-
具有超强垂直磁各向异性的L10-MnxGa薄膜由于其与半导体材料结构及工艺的高度兼容性而受到广泛关注, 其超高垂直磁各向异性能和极低的磁阻尼因子预示着L10-MnxGa薄膜在高热稳定性自旋电子学器件中将发挥重要作用. 而L10-MnxGa超薄膜对于降低L10-MnxGa基垂直磁各向异性隧道结中的磁矩翻转临界电流密度有着重要的意义. 本文采用分子束外延的方法, 在半导体GaAs衬底上成功制备出了一系列不同厚度的L10-Mn1.67Ga薄膜, 厚度范围为1-5 nm. 生长过程中反射式高能电子衍射原位检测以及X射线衍射结果均表明了其良好的单晶相. 磁性测量结果表明, 厚度在1 nm以上的L10-Mn1.67Ga薄膜均可以保持垂直磁各向异性特征, 厚度为5 nm的L10-Mn1.67Ga薄膜的垂直磁各向异性能可达到14.7 Merg/cm3. 这些结果为基于L10-Mn1.67Ga的垂直磁各向异性隧道结在自旋转移扭矩驱动的磁随机存储器等低功耗器件的集成及应用提供了重要的实验支持.Materials with large perpendicular magnetic anisotropies (PMAs) have drawn great attention because of their potential applications in advanced spintronic devices such as spin-transfer-torque magnetic random access memory (STT-MRAM) and ultrahigh-density perpendicular magnetic recording. To date, a large variety of PMA materials have been investigated, such as L10-ordered FePt, CoPt granular films, Co/(Pt,Pd,Ni) multilayers, ultra-thin CoFeB alloys and perpendicularly magnetized Co2FeAl films. Among the various kinds of materials with PMA, MnGa film with L10-structure has received the most attention because it has large PMA (Ku~107 erg/cm3), ultralow Gilbert damping constant (0.008) and theoretically predicted high spin polarization (more than 70%). All these properties make L10-ordered MnGa a good candidate for spintronic devices such as STT-MRAM and spin-torque oscillators. Meanwhile, from the viewpoint of STT related spintronic device, it is necessary to fabricate ultrathin perpendicularly magnetized L10-MnxGa films to lower the critical current for magnetization reversal. However, up to now, in the main researches the ultrathin L10-MnxGa films have been grown on MgO substrates, which makes it difficult to integrate the MnGa-based magnetic tunnel junctions into the semiconductor manufacturing process.In this work, ultrathin L10-Mn1.67Ga films with different thickness values (1-5 nm) are grown on traditional GaAa (001) substrates by a molecule-beam epitaxy system. During the deposition, in situ streaky surface reconstruction patterns are observed from reflection high-energy electron diffraction, which implies high crystalline quality of the L10-Mn1.67Ga film. Only MnGa superlattice (001) and MnGa fundamental (002) peaks can be observed in the X-ray diffraction patterns in a range from 20 to 70, which means that the L10-Mn1.67Ga film is a good single-crystalline with c-axis along the normal direction. The magnetic properties of these films are measured by superconductor quantum interference device magnetometer in a field range of 5 T. The perpendicular M-H curves are almost square, while the in-plane curves are nearly hysteresis-free, each with a remnant magnetization (Mr) of around zero, which clearly evidences the PMA of the ultrathin L10-Mn1.67Ga film. Moreover, as the thickness of L10-Mn1.67Ga film decreases from 5 nm to 1 nm, the ratio of Mr/Ms also decreases from 1 to 0.72, which indicates that the PMA loses as thickness decreases. We also estimate the perpendicular anisotropy constant (Ku) from the relation Ku=Keff+2 Ms2, and the maximum Ku of 14.7 Merg/cm3 is obtained for the 5 nm MnGa film. Although the Ku decreases with thickness decreasing, a Ku value of 8.58 Merg/cm3 is observed in a 2 nm thick film. The obtained results are important for developing the L10-MnGa-based spin-transfer torque Gbit class magnetic random access memory.
