): 028101. doi: 10.7498/aps.60.028101
    [13] 张燕辉, 陈平平, 李天信, 殷豪. GaAs(001)衬底上分子束外延生长InNSb单晶薄膜.  , 2010, 59(11): 8026-8030. doi: 10.7498/aps.59.8026
    [14] 崔秀芝, 张天冲, 梅增霞, 刘章龙, 刘尧平, 郭阳, 苏希玉, 薛其坤, 杜小龙. 湿法刻蚀对Si基片孔点阵及ZnO外延薄膜周期形貌的影响.  , 2009, 58(1): 309-314. doi: 10.7498/aps.58.309
    [15] 李天富, 陈东风, 王洪立, 孙凯, 刘蕴韬. 超薄Fe(4?)膜磁特性极化中子反射研究.  , 2009, 58(11): 7993-7997. doi: 10.7498/aps.58.7993
    [16] 任俊峰, 张玉滨, 解士杰. 铁磁/有机半导体/铁磁系统的电流自旋极化性质研究.  , 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [17] 郭玉献, 王 劼, 徐彭寿, 李红红, 蔡建旺. Co0.9Fe0.1薄膜面内元素分辨的磁各向异性.  , 2007, 56(2): 1121-1126. doi: 10.7498/aps.56.1121
    [18] 李锐鹏, 王 劼, 李红红, 郭玉献, 王 锋, 胡志伟. 软x射线磁性圆二色吸收谱研究铁单晶薄膜的面内磁各向异性.  , 2005, 54(8): 3851-3855. doi: 10.7498/aps.54.3851
    [19] 叶健松, 胡晓君. 超薄膜外延生长的Monte Carlo模拟.  , 2002, 51(5): 1108-1112. doi: 10.7498/aps.51.1108
    [20] 谭震宇, 夏曰源. 低能束作用下衬底上超薄膜背散射电子发射.  , 2002, 51(7): 1506-1511. doi: 10.7498/aps.51.1506
计量
  • 文章访问数:  6240
  • PDF下载量:  183
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-23
  • 修回日期:  2016-03-01
  • 刊出日期:  2016-06-05

/

返回文章
返回
Baidu
map