-
Keywords:
- molecular-beam epitaxy /
- spintronics /
- magnetic anisotropy /
- ultrathin films
[1] Nie S H, Zhu L J, Pan D, Lu J, Zhao J H 2013 Acta Phys. Sin. 62 178103 (in Chinese) [聂帅华, 朱礼军, 潘东, 鲁军, 赵建华 2013 62 178103]
[2] Wang H, Yang F J, Xue S X, Cao X, Wang J A, Gu H S, Zhao Z Q 2005 Acta Phys. Sin. 54 1415 (in Chinese) [王浩, 杨傅军, 薛双喜, 曹歆, 王君安, 顾豪爽, 赵子强 2005 54 1415]
[3] Mizukami S, Kubota T, Wu F, Zhang X, Miyazaki T, Naganuma H, Oogane M, Sakuma A, Ando Y 2012 Phys. Rev. B 85 014416
[4] Zhu Y, Cai J W 2005 Acta Phys. Sin. 54 393 (in Chinese) [竺云, 蔡建旺 2005 54 393]
[5] Balke B, Fecher G H, Winterlik J, Felser C 2007 Appl. Phys. Lett. 90 152504
[6] Zhu L J, Nie S H, Meng K K, Pan D, Zhao J H, Zheng H Z 2012 Adv. Mater. 24 4547
[7] Wu F, Mizukami S, Watanabe D, Naganuma H, Oogane M, Ando Y, Miyazaki T 2009 Appl. Phys. Lett. 94 122503
[8] Mizukami S, Wu F, Sakuma A, Walowski J, Watanabe D, Kubota T, Zhang X, Naganuma H, Oogane M, Ando Y, Miyazaki T 2011 Phys. Rev. Lett. 106 117201
[9] Winterlik J, Balke B, Fecher G H, Felser C, Alves M C M, Bernardi F, Morais J 2008 Phys. Rev. B 77 054406
[10] Bai Z Q, Cai Y Q, Shen L, Yang M, Ko V, Han G C, Feng Y P 2012 Appl. Phys. Lett. 100 022408
[11] Datta S, Das B 1990 Appl. Phys. Lett. 56 665
[12] Hyun Cheol Koo J H K, Eom J, Chang J, Han S H, Johnson M 2009 Science 325 1515
[13] Jrg Wunderlich B G P, Irvine A C, Zarbo L P, Rozkotov E, Nemec P, Novk V, Sinova J, Jungwirth T 2010 Science 330 1801
[14] Kohda M, Kita T, Ohno Y, Matsukura F, Ohno H 2006 Appl. Phys. Lett. 89 012103
[15] Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790
[16] Lou X H, Ademann C, Crooker S A, Garlid E S, Zhang J J, Madhukar Reddy K S, Flexner S D, Palmstrm C J, Crowell P A 2007 Nature Phys. 3 197
[17] Ma Q L, Mizukami S, Kubota T, Zhang X M, Ando Y, Miyazaki T 2014 Phys. Rev. Lett. 112 157202
[18] Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D, Fullerton E E 2006 Nature Mater. 5 210
[19] Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nature Mater. 9 721
[20] Mancoff F B, Dunn J H, Clemens B M, White R L 2000 Appl. Phys. Lett. 77 1879
[21] Houssameddine D, Ebels U, Delaet B, Rodmacq B, Firastrau I, Ponthenier F, Brunet M, Thirion C, Michel J P, Prejbeanu-Buda L, Cyrille M C, Redon O, Dieny B 2007 Nature Mater. 6 441
[22] Sun J Z 2000 Phys. Rev. B 62 570
[23] Krishnan K M 1992 Appl. Phys. Lett. 61 2365
[24] Wu F, Mizukami S, Watanabe D, Sajitha E P, Naganuma H, Oogane M, Ando Y, Miyazaki T 2010 IEEE Trans. Magn. 46 1863
[25] Khler A, Knez I, Ebke D, Felser C, Parkin S S P 2013 Appl. Phys. Lett. 103 162406
[26] Zheng Y H, Han G C, Lu H, Teo K L 2014 J. Appl. Phys. 115 043902
[27] Suzuki K Z, Ranjbar R, Sugihara A, Miyazaki T, Mizukami S 2016 Jpn. J. Appl. Phys. 55 010305
[28] Tanaka M, Harbison J P, Sands T, Philips B, Cheeks T L, de Boeck J, Florez L T, Keramidas V G 1993 Appl. Phys. Lett. 63 696
[29] Huh Y, Kharel P, Shah V R, Li X Z, Skomski R, Sellmyer D J 2013 J. Appl. Phys. 114 013906
-
[1] Nie S H, Zhu L J, Pan D, Lu J, Zhao J H 2013 Acta Phys. Sin. 62 178103 (in Chinese) [聂帅华, 朱礼军, 潘东, 鲁军, 赵建华 2013 62 178103]
[2] Wang H, Yang F J, Xue S X, Cao X, Wang J A, Gu H S, Zhao Z Q 2005 Acta Phys. Sin. 54 1415 (in Chinese) [王浩, 杨傅军, 薛双喜, 曹歆, 王君安, 顾豪爽, 赵子强 2005 54 1415]
[3] Mizukami S, Kubota T, Wu F, Zhang X, Miyazaki T, Naganuma H, Oogane M, Sakuma A, Ando Y 2012 Phys. Rev. B 85 014416
[4] Zhu Y, Cai J W 2005 Acta Phys. Sin. 54 393 (in Chinese) [竺云, 蔡建旺 2005 54 393]
[5] Balke B, Fecher G H, Winterlik J, Felser C 2007 Appl. Phys. Lett. 90 152504
[6] Zhu L J, Nie S H, Meng K K, Pan D, Zhao J H, Zheng H Z 2012 Adv. Mater. 24 4547
[7] Wu F, Mizukami S, Watanabe D, Naganuma H, Oogane M, Ando Y, Miyazaki T 2009 Appl. Phys. Lett. 94 122503
[8] Mizukami S, Wu F, Sakuma A, Walowski J, Watanabe D, Kubota T, Zhang X, Naganuma H, Oogane M, Ando Y, Miyazaki T 2011 Phys. Rev. Lett. 106 117201
[9] Winterlik J, Balke B, Fecher G H, Felser C, Alves M C M, Bernardi F, Morais J 2008 Phys. Rev. B 77 054406
[10] Bai Z Q, Cai Y Q, Shen L, Yang M, Ko V, Han G C, Feng Y P 2012 Appl. Phys. Lett. 100 022408
[11] Datta S, Das B 1990 Appl. Phys. Lett. 56 665
[12] Hyun Cheol Koo J H K, Eom J, Chang J, Han S H, Johnson M 2009 Science 325 1515
[13] Jrg Wunderlich B G P, Irvine A C, Zarbo L P, Rozkotov E, Nemec P, Novk V, Sinova J, Jungwirth T 2010 Science 330 1801
[14] Kohda M, Kita T, Ohno Y, Matsukura F, Ohno H 2006 Appl. Phys. Lett. 89 012103
[15] Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790
[16] Lou X H, Ademann C, Crooker S A, Garlid E S, Zhang J J, Madhukar Reddy K S, Flexner S D, Palmstrm C J, Crowell P A 2007 Nature Phys. 3 197
[17] Ma Q L, Mizukami S, Kubota T, Zhang X M, Ando Y, Miyazaki T 2014 Phys. Rev. Lett. 112 157202
[18] Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D, Fullerton E E 2006 Nature Mater. 5 210
[19] Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nature Mater. 9 721
[20] Mancoff F B, Dunn J H, Clemens B M, White R L 2000 Appl. Phys. Lett. 77 1879
[21] Houssameddine D, Ebels U, Delaet B, Rodmacq B, Firastrau I, Ponthenier F, Brunet M, Thirion C, Michel J P, Prejbeanu-Buda L, Cyrille M C, Redon O, Dieny B 2007 Nature Mater. 6 441
[22] Sun J Z 2000 Phys. Rev. B 62 570
[23] Krishnan K M 1992 Appl. Phys. Lett. 61 2365
[24] Wu F, Mizukami S, Watanabe D, Sajitha E P, Naganuma H, Oogane M, Ando Y, Miyazaki T 2010 IEEE Trans. Magn. 46 1863
[25] Khler A, Knez I, Ebke D, Felser C, Parkin S S P 2013 Appl. Phys. Lett. 103 162406
[26] Zheng Y H, Han G C, Lu H, Teo K L 2014 J. Appl. Phys. 115 043902
[27] Suzuki K Z, Ranjbar R, Sugihara A, Miyazaki T, Mizukami S 2016 Jpn. J. Appl. Phys. 55 010305
[28] Tanaka M, Harbison J P, Sands T, Philips B, Cheeks T L, de Boeck J, Florez L T, Keramidas V G 1993 Appl. Phys. Lett. 63 696
[29] Huh Y, Kharel P, Shah V R, Li X Z, Skomski R, Sellmyer D J 2013 J. Appl. Phys. 114 013906
计量
- 文章访问数: 6240
- PDF下载量: 183
- 被引次数: 0